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Both HDAC5 and HDAC6 are 
required for the proliferation and metastasis 
of melanoma cells
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Abstract 

Background:  Histone deacetylase (HDAC) inhibitors are widely used in clinical investigation as novel drug targets. 
For example, panobinostat and vorinostat have been used to treat patients with melanoma. However, HDAC inhibi-
tors are small-molecule compounds without a specific target, and their mechanism of action is unclear. Therefore, it is 
necessary to investigate which HDACs are required for the proliferation and metastasis of melanoma cells.

Methods:  We used overexpression and knocking down lentivirus to clarify the influence of HDAC5 and HDAC6 in 
melanoma development. Also, we introduced stable HDAC5 or HDAC6 knockdown cells into null mice and found that 
the knockdown cells were unable to form solid tumors. Finally, we tested HDAC5 and HDAC6 expression and sub-
location in clinical melanoma tissues and tumor adjacent tissues.

Results:  In this study, and found that HDAC5 and HDAC6 were highly expressed in melanoma cells but exhibited low 
expression levels in normal skin cells. Furthermore, we knocked down HDAC5 or HDAC6 in A375 cells and demon-
strated that both HDAC5 and HDAC6 contributed to the proliferation and metastasis of melanoma cells.

Conclusions:  This study demonstrated both HDAC5 and HDAC6 were required for melanoma cell proliferation and 
metastasis through different signaling pathways.
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Background
In recent years, malignant melanoma has been reported 
to be one of the highest incidences among all cancers, 
and melanoma-related deaths increase each year. Typi-
cally, the malignant melanoma has the following char-
acteristics: high metastasis, rapid diseases progression, 
poor prognosis, and high mortality. Thus, it is urgent to 
develop efficient drugs applied for melanoma treatment 
[1–3].

Some agents have emerged as inhibitors of histone dea-
cetylases (HDACs), with consequences of chromosome 
remodeling, cell cycle arrest and selective toxicity to 
melanoma cells comparing with normal melanocytes. For 
example, Peng et al. [4] showed that the HDAC inhibitor 

sodium butyrate inhibits baculovirus-mediated transgene 
expression in Sf9 cells. Kuwajima et  al. also found that 
the HDAC inhibitor butyrate inhibits the invasion of 
melanoma cell in Matrigel. Interestingly, Munshi et  al. 
reported the ability of multi-HDAC inhibitors, including 
sodium butyrate (NaB), phenyl butyrate, tributyrin, and 
trichostatin A, to radiosensitize two human melanoma 
cell lines (A375 and MeWo) using clonogenic cell sur-
vival assays. Otherwise, NaB induced hyperacetylation of 
histone H4 in the two melanoma cell lines and in normal 
human fibroblasts [5, 6].

In 1986, Beppu and colleagues found that the antibiotic 
trichostatin A inhibited the growth of SV40-transformed 
cells in mice [7], one of the first examples of selective 
growth inhibition by a HDAC inhibitor.

Two compounds, vorinostat and romidepsin, have been 
approved by the FDA to treat refractory cutaneous T 
cell lymphoma [8–10]. Except these two FDA-approved 
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agents, much more HDAC inhibitors would be tested 
in clinical, such as panobinostat (LBH589), givinostat 
(ITF2357), mocetinostat (MGCD01030), belinostat 
(PXD101), pracinostat (SB939), and entinostat (MS275) 
[11, 12]. In most reported trials, the HDAC inhibitors 
could be applied in combination with standard doses of 
other drugs, with synergistic clinical activity and without 
additional toxicity, suggesting a promising role of HDAC 
inhibitors in cancer combination therapy [13]. How-
ever, the molecular mechanism may vary with cell lines 
and HDAC inhibitor classes. Success in the clinic may 
require combination with agents that synergize with the 
cell cycle blocking and pro-apoptotic action of HDAC 
inhibitors.

The opportunity to understand and exploit a novel, 
nontoxic approach to cancer chemotherapy has stimu-
lated a major effort to explore the relevant cell signal-
ing pathways and to develop new inhibitors to HDACs. 
Currently, epigenetic drugs studies are relatively hot. 
Recently, a second generation of reportedly available 
HDACis have been tested in the clinic including the class 
I—specific agents CHR-3966 [14], chidamide (CS055/
HBI-8000) [15], class I— and class II—specific AR-42 
[16], and hydroxamides quisinostat (JNJ-26481585) [17] 
and abexinostat (PCI-24781) [18]. However, HDAC 
inhibitors seem to be not specific to a single HDAC, but 
a HDAC family. Furthermore, the inhibition of more 
than one HDAC may complicate the results because the 
HDACs have a variety of substrates. Thus, the application 
of non-specific HDAC inhibitors as clinical drugs may 
pose a potential risk.

HDAC5 protein has wide substrates and belongs to 
the class II HDAC alpha family. Two transcript variants 
encoding two different isoforms have been found for this 
gene. HDAC5 possesses HDAC activity and represses 
transcription when tethered to a promoter. HDAC5 co-
immunoprecipitates with HDAC3, HDAC4 and may 
form multi-complex proteins [19, 20]. HDAC5 also 
interacts with myocyte enhancer factor-2 (MEF2) pro-
teins [21], resulting in repression of MEF2-dependent 
genes [22]. Furthermore, AMP-activated protein kinase 
regulation of the glucose transporter GLUT4 occurs via 
phosphorylation of HDAC5 [23]. HDAC5 is involved in 
memory consolidation and targeting HDAC5 has been 
suggested to be avoided for the development of more 
selective HDAC inhibitors to treat Alzheimer’s disease 
[24].

By contrast, HDAC6 contains an internal duplica-
tion of two catalytic domains that appear to function 
independently of each other. This protein possesses 
HDAC activity and represses transcription. HDAC6 
is involved in cell motility and catalyzes α-tubulin 
deacetylation [25–27], and thus, the enzyme also 

promotes cancer cell metastasis [28]. HDAC6 also 
affects transcription and translation by regulating the 
heat-shock protein 90 (Hsp90) and stress granules 
(SGs), respectively [29]. Furthermore, HDAC6 also 
binds to ubiquitinated proteins with high affinity [30, 
31]. HDAC6 is also required for the formation of SG 
proteins and is instrumental in SG formation; phar-
macological inhibition or genetic removal of HDAC6 
abolishes SG formation.

In this present study, we showed that knockdown of 
HDAC5 or HDAC6 prevented proliferation and induced 
apoptosis of the melanoma cells. Also, we tried to link 
HDAC5 and HDAC6 to multiple signaling pathways. 
However, we have not furthermore detailed evidence to 
identify HDAC5 and HDAC6 how to influence cell pro-
liferation and metastasis. Our data gave some hints that 
histone de-acetyltransferases could have very compli-
cated substrate network which need us to make efforts to 
discover.

Methods
Cell lines and materials
The human melanoma cell lines A375 and A2058 used 
in this study were obtained and grown as previously 
described [32]. The following reagents and primary anti-
bodies were used: HDAC1, rabbit, Santa Cruz SC-7872; 
HDAC2, mouse, Santa Cruz SC-9959; HDAC3, rabbit 
active motif 40968 IB; HDAC4, rabbit, active motif 40969; 
HDAC5, mouse, Santa Cruz SC-133225; HDAC6, rab-
bit, Santa Cruz SC-11420; HDAC7, mouse, Santa Cruz 
SC-74563; HDAC8, mouse, Santa Cruz SC-17778; anti-
HDAC9 antibody (ab18970), Abcam; anti-HDAC10 anti-
body (ab18971), Abcam; anti-HDAC11, ab18973, abcam; 
anti-ERK (tERK), anti-phospho-ERK (pERK), anti-AKT 
(tAKT), anti-phospho-AKT-T308 (pAKT-T308), anti-
phospho-AKT-S473 (pAKT-S473), anti-caspase 3, anti-
cleaved caspase 3, anti-caspase 8, anti-cleaved caspase 
8, anticaspase 9, anti-cleaved caspase 9 (Cell Signaling 
Technology, Danvers, MA, USA), anti-EGFR (tEGFR), 
anti-Cathepsin-D, anti-VEGF, anti-MMP9, anti-E-cad-
herin, and anti-GAPDH (Santa Cruz Biotechnology Inc., 
Santa Cruz, CA, USA). Lipofectamine 2000 reagent was 
obtained from Invitrogen (Carlsbad, CA, USA, Cat. No 
11668-019).

RNA extraction
RNA from the melanoma cell lines and normal skin cell 
line was extracted using the TRIzol® Reagent (Invitro-
gen) as indicated by the manufacturer’s instructions. 
To avoid DNA contamination, RNase-free DNase I was 
used. The RNA concentration and quantity were assessed 
by absorbance at 260 nm using a DNA/Protein Analyzer 
(NanoDrop; Invitrogen).
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Semi‑quantitative and real‑time RT‑PCR
Real time PCR was performed in a 20  μl reaction sys-
tem with a total of 2  μg of RNA (M-MLV Reverse Tran-
scriptase, TOYOBO CO., LTD. Life Science Department 
OSAKA JAPAN). Quantitative RT-PCR and real-time RT-
PCR were performed with an ABI PCR Thermal Cycler 
Dice Detection System and SYBR green dye (TOYOBO 
CO., LTD. Life Science Department OSAKA JAPAN) 
according to the manufacturer’s recommended proto-
col. The following primers were used: HDAC1, forward 
primer CTACTACGACGGGGATGTTGG, reverse 
primer GAGTCATGCGGATTCGGTGAG; HDAC2, for-
ward primer ATGGCGTACAGTCAAGGAGG, reverse 
primer TGCGGATTCTATGAGGCTTCA; HDAC3, for-
ward primer CCTGGCATTGACCCATAGCC, reverse 
primer CTCTTGGTGAAGCCTTGCATA; HDAC4, for-
ward primer GGCCCACCGGAATCTGAAC, reverse 
primer GAACTCTGGTCAAGGGAACTG; HDAC5, for-
ward primer TCTTGTCGAAGTCAAAGGAGC, reverse 
primer GAGGGGAACTCTGGTCCAAAG; HDAC6, for-
ward primer AAGAAGACCTAATCGTGGGACT, reverse 
primer GCTGTGAACCAACATCAGCTC; HDAC7, for-
ward primer GGCGGCCCTAGAAAGAACAG, reverse 
primer CTTGGGCTTATAGCGCAGCTT; HDAC8, for-
ward primer TCGCTGGTCCCGGTTTATATC, reverse 
primer TACTGGCCCGTTTGGGGAT; HDAC9, forward 
primer AGTAGAGAGGCATCGCAGAGA, reverse primer 
GGAGTGTCTTTCGTTGCTGAT; HDAC10, forward 
primer CAGTTCGACGCCATCTACTTC, reverse primer 
CAAGCCCATTTTGCACAGCTC; HDAC11, forward 
primer ACCCAGACAGGAGGAACCATA, reverse primer 
TGATGTCCGCATAGGCACAG; CDKN1A, forward 
primer ACATCGCCAAGGAAAAACGC, reverse primer 
GTCTGTTTCGGTACTGTCATCC; and GAPDH, for-
ward primer ACAACTTTGGTATCGTGGAAGG, reverse 
primer GCCATCACGCCACAGTTTC.

Designing shRNA sequences of hHDAC5 or hHDAC6, 
Lentivirus packaging and stable cell line construction
We used online sofaware to design the shRNA sequences 
of hHDAC5 and hHDAC6: http://rnaidesigner.lifetech-
nologies.com/rnaiexpress/setOption.do?designOption=
shrna&pid=-1447534201472129460. The relative knock-
down efficiency was tested by transiently transfecting 
into HEK-293 cells. The shRNA sequences were listed as 
follows:

For knocking down hHDAC5: 851, GCAAGGATGGG 
ACTGTTATTA; 860, GGACTGTTATTAGCACCTTTA; 
1243, GGCAAGTTCATGAGCACATCC. For knock-
ing down hHDAC6: 2018, GCTATGATCATGGCACC 
TTC T; 2338, GGTGGCTATAACCTGACATCC; 2511, 
GAAGGTAGAAGACAGAGAAGG.

After measuring the best shRNA seq to knock down 
hHDAC5 or hHDAC6, then package the lentivirus plas-
mids containing the shRNA seq with VSVG and delta8.9 
package plasmids to form lentivirus particle.

Amplification of lentivirus was performed via stand-
ard methods in sub-confluent HEK293 cells. Infection 
of melanoma cell lines was performed in the presence 
of polybrene (Sigma) at a final concentration of 8 µg/ml.  
The cells were incubated with the lentivirus mix-
ture for 72  h, digested with trypsin to fresh growth 
medium, and then sorted with green fluorescence 
for stable expression or knockdown. Constructed 
stable cell lines were amplified and saved for future 
experiments.

Colony formation
For the soft agar colony formation assay, pre-treated 
melanoma cells that stably knocked down HDAC5 or 
HDAC6 were grown on a plate containing 1 % base agar 
and 0.5  % top agar. After approximately 3–4  weeks of 
incubation, the colonies were counted with a dissect-
ing microscope. All experiments were independently 
repeated at least three times.

Cell proliferation
The inhibition effects of HDAC5 or HDAC6 were evalu-
ated by cell counting kit-8 (CCK-8; Dojindo Molecular 
Technologies Inc., Gaithersburg, MD, USA). The cells 
were passaged in a 48-well plate with RIPM1640 and 
10  % FBS for 1–7  days. The IC50 value was calculated 
using Statistical Package for the Social Sciences (SPSS) 
software version 12 (SPSS Inc., Chicago, IL, USA).

Cell invasion assay
Cell transwell assays were performed using FalconTM 
Cell Culture Inserts (BD353097,BD company, USA, New 
Jersey) according to the manufacturer’s instructions. 
After 24 h of incubation, the remaining cells in the upper 
chamber were removed with cotton swabs. The cells on 
the lower surface of the membrane were fixed in 4 % par-
aformaldehyde and stained with 0.5 % crystal violet. Cells 
in at least three random microscopic fields (magnifica-
tion ×10) were counted and photographed. All experi-
ments were performed in duplicate and repeated three 
times.

Flow cytometry with annexin V‑FITC and PI staining
The melanoma cells were divided into three groups: (1) 
scramble (scr) melanoma cells as a negative control; (2) 
stably knockdown HDAC5 melanoma cells; and (3) sta-
bly knockdown HDAC6 melanoma cells. The melanoma 
cells were collected, washed twice with PBS, and then 

http://rnaidesigner.lifetechnologies.com/rnaiexpress/setOption.do%3fdesignOption%3dshrna%26pid%3d-1447534201472129460
http://rnaidesigner.lifetechnologies.com/rnaiexpress/setOption.do%3fdesignOption%3dshrna%26pid%3d-1447534201472129460
http://rnaidesigner.lifetechnologies.com/rnaiexpress/setOption.do%3fdesignOption%3dshrna%26pid%3d-1447534201472129460
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stained with propidium iodide and annexin V. Cell cycle 
and apoptotic analyses were performed by flow cytom-
etry (FCM) as previously described using a FACS Calibur 
system [33]. Apoptotic cells were analyzed by quadrant 
statistics of the propidium iodide negative and annexin 
V-positive cells.

Western blotting
Cells were washed twice in PBS; Then, the whole cell 
lysates were collected by adding RIPA lysis for 20  min, 
centrifuging for 15 min at 13000 rpm and obtaining the 
supernatant. Densitometry analysis was performed with 
Quantity One software (Bio-Rad, Hercules, CA, USA). 
The relative expression level of each protein was normal-
ized by dividing the level of target protein by the level of 
GAPDH for each sample.

Melanoma samples and immunohistochemistry
Melanoma samples were acquired from Zhongshan Hos-
pital, Fudan University. A physician obtained informed 
consent from the patients. Immunohistochemistry (IHC) 
was performed as described [34]. To quantify the IHC 
result of positive staining, the tissue areas of five duct-
sim each sample were microscopically examined and 
analyzed by an experienced pathologist. Images were 
captured using a charge-coupled device camera and ana-
lyzed using Motic Images Advanced software (version 
3.2, Motic China Group). Average of staining score was 
calculated by dividing the positive areas with total areas. 
Data obtained were expressed as mean values ± SD. Dif-
ferences were considered significant if the p value was 
less than 0.001.

In vivo tumor xenograft study
Five to seven week old female BALB/c-nu/nu nude mice 
were purchased from the Shanghai Institute of Materia 
Medica, Chinese Academy of Sciences (Shanghai, China). 
Tumors were initiated by injecting 2 x 106 cells into the 
armpit of the nude mice. The mice were randomized and 
assigned to the control or experimental groups.

Mice in the control group were administered 0.1 ml of 
RPMI1640. The tumors were measured every 5 days with 
microcalipers, and tumor volume was measured using 
the formula π/6 larger diameter (smaller diameter)2 [35].

Statistical analysis
Statistical analysis was performed using the Statistical 
Package for the Social Sciences (SPSS) software version 
12 for Windows (SPSS Inc., Chicago, IL, USA). Student 
t-tests were used to determine the statistical significance 
of the differences between the experimental groups. A 
P-value of <0.05 was considered significant. Graphs were 
created using Microcal Origin software (version 3.78; 
Microcal Software, Inc., Northampton, MA, USA).

Results
HDAC5 and HDAC6 are overexpressed in melanoma cells
For effective prevention of melanoma development using 
HDAC inhibitors, further study of the exact mechanisms 
for inhibition of HDACs is very important. To assess the 
high expression of HDACs in melanoma cells compar-
ing with normal skin cells, we tested the expression of all 
HDACs at the protein and mRNA levels.

As shown in Fig. 1 and Additional file 1: Figure S1, when 
tested for expression levels, both HDAC5 and HDAC6 

Fig. 1  HDAC5 and HDAC6 were overexpressed in melanoma cells. Western blots were used to identify all HDACs except sirtuins in M257 cells, SK-
MEL-28 cells, WM266 cells, A375 cells, A2058 cells and HaCaT normal skin cells. The antibodies used in this figure are listed in “Methods”. GAPDH was 
used as an internal control
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had higher protein levels in melanoma cells (M257, SK-
MEL-28, A375 and A2058 cells) than normal skin cells 
(HaCaT). Consistent with protein levelmRNA expres-
sion of HDAC5s, the mRNA expression of HDAC5 and 
HDAC6 in A375 and A2058 cells was 30 ±  3 times and 
78 ±  19 times, respectively compared to in HaCaT cells. 
However, HDAC8 had nearly no expression in melanoma 
cells but was expressed in normal skin tissue. Similar 
results were observed for HDAC1 and HDAC3, suggesting 
that some HDACs may function as melanoma suppressors.

Stable knockdown of HDAC5 and HDAC6 in A375 cells
To clarify the roles of HDAC5 and HDAC6 in mela-
noma progression, we designed three shRNA sequences 

for knocking down HDAC5 or HDAC6. We selected 
the most efficient shRNA sequences of knocking down 
HDAC5 or HDAC6, as shown in Additional file  2: Fig-
ure S2a and b. Furthermore, we packed the lentivirus and 
infected the A375 cells to construct cell lines that stably 
knocked down HDAC5 or HDAC6.

We used CCK8 to identify cell proliferation after 
reducing HDAC5 or HDAC6 expression levels in mel-
anoma cells. As shown in Fig.  2c, inhibiting HDAC5 
or HDAC6 prevented cell proliferation, especially 
HDAC6 stably knockdown in A375 cells induced sig-
nificant arrest of cell growth comparing to scramble 
A375 cells(**p  <  0.001) while HDAC5 stably knock-
down in A375 cells has also significant decrease in 

Fig. 2  Knockdown of HDAC5 or HDAC6 inhibited the proliferation of A375 cells. The stable cell line of A375 cells with HDAC5 or HDAC6 knockdown 
were constructed using shRNA primers. a and b Western blotting was used to detect HDAC5 or HDAC6 expression in A375 cells. β-actin was used as 
an internal control. c CCK8 was used to count the cell number of stably knocked down HDAC5 or HDAC6 in A375 cells. Cell viability was measured 
using the Cell Counting Kit-8 (CCK-8, Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer’s instructions. Transiently trans-
fected cells were seeded in a 96-well plate and then cultured at 24-hour intervals for 5–7 days. Cell viability was then measured using the CCK-8 
assay. Absorbance was measured at 450 nm as an indicator of cell viability. All experiments were independently repeated at least three times. *p 
value <0.01, **p value <0.001. p value <0.05 was considered as significant differences. d Western blotting was used to detect the signaling pathway 
related to proliferation. Acetylated-Histone H3 and acetylated-a-tubulin were used as control for monitoring HDAC5 and HDAC6 knocking down 
results, respectively. The antibodies used for western blotting are listed in Methods
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growth rate (*p  <  0.01). Interestingly, HDAC5 and 
HDAC6 may influence melanoma cell proliferation 
through different pathways. Therefore, in the next 
step, we assessed the multiple pathways involved in 
melanoma cell growth and proliferation. We found 
that knocking down HDAC5 presented lower Akt 
phosphorylation, whereas knocking down HDAC6 
dramatically decreased the phosphorylation of ERK 
(Fig. 2c).

Both HDAC5 and HDAC6 reduce apoptosis and promote 
metastasis of melanoma cells
Next, we assessed whether HDAC5 or HDAC6 knockdown 
induces apoptosis in A375 cells. Colony formation assay 
proved that reduced expression of HDAC5 or HDAC6 
decreased cell growth and colonization. Also as shown in 
Fig.  3b, decreased expression of HDAC5 or HDAC6 pro-
moted cell apoptosis, from 0.688 percent to 6.3 and 7.2 per-
cent, respectively. The apoptosis pathway proteins caspase 

Fig. 3  Knocking down HDAC5 or HDAC6 induced apoptosis in A375 cells. a Colony formation of Scr, HDAC5 shRNA, and HDAC6 shRNA stable cell 
lines. Knocking down HDAC5 or HDAC6 in A375 cells generated smaller colony of cells than the scr control, but presented close colony number. 
b and c Knocking down HDAC5 or HDAC6 induced apoptosis. Annexin V was used to stain the apoptotic cells, and the western blot of caspase 3, 
8 and 9 also showed similar results: increased apoptotic cell numbers in stable cell lines of HDAC5 or HDAC6 knockdown. *p < 0.01, means large 
significance
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3, 8 and 9 exhibited obvious cleaved bands, indicating that 
both HDAC5 and HDAC6 could modulate apoptosis by 
converging on the same pathway. We suspect there is a 
correlation between decreased colonization and increased 
apoptosis after HDAC5 or HDAC6 knockdown. Fan and 
Qin et al. [36, 37] found that inhibition of HDAC5 in HCC 
hep3B cells or inhibition of HDAC6 in Hela cells induces 
apoptosis. In Fig. 2c, after an initial growth, cells express-
ing the shRNA against HDAC6 seem to die (subsequently 
to day  5). For clarifying this, cytofluorimetric analysis for 
Annexin V/PI positivity was used to measure the percent of 
apoptotic and dead cells after Knocking down HDAC6 for 
1, 3, 5 and 7 days (Additional file 3: Figure S3).

We also assessed the metastasis ability in vitro through 
transwell assays. As shown in Fig.  4, both HDAC5 and 

HDAC6 could influence the metastasis of A375 cells by 
regulating MMP9 and vimentin, both markers for the 
metastasis ability of cancer cells. Many clinical mela-
noma patients have BRAF V600 mutation, such as V600E 
or V600D which confers melanoma cells the capacity of 
metastasis. In order to clarify the correlation of HDAC5,6 
with BRAF V600E or V600D mutation, we knocked down 
HDAC5 or HDAC6 in M257 cells (BRAF wild type), 
SK-MEL-28 and A2058 (BRAF V600E),WM266 (BRAF 
V600D). Generally, we got the results which were con-
sistent with Fig. 4b, when knocking down of HDAC5 or 
HDAC6, the melanoma cells dramatically decreased the 
metastasis ability (Additional file 4: Figure S4), indicating 
HDAC5 and HDAC6 may function at the downstream of 
BRAF.

Fig. 4  HDAC5 and HDAC6 influenced the metastasis of A375 cells. a Transwell assay to detect metastasis of A375 cells. Cell transwell assays were 
performed using FalconTM Cell Culture Inserts (BD353097) according to the manufacturer’s instructions. After 24–48 h of incubation, the remaining 
cells in the upper chamber were removed by cotton swabs. The cells on the lower surface of the membrane were fixed in 4 % paraformaldehyde 
and stained with 0.5 % crystal violet. Cells in at least three random microscopic fields (magnification x10) were counted and photographed. All 
experiments were performed in duplicate and repeated three times. b Western blot showing that knocking down HDAC5 or HDAC6 modulated 
metastasis through divergent pathways
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Both HDAC5 and HDAC6 promote cell cycle of melanoma 
cells
We also analyzed the cell cycle of the following three sta-
ble cell lines: scr, HDAC5 shRNA, and HDAC6 shRNA in 
A375 cells. As shown in Fig. 5, both HDAC5 and HDAC6 
were required for normal cell cycle progression. Over 
50  % Scr cells escaped from G0/G1 phase after releas-
ing to fresh medium for 12 h while HDAC5 shRNA and 
HDAC6 shRNA groups were about 30 % and near 40 %, 
respectively. Our results demonstrate that knockdown of 
HDAC5 or HDAC6 arrested cell cycle in G0/G1 phase, 
indicating that HDAC5 and HDAC6 are required for 
regulating the expression of cell cycle-related genes and 
promote A375 cells progressing to S phase. Also, we 
analyzed CDKN1A expression in HDAC5 shRNA cells 
and the data in Additional file 5: Figure S5 showed that 
knocking down HDAC5 promoted CDKN1A expression, 
indicating inhibition of HDAC5 released the repression 
of MEF2-dependent transcription [38].

Effect of HDAC5 or HDAC6 knockdown on tumor growth
We further investigated the effects of HDAC5 or HDAC6 
knockdown on A375 cells tumor growth when the cells 
were transplanted subcutaneously. As shown in Fig.  6, 
HDAC5 or HDAC6 knockdown dramatically inhibited 
tumor growth, especially HDAC6 knockdown, indicating 
that HDAC6 may have a more serious influence on can-
cer cell growth. As shown in Fig. 6a, HDAC5 and HDAC6 
knockdown induced a 25 and 98  % reduction in the 
tumor volume of A375 cells, respectively. We analyzed 
the mice survival rate after injecting A375 stable cells 
into null mice. We found consistent results with tumor 
growth after injecting scramble A375 cells for 3  weeks; 
the null mice (n  =  10) group lost four mice, whereas 
the HDAC5 or HDAC6 knockdown groups had no mice 
dead.

HDAC5 and HDAC6 were up‑regulated in clinical 
melanoma tissues
After lung and breast cancer, melanoma is one of the most 
common underlying diagnoses in patients with cerebral 
metastases [39]. HDAC inhibitors, such as hexamethylene 
bisacetamide (HMBA) and MS275, have been reported 
to suppress the progression of melanoma in clinical or 

in vitro experiments. Additionally, HDAC inhibitors, such 
as TSA and SB, can induce apoptotic cell death in a num-
ber of tumor cell types, including melanoma [40, 41].

HDAC5 or HDAC6 knockdown in A375 cells induced 
apoptosis, arrest of cell cycle and tumor growth in nude 
mice. Furthermore, we collected 64 primary human mel-
anoma samples, including 31 pairs that had surrounding 
normal skin tissues. We first carried out a western blot 
analysis for a panel of 8 pairs of primary melanoma (T) 
and their adjacent normal tissues (N), for which suffi-
cient amounts of proteins were obtained. This analysis 
revealed that compared with normal skin tissues, 6 pairs 
showed a significant increase of the steady-state levels of 
total HDAC5 protein, whereas 5 pairs showed increased 
HDAC6 (Fig. 7a).

However, western blots did not demonstrate the spe-
cific location of HDAC5 or HDAC6 in melanoma tissues. 
For clarifying the sublocations of HDAC5 and HDAC6 
in melanoma tissues, we then performed immunohisto-
chemistry in 10 clinical melanoma samples, including 46 
samples that had the adjacent normal melanoma tissues. 
In most samples, the levels of total HDAC5 and HDAC6 
were higher in melanoma tissues than normal skin tissues 
(Fig. 7b). Analyses of the quantified images indicated that 
the differences between tumor and normal tissues in total 
HDAC5 or HDAC6 levels protein levels (P < 0.0001) were 
all highly significant when comparing the 33 tumor sam-
ples with the 31 normal skin samples (Fig. 7c).

Discussion
HDAC inhibitors have contributed extensively to the 
prevention of melanoma cell proliferation and metasta-
sis. Multiple small molecules have emerged as inhibitors 
of HDACs, with consequences for chromosome remod-
eling, cell cycle arrest and selective toxicity in cultured 
melanoma cells compared with normal melanocytes [6, 
42]. Increasing evidence indicates that HDAC inhibitors 
have multiple effects on tumor cells, including induction 
of apoptosis, arrest of cell cycle to slowdown cell prolif-
eration, and induction of differentiation or autophagy, 
etc. [43].

HDAC inhibitors have made great progress as anti-
cancer agents, including the HDAC inhibitor pan-
obinostat, developed by Novartis; Zolinza, an HDAC 

See figure on next page 
Fig. 5  Knockdown of HDAC5 or HDAC6 induced cell cycle arrest. a and b, Cells were passaged in 12-well plates for 24 h. Serum was removed from 
the medium, and cells were starved with serum-free medium for 24 h. Then, the cells were cultured with fresh medium with serum at four time 
points: 0, 4, 8 and 16 h. After harvesting and washing with PBS, all of the A375 cells were fixed in ice-cold 70 % EtOH for more than 2 h at 4 °C, cen-
trifuged at 2000 rpm for 5 min, then washed twice in PBS. The cells were incubated at 37 °C Rnase solution (1 mg/ml) for less than 30 min and then 
stained by propidium iodide (50 µg/ml) for cell cycle analysis with Flow Cytometers Galios (Beckman, USA) using a 488 nm excitation wavelength, 
gating doublets and clumps using pulse processing and collecting fluorescence above 620 nm. Data were extracted with Modfit software.*p < 0.05 
was considered as significant difference
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inhibitor developed by MERCK and on the market since 
2006; Istodax, an HDAC inhibitor developed by Celgene 
and FDA approved in 2010; and other new drugs that 

are in preliminary trials, most of which are new HDAC 
inhibitors. Recently, a second generation of report-
edly available HDACis have been tested in the clinic 

Fig. 7  HDAC5 and HDAC6 were up-regulated in melanoma tissues. a Total HDAC5 or HDAC6 protein levels were are increased in melanoma tissues 
compared to adjacent tissues. The protein levels of HDAC5 and HDAC6 in 8 pairs of melanoma and adjacent normal tissues were analyzed by west-
ern blotting. b and c Immunohistochemical stainings of HDAC5 and HDAC6 proteins in tumor and adjacent normal tissues. One example is shown 
in b, and the statistical analysis of all samples is shown in c. Scale bars are 50 mm. The intensities of the total HDAC5 (upper panel) and HDAC6 (down 
lower panel) proteins were quantified using the Motic Images Advanced software, followed by statistical analysis. A total of 33 tumor tissues and 31 
adjacent normal skin tissues were analyzed. The mean value of multiple samples and standard deviation are presented. ***p <0.001

Fig. 6  Both HDAC5 and HDAC6 were required for tumor growth. a Knocking down HDAC5 or HDAC6 inhibited the tumor growth of the subcuta-
neously transplanted A375 cells (2 x 106). Experimental groups: A375 Scr; A375 HDAC5 shRNA; A375 HDAC6 shRNA, each performed in four nude 
mice. b Mean tumor volume was measured at the indicated number of days after A375 cells (2 x 106) were implanted into the armpit of the nude 
mice. *p < 0.05, **p < 0.001, ***p < 0.0001. Bars, s.d
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including the class I—specific agents CHR-3966 [14], 
chidamide (CS055/HBI-8000) [15], class I— and class 
II—specific AR-42 [16], and hydroxamides quisinostat 
(JNJ-26481585) [17] and abexinostat (PCI-24781) [18]. 
However, despite the large number of positive reports, 
the limitations of HDAC inhibitors are also increasingly 
clear. For example, we do not know which one specific 
HDAC must be inhibited or whether HDACs inhibition 
would present a collective effect. Additionally, the con-
crete substrate groups of HDACs and mechanisms of 
action are unknown.

Here, we showed the expression levels of all 11 HDACs 
in multiple melanoma cells comparing with normal skin 
cells and found that HDAC5 and HDAC6 have lower 
expression levels in normal tissues but much higher 
expression in A375 and A2058 cells. Thus, we suggest 
that HDAC5 and HDAC6 may contribute to the occur-
rence of melanoma.

HDACs have broad range of substrates, including some 
transcriptional factors such as p53, STAT3, FoxO1, etc. 
According to the literature, HDAC5 has a wide range 
of substrates, including RunX2 and PKM2.HDAC4 and 
HDAC5 usually forms a complex to deacetylate sub-
strates. For example, HDAC4 and HDAC5 deacetylate 
Runx2, allowing the protein to undergo Smurf-mediated 
degradation [44]. HDAC5 has been shown to promote 
PKM2 interaction with FBP (fructose 1,6-bisphosphate) 
through deacetylation of PKM2 K433, which is a key 
step to activate PKM2 kinase activity [45]. In most cases, 
HDAC6 is located in the cytoplasm and tends to acety-
late microtubules, which exist in multiple functional sys-
tems. For example, macrophages challenged by bacterial 
lipopolysaccharides (LPS) undergo extensive microtubule 
acetylation by HDAC6, thereby reversing the acetylation 
process [46].

Knocking down HDAC5 or HDAC6 in A375 cell line 
suppressed its proliferation and induced apoptosis. 
Using mouse models with subcutaneous tumor xeno-
grafts grown from implanted A375 cells, we observed 
smaller tumors from A375 cells expressing ShRNA 
against HDAC5 or HDAC6. Interestingly, although both 
HDAC5 and HDAC6 contribute to maintain cell prolif-
eration in A375 cells, these two HDACs belong to differ-
ent HDAC families; HDAC5 belongs to HDAC class IIa, 
whereas HDAC6 belongs to HDAC class IIb. Typically, 
HDAC5 is a nuclear protein, but it can also translocate 
from the nucleus to cytoplasm during injury or stress on 
peripheral neurons and can enhance histone acetylation 
to activate a pro-regenerative gene-expression program 
[19]. By contrast, HDAC6 is a cytoplasmic protein with 
two repeat catalytic domains located in the N terminus, 
whereas most HDACs have only one catalytic domain in 

the C terminus [47]. HDAC6 has a zinc finger structure 
in the C terminus, which is different from other HDACs, 
and the zinc finger structure has ubiquitin ligase activity 
and can bind with ubiquitin. Therefore, HDAC6 can be 
degraded via the ubiquitin-dependent pathway [48, 49]. 
Therefore, HDAC5 and HDAC6 may have different and 
a broad range of substrates affecting multiple signaling 
pathways.

Furthermore, there is communication between the 
families of HDACs and SIRTs. For example, Mihaylova 
et al. reported that class IIa HDAC4 and HDAC5 could 
recruit HDAC3, which led to the acute transcriptional 
induction of gluconeogenic enzymes genes via deacety-
lation and activation of FOXO family transcription fac-
tors [50]. Yang et al. [51] reported that the deacetylases 
HDAC6 and SIRT2 co-regulated the acetylation state of 
K-RAS in cancer cells. Stefan et  al. showed that class I 
and IIa HDACs have different expression levels in con-
stitutively SOST-expressing UMR106 osteocytic cells 
and exert opposite effects on sclerostin gene regulation 
[52].

HDAC inhibitors can also act in concert with other 
oncogenic targets to achieve better inhibition of tumor 
cell growth. For example, Lai et  al. [53] synchronously 
adopted the inhibitors of HDACs and oncogenic BRAF 
and effectively killed melanoma cells. Additionally, Sun 
et al. [54] showed that HDAC5 interacts with N-myc for 
blocking neuroblastoma cell differentiation.

Knockdown of HDAC5 or HDAC6 can cause apopto-
sis and cell cycle arrest, meanwhile, suggesting that there 
is no functional redundancy in A375 melanoma cells 
between HDAC5 and HDAC6. Our results provide the 
basic theoretical foundation for the combined applica-
tions of HDAC inhibitors to treat cancer and simultane-
ously inspire researchers further to investigate the HDAC 
targeting proteins which are formed that form a complex 
networks.

Conclusions
This study provided evidence for the first time that mela-
noma specifically overexpressed HDAC5 and HDAC6. 
We presented both HDAC5 and HDAC6 as tumor 
promoters in melanoma proliferation and metastasis 
through different signaling pathway, and shaded some 
light on the potential mechanisms. Our results provided 
the basic theoretical foundation for the combined appli-
cation of HDAC inhibitors to treat cancer and simulta-
neously inspired researchers to further investigate the 
HDACs targeting proteins that form complex networks. 
We believe that both HDAC5 and HDAC6 could be 
good diagnostic and therapeutic targets for controlling 
melanoma.
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