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This narrative review summarizes current evidence on the association between maternal
low volume circulation and poor fetal growth. Though much work has been devoted
to the study of cardiac output and peripheral vascular resistance, a low intravascular
volume may explain why high vascular resistance causes hypertension in women with
preeclampsia (PE) that is associated with fetal growth restriction (FGR) and, at the same
time, presents with normotension in FGR itself. Normotensive women with small for
gestational age babies show normal gestational blood volume expansion superimposed
upon a constitutionally low intravascular volume. Early onset preeclampsia (EPE;
occurring before 32 weeks) is commonly associated with FGR, and poor plasma volume
expandability may already be present before conception, thus preceding gestational
volume expansion. Experimentally induced low plasma volume in rodents predisposes
to poor fetal growth and interventions that enhance plasma volume expansion in FGR
have shown beneficial effects on intrauterine fetal condition, prolongation of gestation
and birth weight. This review makes the case for elevating the maternal intravascular
volume with physical exercise with or without Nitric Oxide Donors in FGR and EPE,
and evaluating its role as a potential target for prevention and/or management of these
conditions.

Keywords: maternal hemodynamic changes in pregnancy, fetal growth, intravascular volume, cardiac output,
venous hemodynamics, vascular resistance, body water volume

INTRODUCTION

For the past 50 years, defective placentation and inadequate adaptation of uterine spiral arteries
have been considered the key role players in the so-called obstetrical syndromes: preeclampsia (PE),
fetal growth restriction (FGR), preterm labor, preterm premature rupture of the membranes, late
spontaneous abortion, and abruptio placentae (1). Placental malperfusion and subsequent oxidative
stress are associated with the impairment of both maternal and fetal systemic physiologic functions
and, eventually, maternal disease, and/or fetal distress (2). In recent years, however, the focus of
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research into the origins of gestational hypertensive disorders
with or without FGR has shifted from the placenta to
maternal cardiovascular dysfunction, present before conception
or developing during the earliest stages of placentation (3, 4). The
interplay between maternal hemodynamics and the placentation
process explains the two hemodynamic phenotypes of PE – one
with high cardiac output (CO) and low vascular resistance and
another with low CO and high vascular resistance – (5, 6),
as well as FGR (7), and also links maternal low CO to fetal
increased umbilical and reduced cerebral Doppler impedance
(8). Next to this, suboptimal plasma volume expansion is
considered an intrinsic pathophysiologic feature of PE with FGR
(9), and maternal normotensive low volume circulation has
been associated with neonatal birthweight of <10th percentile
(10). The feasibility and clinical relevance of non-invasive
assessment of maternal body water volumes, in association
with cardiovascular assessments in both latent and symptomatic
stages of PE and/or FGR, have been reported (11, 12), offering
an opportunity for volume expansion strategies as potential
management options in the prevention and treatment of
poor fetal growth.

This narrative literature review aimed to summarize reported
evidence on the association between poor fetal growth and low
maternal circulating volume as a constitutional predisposing
condition in normotensive FGR or as a consequence of
suboptimal volume expansion in PE with FGR. The methodology
was performed according to Sandra’s principles (13) using
the following keywords (alone or in combination): FGR,
intrauterine growth restriction, poor fetal growth, early onset
preeclampsia (EPE), gestational hypertensive disorders, maternal
hemodynamics, maternal cardiovascular function, CO, total
vascular resistance (TVR), plasma volume, body water volume,
maternal venous Doppler, fetal Doppler, venous hemodynamics,
and volume regulation.

MATERNAL HEMODYNAMICS AND
FETAL GROWTH

Birth weight relates to many variables, such as parental
anthropometrics (height, weight, BMI), race, gender, gestational
age, diet, drinking habits and substance (ab)use, and medical and
obstetric history (14). Poor fetal growth and, in particular, FGR
may relate to a chronic state of intrauterine hypoxia resulting
from preplacental, placental (e.g., abruption), and postplacental
causes (e.g., cord insertion, fetal genetics; 15). Known causes of
preplacental hypoxia are not only pathologic conditions, such as
chronic maternal cardiovascular, pulmonary or systemic disease,
anemia, and infections, but also physiological determinants, such
as high altitude and maternal CO.

Abbreviations: CO, cardiac output; DV, ductus venosus; EPE, early onset
preeclampsia; FGR, fetal growth restriction; HR, heart rate; HV, hepatic veins;
IL6, interleukin 6; MAP, mean arterial pressure; PAPP-A, pregnancy associated
placental protein A; PE, preeclampsia; PlGF, placental growth factor; RV, right
ventricle; S-FLT1, soluble FMS-like tyrosine kinase 1; SGA, small for gestational
age; SV, stroke volume; SV (Figure 3), splenic vein; TGFβ, transforming growth
factor β; TVR, total vascular resistance; UV, umbilical vein; VEGF, vascular
endothelial growth factor.

Cardiac output is linked mathematically to mean arterial
blood pressure (MAP) and TVR according to the hemodynamics’
variant of Ohm’s law

CO = MAP/TVR,

where CO is the product of stroke volume (SV) and heart
rate (HR; 16). In the preconception period, low maternal
CO, mostly in combination with increased TVR, predisposes
pregnant women to gestational complications, such as PE with
or without FGR (3), and the lowest CO values are observed
in normotensive FGR (17). In an uncomplicated pregnancy,
there is a positive correlation between CO change from
preconception to mid-gestation and neonatal birth weight (18).
During pregnancy from the first trimester onward, maternal
CO is directly related to singleton birth weight (19–21),
particularly at advanced maternal age (22), with parity (23),
and multiple pregnancies (24), whereas there is an inverse
relation with altitude (25) and gestational hypertensive disorders
(26, 27). Figure 1 shows the gestational trends of CO and
TVR as measured by the bioimpedance technology: contrary to
pregnancies eventually developing PE, the evolution is similar
in FGR and uncomplicated pregnancy, however, at lower CO
and higher TVR (10, 11, 28). This observation has also been
reported by others (29) and linked to a condition of low CO
that is already present before conception (17). Low CO in
FGR pregnancies mainly results from low SV (30, 31) and
to a lesser degree from low HR (32, 33). Throughout an
uncomplicated pregnancy, the fraction of CO deviated to the
uterus doubles from 6 to 12% (34) and is achieved by an
increase of (distal) internal iliac artery impedance in concert
with a reduction of uterine artery impedance (35). Uterine
artery blood volume flow positively correlates with birth weight
(36, 37), reduces from maternal upright to the supine position
with poor response to supine exercise (38), and is lower in
FGR than in normal fetal growth (39). These observations
all indicate that maternal cardiovascular function and uterine
arterial blood supply strongly contribute to fetal growth and
neonatal birth weight.

Recently, it was shown that the venous compartment and
body water volume load are also involved in the regulation
of fetal growth (40). Next to its metabolic functions, the liver
serves as a hemodynamic organ, where a large fraction of
the unstressed blood volume is stored, as a reserve volume
available for an instant increase of CO by sympathetic nervous-
stimulated drainage of hepatic veins in the inferior vena
cava. Inverse correlations have been reported between maternal
CO and birth weight, on the one hand, and hepatic venous
Doppler impedance index, on the other hand (40). Next to
this, in normotensive women giving birth to neonates small
for gestational age (SGA), low CO was associated with low
body water volume and high Doppler impedance of uterine
artery and hepatic veins, all of which are indicators of a
low volume circulation (10; Figure 1). These observations
are in line with reported impaired expansion of maternal
plasma volume in FGR pregnancies in normal (41), small, and
lean (42) women. Here, it is important to mention that the
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reduced plasma volume, as compared to normal pregnancy,
precedes a suboptimal rise of the volume regulating hormones
aldosterone, progesterone, and estrogens (43). The presence
of a low intravascular volume before or during pregnancy
can explain why low CO and high TVR can present with
normotension and why a normal gestational plasma volume
expansion fails to achieve normal values of maternal CO.
Contrary to normotensive FGR, EPE – which mostly is associated
with poor fetal growth – low CO and high TVR present with high
body water volumes already from the first trimester onwards,
suggesting a different pathophysiologic background mechanism
(11; Figure 1).

PATHWAYS OF MATERNAL LOW
VOLUME CIRCULATION IN EARLY
ONSET PREECLAMPSIA AND FETAL
GROWTH RESTRICTION

In an uncomplicated pregnancy, maternal plasma volume
expansion is triggered by a primary fall in systemic vascular

FIGURE 1 | Comparative gestational evolution of maternal cardiac output (A),
total vascular resistance (B), and total body water volume (C), as measured
by the bioimpedance technology between uncomplicated pregnancies (UP),
normotensive fetal growth restriction (FGR), and preeclampsia with FGR
(PEFGR). Values are expressed as multiples of mean first trimester values in
UP. Figures adapted from 10, 11, and 28.

resistance (44). The subsequent state of intravascular
underfilling causes a reduction of cardiac afterload, which,
in turn, is responsible for a rise in SV (45). Together
with a rising HR, increased SV induces a 25% increase
in CO at 6 weeks of gestation (17). Due to anatomic and
physiologic properties of the high volume/low resistance of
pulmonary circulation, increased CO results in a reduction
of pulmonary vascular resistance via capillary recruitment
and distention (46). In pregnant women, increased CO
and the associated enlarged pulmonary capillary bed are
responsible for a rise of intrathoracic water as measured by
bioimpedance technology as early as 6–7 weeks of gestation
(47, 48).

Meanwhile, SV and left atrial dimensions continue to rise in
normal pregnancies; this is not true for pregnancies destined
to develop severely impaired fetal growth (45) and/or EPE
(33). As shown in Figure 1, CO is persistently lower than
normal in normotensive FGR despite a normal gestational
rise. In EPE, however, CO fails to rise after 8 weeks of
gestation (17), and this is associated with the echocardiographic
reduced left atrial area and fractional area change (33),
as well as increased left ventricular end-systolic and end-
diastolic volumes (49). This pathophysiologic condition is
responsible for the increase of left atrial filling pressure, with
the subsequent retrograde rise of pulmonary venous pressure
and capillary hydrostatic pressure, resulting in exudation of
intravascular fluids similar to the mechanisms observed in
heart failure (50). A rise of pulmonary interstitial fluids
before the clinical presentation of symptomatic pulmonary
edema is a known phenomenon in chronic heart failure, and
the detection of this condition by bioimpedance technology
is useful to predict and timely counteract the severity of
pulmonary edema (50, 51). As shown in Figure 1, the
same mechanism is likely to occur in early preeclampsia
(EPE): an asymptomatic exudation of intravascular fluids
in the pulmonary interstitium can precede the development
of edema elsewhere in the female body and explains the
combination of increased total body water volume without
the concomitant rise of CO in EPE. The constant exchange
between intravascular and interstitial volumes is a normal
physiologic function of the microcirculation and indicates that
abnormal changes in plasma volume cannot be interpreted
correctly without considering changes in other body volume
compartments. This phenomenon is illustrated visually in
Figure 2. The nature of this pathophysiologic pathway is in
line with the reported increased serum concentrations of atrial
natriuretic peptide (52) and copeptin/vasopressin in PE (53)
and with the impaired expansion of maternal plasma volume
in EPE (9). The early gestational onset of this phenomenon
is also supported by the shallow, but significant, rise of
serum hemoglobin concentrations and hematocrit in the first
trimester of pregnancies destined to develop EPE (31, 54,
55) but not in those eventually leading to FGR (56). As
explained above and illustrated in Figure 1, FGR pregnancies
show a normal rise of plasma volume and total body water,
superimposed upon constitutionally low body water already
present before conception.

Frontiers in Medicine | www.frontiersin.org 3 June 2022 | Volume 9 | Article 902634

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-902634 June 2, 2022 Time: 18:54 # 4

Gyselaers and Lees Maternal Volume and Fetal Growth

FIGURE 2 | Illustration of the constant fluid exchange between intravascular and interstitial volumes at the level of the microcirculation. This interconnectivity indicates
that plasma volume changes cannot be interpreted without knowledge of interstitial water volume, or indirectly via measurement of total body water volume.
Normotensive fetal growth restriction relates to a constitutionally low intravascular volume, remaining lower in uncomplicated pregnancies despite normal gestational
volume expansion. Early onset preeclampsia, on the other hand, is a state of increased adrenergic activation (155), shifting blood from the venous capacitance bed
into the circulation and despite this, cardiac output fails to rise. This can only be explained by a shift from the intravascular compartment to the interstitium, which is
in line with clinical signs, such as malleolar or pulmonary edema, in early onset preeclampsia. The arrows indicate the principle of volume estimation by
bioimpedance spectrum analysis of intracellular (green) and extracellular (blue) compartments, the latter being the sum of intravascular and interstitial volumes.

LABORATORY AND CLINICAL
EXPERIMENTS SUPPORTING
MATERNAL LOW VOLUME
CIRCULATION IN FETAL GROWTH
RESTRICTION

A low sodium diet for pregnant rats prevents normal maternal
plasma volume expansion and induces FGR and low placental
weight (57). This association presents with poor dilatation of
the uterine and radial arteries, together with reduced uterine
blood volume flow and increased vascular resistance, and the
activation of the renin-angiotensin-aldosterone system with
reduced expression of placental Angiotensin II receptor subtype
1 (58) and with increased concentrations of placental markers of
hypoxia (57, 58). Murine FGR presents with a reduced placental
blood flow rate, demonstrable by both contrast-enhanced
sonography and magnetic resonance imaging (MRI; 59).

Different types of MRI technology have been proven useful
for non-invasive studies of placental perfusion in animals and
human (60), allowing for the quantification of blood flow
volume (61), and mapping and fractional differentiation of
perfused and non-perfused areas (62, 63). As compared to
normal pregnancies, FGR presents with a one-third decrease
of placental perfusion fraction (64), strongly correlating with
increased Doppler impedance measurements of uterine and
umbilical arteries, particularly of the ductus venosus (DV; 64,
65). Blood flow velocity in the FGR placenta is reduced, is
non-homogenous, and shows intermittent stops in severe cases
with increased DV pulsatility index (65). Taken together, all
MRI placenta perfusion studies show evidence for underfilling

of the intervillous space, which is a trigger for both maternal
and fetal reflex responses. Laboratory and animal models show
that incomplete spiral artery trophoblast invasion results in an
increase of oxygen tension (66) and perfusion pressure (67) in
the intervillous space, with constriction of maternal chorionic
plate venules (68), enhanced myogenic activity of uterine and
radial arteries (69) despite an activated pathway of nitric oxide
(NO)-dependent vasodilation (70), and altered placental cell
populations and trophoblast differentiation (71).

Poor placenta perfusion in both PE and FGR is supported by
histologic signs, such as accelerated villus branching, large and
numerous syncytial knots, and small sclerotic villi, suggestive of
placental hypoxia and/or oxidative stress (72).

EPIDEMIOLOGIC DATA SUPPORTING
MATERNAL LOW VOLUME
CIRCULATION IN FETAL GROWTH
RESTRICTION

Epidemiologic studies have shown an intergenerational
association of FGR: women who, themselves, were born
with low birth weight are more likely to reproduce low birth
weight offspring (73–75). Apart from genetic, familial, and
socioeconomic predispositions, complex molecular processes,
such as genetic imprinting, microchimerism, and epigenetic
modifications, are involved (76, 77), and this results from
early neonatal life onward in the disruption of endocrine and
metabolic systems (78, 79) together with permanent dysfunctions
of vital organ systems (80, 81), such as the kidneys (82, 83), the
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heart and blood circulation (76, 84, 85), the endothelium
(86), and the immune system (80). In the long run, these
systemic dysfunctions predispose to early onset adult disease
(87). Body water volume homeostasis is another system that is
dysfunctional in FGR, involving the renin-angiotensin system
(88) and natriuretic peptides (89, 90). A particularly interesting
observation is that FGR predisposes to low plasma volume in
adult life (91). In former preeclamptic women, it was shown that
preconceptional low plasma volume predisposes to recurrence
of PE (92). Even more important is that, in nulliparous women,
preconceptional vascular dysfunction (93) and angiotensinogen
phenotype-dependent low plasma volume (94) predispose to
abnormal perinatal outcomes (95). Low plasma volume coexists
with poor venous reserves, resulting from abnormal venous
capacitance and vascular compliance together with autonomic
nervous dysfunction (96), and is associated with recurrent
first-trimester pregnancy loss (97). As explained in the section,
combined venous hemodynamic dysfunction in both mother
and fetus in PE with FGR has also been observed in studies using
Doppler-ECG ultrasonography.

INTERACTIVE MATERNAL-FETAL
HEMODYNAMICS IN FETAL GROWTH
RESTRICTION

Mother-to-Fetus Circulatory Interactions
in Fetal Growth Restriction
Placental angiogenesis and vasculogenesis involve cell-
communicating factors including vascular endothelial growth
factor (VEGF), placental growth factor (PlGF), and oxygen (98).
Placental histology studies have shown that FGR is characterized
by decreased branching angiogenesis with increased apoptosis,
resulting in a reduced number of terminal villi and stromal
capillaries, poor villi vascular density, fewer intervillous pores,
increase of intervillous thrombi, villous infarctions, villitis, and
thickening of the basal membrane (99, 100), finally resulting
in overall reduced exchange surface area (101–103). This is
associated with a lower and higher release of VEGF-A and
PlGF, respectively, an unbalanced production of their cell
receptors, and the release of anti-angiogenic factors, mechanisms
supported by reduced oxygen tension and volume flow (39,
98). As a result, endothelial cells from the FGR placenta show
dysregulated biochemical signaling with failed compensatory
response to resist high blood flow (104), demonstrable by
high Doppler impedance measurements at the level of uterine
and umbilical arteries (15). Doppler sonography is a useful
method to assess uterine and umbilical artery flow impedance.
Increased uterine artery Doppler pulsatility index and resistivity
index have long been considered a result of abnormal spiral
artery adaptation at implantation, but, currently, increasing
number of experimental, clinical, and epidemiological data
are in favor of the opposite pathway, suggesting abnormal
placentation merely as the result rather than the cause of
abnormal uterine perfusion (105, 106). In this context, the
inverse correlation between preconceptional uterine artery

Doppler impedance measurements and subsequent birthweight
in formerly preeclamptic women is illustrative (107).

With advancing gestation of FGR, the intrauterine
environment becomes more and more hypoxic, to which
the fetus responds by redirecting the blood supply, preferably
to vital organs like the heart and the brain, at the expense of
subdiaphragmatic organ perfusion (15). Fetal brain sparing can
be documented by Doppler flow measurements at the level of
umbilical and cerebral arteries with the calculation of relative
impedance ratios (108–110). Associations have been reported
between abnormal uterine-fetal Doppler measurements and
maternal hemodynamic dysfunction (8) and between fetal
cerebral Doppler changes and adverse outcomes (111).

On top of fetal arterial Doppler flow changes, DV Doppler
flow patterns, shifting from biphasic to triphasic, offer additional
information on deteriorating fetal condition (112–114; Figure 3).
This evolution is very similar to the change of Doppler flow
patterns in the maternal hepatic vein from early pregnancy to
the clinical stage of EPE (115; Figure 3). The sequence of venous
Doppler waveform changes, however, is different between the
FGR fetus and the woman with EPE. In FGR, DV Doppler
flow is secondary to altered cardiac function due to increased
afterload for the right ventricle (RV) but not the left one,
with subsequently reduced RV compliance and increased right
atrium filling pressure, which reflects in the reversed DV Doppler
A-wave (116, 117) and reduced CO to the placenta (118). In
EPE, triphasic HV Doppler flow patterns are already present
weeks before the clinical onset of disease (119), indicating the
involvement of venous vascular wall activity (120, 121). Further
research should elucidate whether this difference relates to a
different intravascular filling state, which is low for the woman
with PEFGR (Figure 1) and is linearly related to birth weight,
irrespective of preceding intrauterine fetal condition (122, 123).

Conceptus-to-Mother Circulatory
Interactions in Fetal Growth Restriction
An important fetal-maternal communication system is the
intravascular shedding of placental particles, varying in size
and shape between multinucleated syncytial aggregates and
subcellular nanovesicles, originating from not only apoptosis
in a normal pregnancy but also necrosis in PE (124), and
is associated with increased serum total cell-free DNA (125).
These particles act via intravesical molecules and micro-RNA
or circular RNA that, after phagocytosis by endothelium and
immune cells, is capable of inducing sterile inflammation via
increased surface expression of monocyte adhesion receptors,
such as E-selectin, secretion of pro-inflammatory cytokines,
namely interleukin 6 and transforming growth factor β (124).
Downregulation of specific micro-RNAs has been reported in
FGR, some of which are shared with PE (126). Next to this,
the production of mediators of angiogenesis and vasoactivity
is stimulated in FGR, such as soluble FMS-like tyrosine kinase
and VEGF (127), whereas pregnancy-associated placental protein
A (PAPP-A) is reduced (128). Many other vasoactive and
immunologic mediators have also been studied in maternal
serum concerning diagnosis or prediction of PE and/or FGR.
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FIGURE 3 | Different types of venous Doppler waveforms in maternal and fetal circulations, varying between triphasic (A), biphasic (B), and monophasic (C) to
flat (D). In the fetus and non-pregnant adults, triphasic patterns are found close to the heart [hepatic veins (HV)], whereas flat patterns are present at distant locations
[limbs, umbilical veins (UV)]. During uncomplicated pregnancy, HV patterns shift from (A–D). In the clinical stage of preeclampsia with FGR, biphasic HV patterns
become triphasic (orange arrow), whereas in term preeclampsia, monophasic patterns evolve to biphasic (brown arrow). In ductus venosus (DV) of FGR fetuses, a
shift from biphasic to triphasic patterns occurs simultaneously with deteriorating fetal condition (green arrow). (SV: fetal splenic vein).

The most-reported biomarkers studied for this purpose are
summarized in Table 1. It has generally been accepted that
the placenta is the primary source of these factors and, as
such, is the primary driver of the global functioning of the
maternal circulation. It should be emphasized, however, that
abnormal serum concentrations of many of these factors have
also been documented in non-pregnant individuals with (pre-
clinical) chronic cardiovascular and/or renal disease (Table 1).
This indicates that, apart from some placenta-specific products,
it cannot be concluded indisputably whether the origin of
the vasoactive and/or immunomodulatory serum substances
associated with PE± FGR is placental, maternal, or combined.

CLINICAL IMPLICATIONS OF MATERNAL
LOW VOLUME CIRCULATION IN FETAL
GROWTH RESTRICTION

The association between low maternal volume circulation
and FGR has important clinical implications. First, maternal
hemodynamics can offer additional information in unexplained
cases of FGR, where all other known etiologic factors have
been excluded (129). In recent times, non-invasive assessment
of CO and peripheral resistance is feasible by different types of
technologies (130), which, when used with appropriate reference
ranges under standardized conditions (8, 131), can easily identify

those women with a low output/high resistance circulation who
are particularly at risk for FGR. This information is not only
useful for the diagnosis of FGR but can also be of value from
the first trimester onward before poor fetal growth is evident
(29, 45, 132). This opens perspectives toward the implementation
of maternal hemodynamics parameters into current screening
programs for FGR (7, 133). Preliminary, though promising,
data on the reduction of FGR have been reported on the
supplementation of the screen positive high-risk group with
antiplatelet therapy (134, 135) and/or the antioxidants lycopene
or L-Arginin (136).

Secondly, maternal low volume circulation can be a target for
the prevention of FGR pregnancies. Physical exercise is a well-
known useful intervention for the improvement of cardiovascular
functions (137). In formerly preeclamptic women included
in a program of controlled physical exercise, an increase in
stroke and plasma volume was observed (138) together with
the improvement of venous reserves up to the pretraining
levels of controls (139). In overweight and obese pregnant
women, physical exercise throughout gestation was associated
with a lower incidence of gestational diabetes and reduced
third-trimester systolic blood pressure (140). Lower systolic
blood pressure was also observed in trained versus non-trained
normotensive pregnant women (141). Importantly, maternal
physical training was shown to influence fetal cardiovascular
functions by the increase of left ventricular output and aortic peak
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TABLE 1 | Serum markers of fetal growth restriction (FGR), preeclampsia (PET), and/or cardiovascular disease (CVD).

Physiologic function Pregnancy Non-pregnant References

FGR PE Type CVD FGR PE CVD

CRP Immunomodulation ↑ ↑ ↑ CHD, HF (156) (157) (158)

VEGF Pro-angiogenic Pro-vasculogenic ↓ ↓ Polymorfisms CHD (98) (159) (160)

sFLT-1 Anti-angiogenic ↑ ↑ ↑ CHD, HF (127) (127) (161)

sEng Anti-angiogenic ↑ ↑ ↑ CHD (162) (159) (163)

Activin A Immunomodulation Apoptosis ↑ ↑ ↑ CHD, HT (164) (165) (166)

Leptin Immunomodulation Angiogenic ↑ ↑ ↑ CHD (167) (168) (169)

sE-selectin Immunomodulation ↑ ↑ ↑ HT (170) (171) (172)

ADAM 12 Angiogenic Immunomodulation ↓ ↓ ↓ HF (173) (108) (174)

ADMA Vasodilatation ↑ ↑ ↑ CHD, HF, HT (175) (176) (177)

PLGF Pro-angiogenic ↓ ↓ ↑ CHD, HF (127) (159) (161)

PAPP-A Lysis IGF-BP ↓ ↓ ↑ ↑ ↑ CHD (128) (178) (179)

ADM Pro-angiogenic ↓ ↓ ↑ AMI (179) (180) (181)

Abbreviations: FGR, fetal growth restriction; PE, preeclampsia; CVD, cardiovascular disease; ↑, high serum concentration; ↓, low serum concentration; ↓ ↑ ↑, cerum
concentration changing from low to high; CHD, coronary heart disease; HT, hypertension; HF, heart failure; AMI, acute myocardial infarction; CRP, C-reactive protein;
VEGF, vascular endothelial growth factor; sFlt-1, soluble fms-like tyrosine kinase 1; sEng, soluble endoglin; sE-selectin, soluble E-selectin; ADAM 12, A disintegrin and
metalloproteinase 12; ADMA, asymmetric dimethylarginine; PLGF, placental Growth Factor; PAPP-A, pregnancy associated placental protein A; and ADM, adrenomedullin.

flow velocity (142) and by lower carotid artery wall thickness in
offspring (143).

A third important implication for pregnancies complicated
with both FGR and hypertension is the antihypertensive therapy
of choice in addition to low dose aspirin (135) initiated before
16 weeks at ≥100 mg PD (134). Blood pressure-lowering
pharmacologic mechanisms are different between beta-blockers,
calcium blockers, and centrally active agents due to which the
effects on neonatal birth weight are different. There is a growing
body of evidence that adrenergic beta-blockers are associated
with an increased birth rate of neonates SGA (144–148) with
a mean effect estimated at ≤200 g at term (149). A similar
but less pronounced effect has also been reported for Alfa-
MethylDopa (145, 150) but not for calcium channel blockers
(145). A possible explanation for this differential effect is that
beta-blockers partially exert their effects via a reduction of CO
(151), whereas calcium channel blockers mainly function via
reduced peripheral resistance with a compensatory rise of CO
(152). As such, from a theoretical perspective, calcium channel
blockers might be a better choice than beta-blockers with respect
to avoiding a negative pharmacologic impact on fetal growth.
There, however, is an urgent need for more fundamental and
clinical research into the differential mechanisms and outcomes
of antihypertensive therapies in pregnant women.

An interesting clinical confirmation of the association between
maternal intravascular volume and the gestational outcome has
been reported in two studies by the Tor Vergata university of
Rome’s research team (153, 154) using the potently vasodilating
NO donors. As compared to a historical control group, a cohort
of 26 FGR pregnancies treated with NO donors and plasma
volume expansion showed an improvement in maternal CO and
TVR and in higher birth weight after 2 weeks (153). Similarly, in
32 women with hypertension and FGR with absent end-diastolic
umbilical Doppler flow, randomized between conventional
management with or without NO donors and plasma volume

expansion, the reappearance of diastolic umbilical blood flow
and the prolongation of gestation were observed in the treated
group (154).

PERSPECTIVES

This review summarizes evidence from clinical, experimental,
and laboratory observations on the association between low
volume maternal circulation and poor fetal growth. Conditions
of low maternal CO can present before conception or develop
during the earliest stages of pregnancy, in conditions of
both normotension or hypertension relative to the balance
between flow volume and vascular resistance. Intravascular
volume is intimately related to CO, renal function, and through
aldosterone and the renin-angiotensin system to peripheral
vascular resistance and blood pressure. Hence, acknowledging
that the association between maternal intravascular filling state
and fetal wellbeing opens perspectives toward prevention,
management, and reduction of intergenerational transfer of poor
fetal growth. However, more in-depth exploration is needed on
the role of normal or abnormal maternal cardiovascular function
in obstetric and neonatal outcomes.
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