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Food intake is regulated by several complicated synergistic mechanisms that are affected by a variety of internal and ex-
ternal influences. Some of these factors include those that are released from pathogens such as bacteria, fungi, and viruses, and 
most of these factors are associated with suppression of the chick’s food intake. Although chicks are well-known to decrease 
their food intake when they experience a pathogenic challenge, the mechanisms that mediate this type of satiety are poorly 
understood. One of the goals of our research group has been to better understand these mechanisms in chicks. We recently 
provided evidence that pathogen-associated molecular patterns, which are recognized by pattern-recognition receptors such 
as Toll-like receptors, likely contribute to satiety in chicks that are experiencing a pathogenic challenge. Additionally, we 
identified several inflammatory cytokines, including interleukin-1β, tumor necrosis factor-like cytokine 1A, prostaglandins, 
and nitric oxide, that likely contribute to satiety during a pathogenic challenge. This review summarizes the current knowl-
edge on pathogen-induced satiety in chicks mainly accumulated through our recent research. The research will give good 
information to improve the loss of production during infection in poultry production in the future.
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Introduction

Chicks are precocial immediately after hatching and search 
for food even when their down is still wet from the egg. Thus, 
chicks hatch with an exceptionally well-developed neural cir-
cuitry that causes them to actively search for and ingest food. 
Appetite regulation in any vertebrate, including chickens, is com-
plicated and is affected by a wide variety of internal and external 
factors, including age, reproductive status, food availability and 
palatability, environmental temperature, and exposure to stress-
ors, among many other influences.

Pathogen challenge has a significant effect on food intake in 
chickens. In general, chicks with a high pathogen load exhibit 
greatly reduced food intake, resulting in production loss. There-

fore, studying the mechanisms that cause reduced food intake in 
chickens with high pathogen loads may provide novel insights 
to mitigate production and profitability losses. When pathogens 
such as bacteria, fungi, and viruses invade, the chicken immune 
system is triggered to eliminate or neutralize these pathogens. 
In addition, infections are frequently associated with non-spe-
cific symptoms such as weight loss, pain, fatigue, malaise, and 
loss of appetite. The chicken immune system is activated when 
it encounters components of pathogens, including pathogen-
associated molecular patterns (PAMPs). In vertebrates, PAMPs 
bind to pattern recognition receptors, including Toll-like recep-
tors (TLRs). PAMPs are associated with non-specific symptoms 
in the host, including anorexia, hypoactivity, hyperthermia, and 
changes in the digestive function in mammals.

It is therefore possible that PAMPs are a trigger to reduce 
food intake in chickens with a pathogen load. However, when 
we started this area of research, there was very little knowledge 
regarding the effect of PAMPs in chickens. Therefore, one focus 
of our research group has been to understand how PAMPs reduce 
food intake in chicks. This review summarizes the findings of our 
ongoing research.
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TLRs and PAMPs

TLRs
TLRs are members of the pattern-recognition receptor group 

that bind to molecules frequently found in pathogens, including 
PAMPs. In vertebrates, TLRs are expressed in several cell types, 
including dendritic cells, macrophages, and epithelial cells. In 
humans, 10 TLRs, namely TLR1–10, have been isolated to date 
(Table 1) (Kawasaki and Kawai, 2014). Although mice lack a 
functional TLR10 gene, they have three other TLRs not found 
in humans: TLR11, TLR12, and TLR13 (Kawasaki and Kawai, 
2014). TLRs are categorized into two subfamilies according to 
their subcellular localizations: one subfamily is expressed on the 
cell surface and the other is expressed intracellularly in organ-
elles, including the endosome.

Cell-surface TLRs include TLR1, TLR2, TLR4, TLR5, 
TLR6, and TLR10, whereas intracellular TLRs include TLR3, 
TLR7, TLR8, TLR9, TLR11, TLR12, and TLR13 (Kawasaki and 
Kawai, 2014). Cell-surface TLRs recognize microbial membrane 
components, including lipopolysaccharide (LPS), lipoproteins, 
and proteins, whereas intracellular TLRs recognize nucleic ac-
ids associated with bacteria and viruses. Most TLRs function as 
homodimers, whereas TLR2 forms a heterodimer with TLR1 or 
TLR6. Most TLRs are associated with the adaptor protein my-
eloid differentiation factor 88 (MyD88), except TLR3, which 
only has TIR-domain-containing adapter-inducing interferon-β 
(TRIF) as its adaptor.

Chickens also have TLRs, and several reviews focusing on 
chicken TLRs are available (Kannaki et al., 2010; Brownlie and 
Allan, 2011; Nawab et al., 2019). Several TLRs have been identi-

fied in chickens (TLR1, TLR2, TLR3, TLR4, TLR5, and TLR7) 
(Fukui et al., 2001; Iqbal et al., 2005; Yilmaz et al., 2005), and 
their ligands are similar to those observed in mammals (Kannaki 
et al., 2010; Brownlie and Allan, 2011; Nawab et al., 2019). In 
addition to them, chickens have unique TLRs, namely TLR15 
and TLR21. Chickens lack TLR9, whose ligand is unmethyl-
ated oligo-DNA containing CpG motif of bacteria and viruses; 
however, chickens TLR21 has a similar function to mammalian 
TLR9 (Brownlie et al., 2009). TLR15 appears to be unique to 
birds, as it has not been isolated in mammals (Kannaki et al., 
2010; Brownlie and Allan, 2011; Nawab et al., 2019). Chicken 
TLR15 recognizes fungal and bacterial proteases (de Zoete et al., 
2011; Boyd et al., 2012). Additionally, there are two subtypes of 
TLR1 and TLR2 in chicken. Thus, chicken TLRs have evolved 
differently from those of mammals, but maintain their original 
function of recognizing and activating the innate immune sys-
tem, as is the case in mammals.
TLR4 and LPS

TLR4 is a well-known receptor for LPS (Table 1), which is 
the most well-studied PAMP in vertebrates because it induces 
a robust immune response against bacterial infection. LPS is an 
endotoxin found in the cell wall of gram-negative bacteria and 
is released when the cell disintegrates. LPS comprises an O-
polysaccharide, a core oligosaccharide, and lipid A, and induces 
strong immunoreactivity and non-specific symptoms in verte-
brates. In rodents, LPS induces anorexia, hypoactivity, hypother-
mia, or fever, and decreases gastric emptying (van Miert and De 
la Parra, 1970; Langhans et al., 1990; Kozak et al., 1994; Kanra 
et al., 2006).

The amino acid sequence of chicken TLR4 has moderate ho-
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Table 1.  Summary of human TLRs and their ligands.
TLR Ligand (PAMPs) Ligand source Cell localization
TLR1 Triacyl lipopeptides Bacteria Cell surface

TLR2
Peptidoglycans Bacteria

Cell surfaceLTA Gram-positive bacteria
Zymosan Fungi

TLR3
Double-stranded RNA Viruses

Cell compartment
Poly I:C Synthetic compound

TLR4 LPS Gram-negative bacteria Cell surface
TLR5 Flagellin Bacteria Cell surface
TLR6 Diacyl lipopeptides Mycoplasmas Cell surface

TLR7

Single-stranded RNA RNA viruses

Cell compartment
Imidazoquinoline Synthetic compound

Resiquimod Synthetic compound
Imiquimod Synthetic compound

TLR8 Single-stranded RNA RNA viruses Cell compartment

TLR9 Unmethylated oligo-DNA 
containing CpG motif Bacteria, DNA viruses Cell compartment

TLR10 Triacyl lipopeptides Bacteria Cell surface

Abbreviations: TLR, Toll-like receptor; PAMPs, pathogen-associated molecular patterns; LTA, lipoteichoic acid; poly I:C, polyinosinic-polycytidylic 
acid; LPS, lipopolysaccharide; CpG, unmethylated cytosine-guanine dinucleotide.
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mology to that of mammalian TLR4 (42% and 51% homology to 
the extracellular and cytoplasmic domains of mouse TLR4, re-
spectively) (Yilmaz et al., 2005). Chicken TLR4 mRNA is highly 
expressed in the cecal tonsils, macrophages, and heterophils 
(Iqbal et al., 2005). Moderate expression of chicken TLR4 mRNA 
has been observed in several organs, including the digestive tract, 
spleen, and liver (Iqbal et al., 2005). LPS is the most well-investi-
gated PAMP in birds. Similar to mammals, LPS not only activates 
the innate immune system but also induces behavioral and physi-
ological changes in birds (Table 2). Johnson et al. (1993a, 1993b) 
were the first to extensively study LPS in chickens. They found 
that intraperitoneal (IP) injection of LPS decreased food intake, 
induced somnolence, increased body temperature, and increased 
the plasma corticosterone (CORT) concentration (Johnson et al., 
1993a). A subsequent study showed that TLR4 mRNA is not only 
distributed in the peripheral organs but also in the brain (Iqbal 
et al., 2005). Johnson et al. (1993a) also found that both IP and 
intracerebroventricular (ICV) injections of LPS decreased food 
intake. The anorexigenic effect of LPS following ICV injection 
has also been demonstrated by other research groups, including 
our own (Zendehdel et al., 2012; 2016; Tachibana et al., 2016). 
However, to our knowledge, it remains unclear whether LPS can 
pass the blood–brain barrier in chickens. Artunkal et al. (1977) 
suggested that young chicks have not yet established a functional 
blood–brain barrier; therefore, LPS easily accesses the brain. Ad-
ditionally, LPS has been shown to disrupt the blood–brain barrier 
in mammals (Varatharaj and Galea, 2017). It is therefore possible 
that blood-borne LPS directly affects neural activity in the brains 
of chicks.

Additionally, we found that IP injection of 100 µg LPS ob-

tained from Escherichia coli O127 decreased the feed pas-
sage rate through the crop (i.e., crop emptying rate) in chicks 
(Tachibana et al., 2017b). Moreover, LPS administration caused 
conditioned visual aversion in chicks, suggesting that LPS in-
duces an aversive sensation (Tachibana et al., 2022b). Changes 
in feed passage through the digestive tract and the aversive sensa-
tion may contribute to the anorexigenic effect of LPS.
TLR2 and its Ligands

TLR2 has a variety of ligands, including peptidoglycan, li-
poteichoic acid (LTA), and zymosan (Table 1). In chickens, two 
types of TLR2 have been identified: TLR2A (TLR2 type 1) and 
TLR2B (TLR2 type 2) (Fukui et al., 2001). Both types of TLR2 
have moderate amino acid sequence homology to mammalian 
TLR2 (TLR2A, 41% and 74%; TLR2B, 44% and 74% homology 
to the extracellular and cytoplasmic domains of mouse TLR2, re-
spectively) (Yilmaz et al., 2005). The chicken TLR2A and TLR2B 
genes are expressed in several organs, including the spleen, ce-
cal tonsil, and digestive tract, but the expression of TLR2B is 
stronger than that of TLR2A (Iqbal et al., 2005). TLR2B, but not 
TLR2A, is expressed in the kidney, brain, testes, heart, and mac-
rophages (Iqbal et al., 2005).

LTA is a component of gram-positive bacterial cell walls, 
and its IP injection (from Bacillus subtilis) induces non-rapid 
eye movement sleep, hypothermia, hyperthermia, hypoactivity, 
and anorexia in mice (Szentirmai et al., 2021). Thus, LTA is con-
sidered to induce non-specific symptoms during gram-positive 
bacterial infections in mammals. However, neither IP nor ICV 
injection of LTA from Streptococcus pyogenes affects food intake 
in chicks (Table 2) (Tachibana et al., 2016). The reason for this 
lack of effect of LTA on feeding in chicks remains unknown, al-

Table 2.  Effects of PAMPs on behavioral and physiological parameters in chickens.

PAMPs
Injection 

route

Behavioral and physiological parameters
References

Feeding
Cloacal 

temperature
Crop 

emptying
Corticosterone 

release

LPS
IP Decreased Increased Decreased Increased Johnson et al. (1993a) 

Johnson et al. (1993b) 
Tachibana et al. (2016) 
Tachibana et al. (2017b)ICV Decreased Increased – Increased

LTA
IP No change – – –

Tachibana et al. (2016)
ICV No change – – –

Zymosan IP Decreased Increased Decreased Increased
Tachibana et al. (2020a) 
Tachibana et al. (2021b) 
Takahashi et al. (2021)

β-glucan IP Decreased – No change –
Mannan IP No change – No change –
Chitin IP No change – No change –
Flagellin IP Decreased Increased Decreased Increased Tachibana et al. (2021a)

Poly I:C
IP Decreased No change No change Increased Tachibana et al. (2019b) 

Tachibana et al. (2022c)ICV Decreased No change Decreased Increased
Resiquimod IP Decreased Decreased Decreased Increased Tachibana et al. (2020b) 

Tachibana et al. (2022b)Imiquimod IP No change No change No change No change

Abbreviations: PAMPs, pathogen-associated molecular patterns; LPS, lipopolysaccharide; LTA, lipoteichoic acid; Poly I:C, polyinosinic-polycytidyl-
ic acid; IP, intraperitoneal injection; ICV, intracerebroventricular injection; –, not investigated
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though the source of LTA differed between studies (Tachibana et 
al., 2016; Szentirmai et al., 2021). Currently, there is no evidence 
that LTA induces non-specific symptoms, including anorexia, in 
chicks.

Zymosan is a PAMP derived from the cell wall of yeast, which 
is primarily composed of polysaccharides such as β-glucan, chi-
tin, and mannan (Di Carlo and Fiore, 1958). As an agonist of 
TLR2, zymosan causes severe inflammation and multiple or-
gan dysfunction syndromes by stimulating various inflamma-
tory mediators (Volman et al., 2005). Furthermore, IP injection 
of zymosan induces hypophagia and hyperthermia in rodents 
(Cremeans-Smith and Newberry, 2003; Naoi et al., 2006; Hub-
schle et al., 2007; Saito and Watanabe, 2008; Bastos-Pereira et 
al., 2014; 2017). Zymosan treatment increased reactive oxygen 
species levels in chicken blood phagocytes, including heterophils 
and macrophages, in vitro (Desmidt et al., 1996; Merrill et al., 
1996; Guabiraba et al., 2017). In addition, IP injection of zymo-
san induced leukocyte infiltration into the abdominal cavity and 
stimulated reactive oxygen species production in chickens (More 
Bayona et al., 2017). We found that IP injection of 2.5 mg zymo-
san derived from Saccharomyces cerevisiae suppressed feeding 
behavior in chicks (Table 2) (Tachibana et al., 2020a). This dose 
of zymosan also increased the cloacal temperature and reduced 
the crop emptying rate in chicks (Tachibana et al., 2020a; 2021b; 
Takahashi et al., 2021). Interestingly, zymosan components such 
as β-glucan, chitin, and mannan had little or no effect on the 
feeding behavior and crop emptying rate in chicks (Tachibana 
et al., 2020a; 2021b). This indicates that a combination of these 
components, or other unknown components, is required to exert 
the effect of zymosan in chicks. Similar to LPS, IP injection of 
zymosan causes conditioned visual aversion in chicks (Tachibana 
et al., 2022b). The mechanism underlying the effect of zymosan 
may be similar to that of LPS.

Fukui et al. (2001) reported that chicken TLR2B failed to re-
spond to S. cerevisiae and zymosan in vitro. Thus, it is possible 
that the effect of zymosan is not mediated by TLR2 in chickens. 
In mammals, the complement system and macrophages are af-
fected by zymosan (Nieuwenhuijzen et al., 1993; Miller et al., 
1996). Therefore, zymosan might exert its effect through the 
complement system and/or macrophages rather than via TLR2 
in chicks.
TLR5 and Flagellin

TLR5 recognizes flagellin, a protein component of the bacte-
rial flagella (Table 1) (Hayashi et al., 2001). Chicken TLR5 has 
moderate amino acid sequence homology with that of mammals 
(47% and 60% homology to the extracellular and cytoplasmic 
domains of mouse TLR5, respectively) (Yilmaz et al., 2005), and 
is moderately expressed in several organs, including the digestive 
tract, spleen, cecal tonsil, bursa, lung, liver, kidney, testis, and 
heart (Iqbal et al., 2005).

Mice injected IP or intravenously (IV) with 10–100 µg fla-
gellin showed increased plasma concentrations of proinflamma-
tory cytokines, including interleukin (IL)-6, interferon-γ (IFN-γ), 
tumor necrosis factor-α (TNF-α), and nitrate, by activating in-

ducible nitric oxide synthase (iNOS) (Eaves-Pyles et al., 2001; 
Liaudet et al., 2002). An IV injection of a higher dose (10 mg/kg) 
of flagellin induced hypotension, a reduction in vascular contrac-
tility, and death in mice (Eaves-Pyles et al., 2001). Furthermore, 
flagellin injection reduced wheel-running and body weight gain 
in mice (Matsumoto et al., 2008), suggesting that flagellin and 
TLR5 are also related to physiological and behavioral changes 
in vertebrates.

Flagellin activates the chicken immune system. The IP injec-
tion of flagellin increases peripheral blood leukocyte concentra-
tions, especially heterophils, in chickens (Genovese et al., 2007). 
Furthermore, flagellin stimulates the mRNA expression of IL-1β 
and IL-6 in chicken heterophils (Kogut et al., 2006). In addition, 
we found that IP injection of 10 µg flagellin decreased the food 
intake and crop emptying rate in chicks (Table 2) (Tachibana 
et al., 2021a). The effect of flagellin on body temperature is bi-
phasic; IP injection of flagellin first tends to decrease cloacal 
temperature, followed by an increase (Tachibana et al., 2021a). 
However, these effects were not observed when flagellin-22, a 
22-amino acid sequence fragment of the conserved N-terminal 
part of flagellin that activates plant defense mechanisms (Gar-
cía and Hirt, 2014), was injected into chicks (Tachibana et al., 
2021a). Thus, other parts of flagellin, including the C-terminal 
domain, may play an important role in inducing non-specific 
symptoms in chicks.

Most studies in chickens have focused on LPS rather than on 
other bacteria-derived PAMPs. In summary, the results accumu-
lated to date regarding flagellin suggest that flagellin, similar to 
LPS, is associated with non-specific symptoms during bacterial 
infection.
TLR3 and Poly I:C

TLR3 is distributed in the cellular components, but not in 
the cell membrane, and recognizes double-stranded RNA (Table 
1). The amino acid sequence of chicken TLR3 shows moderate 
homology to that of mice (57% and 67% homology to the N-
terminal and C-terminal domains of mouse TLR3, respectively) 
(Yilmaz et al., 2005). Chicken TLR3 is highly expressed in the 
digestive tract, cecal tonsil, liver, and kidney (Iqbal et al., 2005).

Polyinosinic-polycytidylic acid (poly I:C) is a synthetic dou-
ble-stranded RNA that binds TLR3 and is widely used as a vi-
ral mimetic. In mammals, poly I:C injection affects locomotor 
activity and induces anorexia, fever, and stress responses. More 
specifically, IP injection of poly I:C decreases locomotor activity 
in mice (Cunningham et al., 2007; Zhu et al., 2016) and cage ac-
tivity and wheel running activity in rats (Hopwood et al., 2009). 
ICV injection of poly I:C also decreased locomotor activity in 
mice (Zhu et al., 2016), and both ICV and IP injections induced 
anorexia in mice (Zhu et al., 2016) and rats (Hopwood et al., 
2009). IV, IP, and ICV injection of poly I:C induces fever in mice 
(Cunningham et al., 2007; Zhu et al., 2016), rabbits (Kimura et 
al., 1994), and rats (Bastos-Pereira et al., 2015). In addition, IP 
injection of poly I:C increases the plasma CORT concentration in 
mice (Guha-Thakurta and Majde, 1997).

Although poly I:C induces cytokine gene expression in the 
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spleens of chickens (St Paul et al., 2012), as observed in mam-
mals (Guha-Thakurta and Majde, 1997), very little is known 
about its effects on behavioral and physiological responses. We 
demonstrated that IP injection of 400 µg poly I:C reduced food 
intake in chicks, but had no effect on cloacal temperature and 
the crop emptying rate (Table 2) (Tachibana et al., 2019b). Since 
TLR3 is expressed in the chicken brain (Iqbal et al., 2005), we hy-
pothesized that poly I:C might directly act on the brain to induce 
anorexia in chicks. We found that ICV injection of 10 and 40 µg 
poly I:C reduced food intake in chicks and suppressed the crop 
emptying rate, whereas it had no effect on cloacal temperature 
(Tachibana et al., 2019b).
TLR7 and Resiquimod

In mammals, TLR7 and TLR8 are considered to respond to 
infection of single-stranded RNA viruses (Uematsu and Akira, 
2006). Activation of TLR7 by its agonists induces the expres-
sion of several cytokines such as ILs, IFNs, and TNF-α (Dockrell 
and Kinghorn, 2001). In addition, TLR7 is considered to mediate 
the physiological and behavioral changes that occur during vi-
ral infection, based on evidence that intranasal administration of 
the TLR7 agonist SM360320 (1V136) induced anorexia, adipsia, 
hypothermia, and hypoactivity in mice (Hayashi et al., 2008). In 
addition, subcutaneous and IP injections of imiquimod, a TLR7 
agonist, induced anorexia and hyperthermia in rats (Damm et al., 
2012). The discrepancy in the response of body temperature to 
TLR7 agonists between studies could be due to the difference 
in experimental conditions such as animal species and injection 
route. Regardless of these differences, TLR7 agonists appear to 
affect feeding behavior, body temperature, and activity in mam-
mals. Furthermore, TLR7-induced anorexia and decreased physi-
cal activity were found to be mediated via TNF-α and/or prosta-
glandin E2 (PGE2) production (Oyanagi et al., 2018).

TLR7 is present in birds, whereas TLR8 appears to have been 
lost during evolution (Philbin et al., 2005; Iqbal et al., 2005; 
Yilmaz et al., 2005; MacDonald et al., 2008). Chicken TLR7 has 
moderate amino acid sequence homology to mammalian TLR7 
(61% and 63% homology to the extracellular and cytoplasmic 
domains of mouse TLR7, respectively) (Yilmaz et al., 2005). 
The chicken TLR7 gene is highly expressed in the spleen and 
moderately expressed in several peripheral tissues, including the 
cecal tonsils (Iqbal et al., 2005; Philbin et al., 2005). Further-
more, single-stranded RNA and resiquimod (R848, a synthetic 
TLR7 ligand) could induce the gene expression of IL-1β, IL-6, 
and IL-8 in chicken splenocytes (Philbin et al., 2005). Imiqui-
mod also induced the gene expression of IL-1β, IL-6, and INF-α 
in duck splenocytes (MacDonald et al., 2008). Thus, peripheral 
TLR7 plays an important role in the response of birds to single-
stranded RNA viruses.

However, little is known about the effects of TLR7 on other 
physiological responses in birds. We demonstrated that IP injec-
tions of 25 and 100 µg resiquimod reduced food intake in chicks 
(Table 2) (Tachibana et al., 2020b). The same doses of resiqui-
mod also decreased the cloacal temperature and crop emptying 
rate (Tachibana et al., 2020b). However, imiquimod, another syn-

thetic TLR7 ligand, had no effect on these behavioral and physi-
ological parameters in chicks at the same doses (Tachibana et al., 
2020b). This effect was further supported by the work of Dock-
rell and Kinghorn (2001), who showed that resiquimod alters the 
gene expression of cytokines more strongly than imiquimod in 
mammals.

Bioactive Molecules

Feeding Regulation Peptides
For several decades, many groups have investigated peptides 

expressed in the brains of chicks that regulate food intake, and 
more than 40 candidate peptides have been identified. Neuropep-
tide Y (NPY) and agouti-related peptide (AGRP) are representa-
tive orexigenic peptides, and α-melanocyte-stimulating hormone 
[derived from proopiomelanocortin (POMC)] and corticotropin-
releasing hormone (CRH) are representative anorexigenic pep-
tides in chicks (Tachibana and Tsutsui, 2016). Since the mRNA 
expression of TLR1, TLR2B, TLR3, TLR4, and TLR5 is observed 
in the brain of chickens (Iqbal et al., 2005), these TLRs may be 
associated with some of these feeding regulation peptides and 
contribute to PAMP-induced anorexia. Based on this hypothesis, 
we investigated the effect of IP injection of 100 or 200 µg LPS 
on the gene expression of the aforementioned feeding regulation 
peptides in the diencephalon of chicks. We expected that LPS 
would decrease the gene expression of orexigenic peptides and 
increase that of anorexigenic peptides. However, injection of 200 
µg LPS significantly increased NPY gene expression and 100 
µg LPS significantly decreased POMC gene expression (unpub-
lished data). These changes are considered to be compensatory: 
increased NPY mRNA levels might cause the chick to start eat-
ing again after the LPS-induced anorexia effect decays, and the 
LPS-induced anorexia effect may be so strong that it causes a 
decrease in the expression of other anorexigenic factors such as 
POMC. In addition, AGRP expression in the diencephalon was 
not affected by any dose of LPS (unpublished data). CRH is part 
of the hypothalamus-pituitary-adrenal axis, which releases glu-
cocorticoids from the adrenal glands. Although LPS stimulates 
CORT release in chickens (Johnson et al., 1993a), we found that 
it had no effect on CRH gene expression in the diencephalon of 
chicks (unpublished data). Additionally, LPS did not affect the 
expression of other feeding regulation peptides such as growth 
hormone-releasing hormone, ghrelin, and urocortin-3 in the di-
encephalon (unpublished data).

Thus, our results did not support the hypothesis that these 
feeding regulation peptides are associated with infection-induced 
anorexia in chicks. Therefore, other bioactive molecules with 
immune system functions may be candidates for mediating in-
fection-induced anorexia. It is also possible that other feeding 
regulation factors that we have not evaluated or that have not yet 
been identified are responsible for these effects.
Cytokines

Cytokines are bioactive low-molecular-weight proteins that 
function as immune-modulating agents via autocrine, paracrine, 
and endocrine signaling. Given the widely accepted evidence 
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that PAMPs induce proinflammatory cytokines, it is conceivable 
that these cytokines are associated with the anorexia induced by 
PAMPs. Indeed, several proinflammatory cytokines such as IL-1, 
IL-6, IL-8, IFN-α, IFN-γ, and TNF-α have been shown to sup-
press feeding behavior in rodents (Plata-Salamán et al., 1988; 
Bodnar et al., 1989; Langstein et al., 1991; Crnic and Segall, 
1992; Plata-Salamán and Borkoski, 1993; Reyes-Vázquez et 
al., 1994; McCarthy, 2000; Plata-Salamán, 2001). Burgess et al. 
(1998) demonstrated that IL-1β-deficient mice did not exhibit re-
duced food intake following ICV injection of LPS, although food 
intake was reduced following IP injection of LPS. IP injection of 
antiserum to IL-6 also attenuated the anorexigenic effect of sub-
cutaneous LPS injection, whereas antisera to IL-1β and TNF-α 
had no effect (Harden et al., 2006). Furthermore, the combina-
tion treatment of an IL-1 receptor antagonist, a monoclonal an-
tibody to IL-6, and a TNF-binding protein fragment completely 
abolished the anorexigenic effect of LPS in mice (Swiergiel and 
Dunn, 1999). Thus, proinflammatory cytokines likely play an im-
portant role in infection-induced anorexia in mammals.

These proinflammatory cytokines are also induced by PAMPs 
in chickens (Philbin et al., 2005; Kogut et al., 2006; MacDonald 
et al., 2008; Takahashi et al., 2008; St Paul et al., 2012; Zhang 
et al., 2013). Our previous studies revealed that splenic mRNA 
expression levels of IL-1β, IL-6, IL-8, and IFN-γ were increased 
by LPS, zymosan, flagellin, poly I:C, and resiquimod in chicks 
(Tachibana et al., 2018a; 2019b; 2020a; 2021b). These PAMPs 
also increased the mRNA expression of tumor-necrosis factor-
like cytokine-1A (TL1A), an avian homologue of mammalian 
TNF, in chicks (Tachibana et al., 2018a; 2019b; 2020a; 2021a). 
However, the effects of these cytokines on food intake in chick-
ens are different from those observed in mammals. ICV injection 
of IL-1β decreased food intake in chicks, whereas IP injection of 
this cytokine had no effect (Tachibana et al., 2017a). IV and ICV 
injections of TL1A also reduced food intake in chicks (Takimoto 
et al., 2005; Tachibana et al., 2018a). However, ICV injection of 
IL-6, IL-8, IFN-α, and IFN-γ did not affect food intake in chicks 
(Tachibana et al., 2017a; 2018a). Thus, the role of these cyto-
kines in infection-induced anorexia differs between chicks and 
rodents.
Prostaglandins

Prostaglandins are bioactive lipid compounds that are synthe-
sized from arachidonic acid by cyclooxygenase (COX). There 
are two isoforms of COX: COX-1 is constitutively expressed in 
various tissues, whereas the expression of COX-2 is induced by 
inflammation. In mammals, prostaglandins are associated with 
non-specific symptoms during infection. IP injection of LPS 
increases the plasma and cerebrospinal fluid concentrations of 
PGE2 and prostaglandin D2 (PGD2) in rats (Gao et al., 2009). 
LPS treatment also increases the production of PGD2 and prosta-
glandin F2α (PGF2α) in rat Kupffer cells (Brouwer et al., 1995). 
Central and peripheral injections of PGE2 and PGF2α have been 
associated with reduced food intake (Scaramuzzi et al., 1971; 
Levine and Morley, 1981) and affect gastric emptying in rats 
(Ruwart and Rush, 1984; Stein et al., 1994). Furthermore, LPS-

induced anorexia and inhibition of gastric emptying were attenu-
ated by indomethacin, an inhibitor of COX, in rodents (Langhans 
et al., 1989; Calatayud et al., 2002; Liang et al., 2005). These 
results suggest that prostaglandins are involved in the effects of 
LPS in mammals.

Prostaglandins also appear to be associated with the effect of 
PAMPs in chickens given that IV injection of LPS increased the 
plasma PGE2 concentration in 5-week-old chickens (de Boever 
et al., 2010). Johnson et al. (1993b) demonstrated that pretreat-
ment with an IP injection of indomethacin, a COX inhibitor, at-
tenuated LPS-induced anorexia in chickens. In addition, IP and 
ICV injections of indomethacin attenuated LPS-induced hyper-
thermia and drowsiness (Johnson et al., 1993b). Our preliminary 
experiments also revealed that IP injection of 100 or 200 µg LPS 
increased COX-2 gene expression in the diencephalon of chicks 
(unpublished data). Thus, prostaglandins are considered to play 
important roles in the behavioral and physiological changes that 
occur during infection in chicks. However, the specific prosta-
glandins that mediate these effects remain unclear.

We found that both ICV and IP injections of PGE2 and PGF2α 
reduced food intake in chicks (Tachibana et al., 2017c). We also 
found that ICV injection of PGD2 suppressed food intake in 
chicks (Tachibana et al., 2018b). Among these prostaglandins, 
PGE2 has a more potent anorexigenic effect comparing with 
PGD2 and PGF2α. This suggests that PGE2 may play a crucial 
role in inhibiting food intake under infectious conditions. Inter-
estingly, the effect of PGD2 in chicks is opposite to that in mam-
mals; ICV injection of PGD2 reduced food intake in chicks and 
increased food intake in rodents (Ohinata et al., 2008).
Nitric Oxide (NO)

NO is a biologically active gaseous molecule synthesized by 
the enzyme NOS, which converts l-arginine to l-citrulline. NO 
is involved in a wide range of biological functions, including va-
sodilation, blood pressure, penile erection, intestinal peristalsis, 
food intake, and inflammation (Aisaka et al., 1989; Morley and 
Flood, 1991; Konturek and Konturek, 1995; Förstermann and 
Sessa, 2012). There are three isoforms of NOS: neuronal NOS, 
endothelial NOS, and iNOS (Förstermann and Sessa, 2012).

Among the three isoforms of NOS, the expression of iNOS 
is induced by proinflammatory cytokines and PAMPs (Förster-
mann and Sessa, 2012). It is therefore expected that iNOS and its 
product, NO, are associated with the immune responses induced 
by pathogens. In fact, LPS-associated mortality is prevented in 
iNOS-knockout mice (Wei et al., 1995). NO has also been associ-
ated with LPS-induced anorexia, adipsia, fever, decreased physi-
cal activity and energy expenditure, and reduced gastric empty-
ing in guinea pigs and rats (Roth et al., 1998; Inada et al., 2006; 
Riediger et al., 2010).

In chicks, IP injections of zymosan, flagellin, poly I:C, and re-
siquimod increased the plasma concentrations of NO2

– and NO3
– 

(NOx, metabolites of NO) (Takahashi et al., 2021; Tachibana et 
al., 2021a; 2022c). Moreover, iNOS mRNA expression could be 
induced by several PAMPs, including zymosan, poly I:C, and 
resiquimod (Takahashi et al., 2021; Tachibana et al., 2022c). 
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Since the iNOS inhibitor S-methylisothiourea (SMT) abolished 
the zymosan-, poly I;C-, and resiquimod-induced increase in 
plasma NOx concentrations (Takahashi et al., 2021; Tachibana et 
al., 2022c), it can be concluded that these PAMPs induce iNOS, 
thereby increasing NO production in chicks. Moreover, IP and 
ICV injections of sodium nitroprusside, an NO donor, signifi-
cantly reduced food intake in chicks (Takahashi et al., 2022). 
These results imply that PAMPs stimulate NO production and 
that NO reduces food intake during times of infection. However, 
co-injection of SMT with IP did not attenuate the anorexigenic 
effects of poly I:C and resiquimod (Tachibana et al., 2022c). 
Therefore, it is unlikely that NO directly mediates the anorexi-
genic effects of PAMPs.
Other Factors

Histamine is another candidate factor that mediates anorexi-
genic effects during times of infection. Zendehdel et al. (2016) 
demonstrated that a histamine H1 receptor antagonist attenuated 
the reduction in food intake induced by ICV injection of LPS in 
young chickens. This result suggests that central histamine and 
H1 receptor are associated with LPS-induced anorexia. Further-
more, it has been demonstrated that ICV and IP injections of his-
tamine significantly decrease food intake in chicks (Kawakami et 
al., 2000; Tachibana et al., 2019a). Compound 48/80, a stimulator 
of mast cells, also suppressed food intake in chicks following 
ICV and IP injections (Kawakami et al., 2000; Tachibana et al., 
2019a), suggesting that mast cells release histamine during times 
of infection, which then contributes to reduced food intake.

Bradykinin, a biologically active peptide member of the ki-
nin group, consists of nine amino acids and is involved in mam-
malian inflammation. Ornithokinin is an avian homologue of 
mammalian bradykinin (Kimura et al., 1987). The amino acid 
sequence of ornithokinin is RPPGFTPLR, which differs from 
that of mammalian bradykinin, where T6 and L8 are substituted 
for L6 and F8, respectively (Kimura et al., 1987). Bradykinin and 
ornithokinin are both synthesized from precursor kininogens by 
the action of kallikrein. Guabiraba et al. (2017) found that inocu-
lation with avian pathogenic E. coli increased the mRNA expres-
sion levels of hepatic kininogen and B1 receptors in chickens, 
indicating that avian ornithokinin is related to infection. We re-
cently demonstrated that both IP and ICV injections of ornithoki-
nin cause reduced food intake in chicks (Tachibana et al., 2022a), 
suggesting that ornithokinin is associated with infection-induced 
anorexia. However, in our experiment, IP injection of LPS had 
no effect on kininogen mRNA expression, but decreased the liver 
kallikrein mRNA expression level in chicks (Tachibana et al., 
2022a). Therefore, the role of ornithokinin in infection-induced 
anorexia should be further investigated in the future.

Zendehdel et al. (2012) showed that SB242084 and DL-AP5, 
which are antagonists of the 5-hydroxytryptamine (5-HT, sero-
tonin) 2C receptor and the N-methyl-d-aspartate receptor (a glu-
tamate receptor), respectively, attenuated anorexia induced by 
ICV injection of LPS in chicks. This study also suggested that 
5-HT and glutamate are associated with the anorexigenic effect 
of LPS.

Future Studies Required

As noted earlier, we demonstrated that PAMPs likely trigger 
the anorexia induced by bacterial, fungal, and viral infections in 
chicks. In addition, a variety of immune-related bioactive mole-
cules such as proinflammatory cytokines, prostaglandins, and NO 
have been found to reduce food intake in chicks. Since PAMPs 
induce the proinflammatory cytokine expression and synthesis of 
prostaglandins and NO, these bioactive molecules might mediate 
the effect of PAMPs. However, the specific bioactive molecules 
that play crucial roles in infection-induced anorexia should be 
clarified in the future. Among these bioactive molecules, pros-
taglandins are the strongest candidates for mediating anorexia 
because Johnson et al. (1993b) showed that pretreatment with 
a COX inhibitor attenuated LPS-induced anorexia in chickens.

Food intake is regulated by several organs, including the 
brain. Since the anorexigenic effects of PAMPs are observed 
after IP injection in chicks, peripheral PAMPs likely access the 
brain or initiate a pathway that results in brain changes. Clarifica-
tion of this pathway will likely provide a novel perspective on the 
mechanisms contributing to anorexia during infection.

PAMPs not only induce anorexia but also reduce the crop 
emptying rate and are associated with the development of con-
ditioned aversion in chicks, which may contribute to anorexia. 
In addition, animals are frequently drowsy and hypoactive dur-
ing infections. Thus, future studies should be performed to link 
aspects of behavior, physiology, histology, and molecular biol-
ogy to clarify the precise mechanism underlying anorexia during 
times of infection.
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