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Abstract

Introduction: This study examines the likelihood and evolution of overall and hypoglycemia-inducing variability of insulin
sensitivity in ICU patients based on diagnosis and day of stay.

Materials and Methods: An analysis of model-based insulin sensitivity for n~390 patients in a medical ICU (Christchurch,
New Zealand). Two metrics are defined to measure the variability of a patient’s insulin sensitivity relative to predictions of a
stochastic model created from the same data for all patients over all days of stay. The first selectively captures large
increases related to the risk of hypoglycemia. The second captures overall variability. Distributions of per-patient variability
scores were evaluated over different ICU days of stay and for different diagnosis groups based on APACHE III: operative and
non-operative cardiac, gastric, all other. Linear and generalized linear mixed effects models assess the statistical significance
of differences between groups and over days.

Results: Variability defined by the two metrics was not substantially different. Variability was highest on day 1, and
decreased over time (pv0:0001) in every diagnosis group. There were significant differences between some diagnosis
groups: non-operative gastric patients were the least variable, while cardiac (operative and non-operative) patients
exhibited the highest variability.

Conclusions: This study characterizes the variability and evolution of insulin sensitivity in critically ill patients, and may help
inform the clinical management of metabolic dysfunction in critical care.
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Introduction

Stress induced hyperglycemia is a significant issue in critical

care, affecting up to 30–50% of patients and increasing morbidity

and mortality [1,2]. Controlling glycemia has proved difficult due

to the associated risk of hypoglycemia when highly dynamic

patients are treated with exogenous insulin [3]. Both extremes, as

well as glycemic variability, have been independently linked to

increased morbidity and mortality [4–6], creating a difficult

clinical problem.

More specifically, inter- and intra- patient metabolic variability

drive outcome glycemic variability and hypoglycemic risk [7]

making good control difficult. In particular, sudden and large rises

in insulin sensitivity can result in a hypoglycemic event when

exogenous insulin is given over a typical 3–4 hour measurement

interval. It is critical to determine the size and likelihood of these

intra-patient variations, to enable a more complete understanding

of the inherent risks in glycemic control.

Very few studies have examined time-varying evolution of

insulin sensitivity and its variability in the critically ill. Langouche

et al noted [8] that insulin sensitivity rose between days 1 and 5

over their large cohorts, but provided no daily or diagnostic

specific evolution. Lin et al showed [9] that hour to hour changes

for a clinically validated model-based insulin sensitivity metric

could be quite large as a function of current insulin sensitivity level

for a medical Intensive Care Unit (ICU) cohort that covered all

diagnostic categories and days of ICU stay. However, no studies to

date have explicitly described the evolution of intra-patient insulin

sensitivity and its variability on a daily basis, or for different

diagnostic categories.

Such information would provide insight into the risk of

hypoglycemia by diagnostic category and day of ICU stay.

Additionally, insight into the likelihood of glycemic variability

resulting from greater or lesser intra-patient variability of insulin

sensitivity could be attained. This research presents a first rigorous
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Table 1. Demographic data of patients.

Group Day 1 Day 2

n Age Sex n Age Sex

NOpC 28 59.5 (61.5)+16.5 (24) 35.7 18 58.4 (59.5)+16.1 (19) 38.9

OpC 35 72.9 (73)+7.12 (10.8) 22.9 21 72.9 (73)+6.54 (10) 23.8

NOpG 16 64.3 (67)+12.8 (15) 25 13 64.4 (71)+14.2 (18.5) 23.1

OpG 42 67.9 (72)+12.4 (13) 35.7 29 69.9 (72)+10.8 (11.3) 27.6

NOpO 119 54.7 (59)+18 (27) 46.2 101 54.5 (59)+18 (28) 42.6

OpO 21 50.8 (56)+19.2 (31) 38.1 16 54.9 (57.5)+18.5 (31) 43.8

Group Day 3 Day 4+

n Age Sex n Age Sex

NOpC 11 64.2 (63)+10.6 (16.3) 18.2 11 64.2 (63)+10.6 (16.3) 18.2

OpC 18 73.2 (73.5)+6.46 (9) 27.8 18 73.2 (73.5)+6.46 (9) 27.8

NOpG 13 64.4 (71)+14.2 (18.5) 23.1 13 64.4 (71)+14.2 (18.5) 23.1

OpG 23 69.2 (71)+9.46 (11.5) 26.1 23 69.2 (71)+9.46 (11.5) 26.1

NOpO 88 54.2 (58)+17.9 (26.5) 45.5 88 54.2 (58)+17.9 (26.5) 45.5

OpO 15 54.7 (57)+19.1 (33.5) 40 15 54.7 (57)+19.1 (33.5) 40

The distribution (according to length-of-stay and diagnosis group) and the most important demographic indicators of the patients. Data are shown in an n, age,
percentage of females format, with age statistics arranged in Mean (Median) + SD (IQR) manner. Columns indicate minimum (and not exact) length-of stay, so the same
patient may appear in several cells.
doi:10.1371/journal.pone.0057119.t001

Figure 1. SI variability and its metrics. Illustration of the evolution of SI for a given patient (FT5002). Background colors represent the
cumulative distribution function of the prediction for SI nz1ð Þ based on SI nð Þ using the whole cohort; its 25th, 50th (i.e. median) and 75th percentile
is explicitly shown. Lower part of the Figure highlights the calculation of the two metrics using Hour #102 (Day #4.25, marked on the upper part) as
an example.
doi:10.1371/journal.pone.0057119.g001
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statistical analysis of inter- and intra- patient insulin sensitivity

variability as a function of diagnostic category and day of stay.

Materials and Methods

Ethics statement
The Upper South Regional Ethics Committee, New Zealand,

granted ethics approval for the audit, analysis, and publication of

these data. Data collection is described in detail in [10].

Patient data
Clinical data from n~390 patients (47,836 hours) in the

SPRINT medical ICU cohort [10] are used to identify hourly,

model-based insulin sensitivity (SI ) values (SI nð Þ). SPRINT is a

model-based, clinically validated tight glycemic control (TGC)

protocol that provides explicit control for both nutrition intake and

insulin input [10].

Hour-to-hour changes are evaluated for the cohort over all days

of ICU stay using a stochastic model [9] that provides kernel

density estimation-based distributions of SI nz1ð Þ values for each

current SI nð Þ value using all 47,836 data points. Table 1 shows

the patient demographic details, including diagnostic categories.

These were created based on the APACHE III codes, and consist

of operative and non-operative groups for cardiac, gastric and all

other patients (with abbreviations OpC, NOpC, OpG, NOpG,

OpO and NOpO, respectively). For the daily statistics, only

patients who had at least 24 hours of glycemic control and ICU

stay were used.

Variability metrics
Actual SI nz1ð Þ values for each day of ICU stay and each

diagnostic category (cardiac, gastric, all other, both operative and

non-operative in all three types) are compared to the distributions

provided by the stochastic model of Lin et al [9] that covers all

diagnostic categories and all days of ICU stay. The results thus

show the relative and absolute evolution of SI variability

(SI nð Þ?SI nz1ð Þ) for a given diagnostic category over time,

relative to all patients and days of stay, which should highlight

times or diagnostic groups with greater or lesser than average risk.

The percentile of the actual SI nz1ð Þ values on their predicted

distribution will be illustrated with histograms. If the prediction is

perfect (that is, the distribution of actual values is identical to the

predicted distribution), every 10% wide interval of the histogram

contains 10% of the measurements. This ideal case therefore

corresponds to a flat distribution. Kurtic distributions are seen

when the actual values were more concentrated at the median

than the predicted distribution, suggesting confidence bands could

have been tightened. In contrast, U-shaped distributions indicate

cases where confidence bands should be widened due to increased

variability.

Two metrics are used to assess variability for each patient over a

given day, and results are aggregated by diagnostic category. First,

a quadratic metric is defined as the average of squared deviations

of the percentile of the actual SI nz1ð Þ value on its predicted

distribution (from the overall cohort model) from the ideal 50th

percentile. This value increases the more variable a given patient.

The quadratic metric thus measures overall intra-patient variabil-

ity.

Second, a one-sided threshold metric counts the number of

SI nz1ð Þ values for a given patient that exceed the 90th percentile

of SI nz1ð Þ in the whole-cohort model of Lin et al [9]. This

metric thus counts the number of large positive changes in

SI nz1ð Þ that would induce large drops in glucose level on dosing

exogenous insulin based on the SI nð Þ value. A value greater than

10% for a given patient, day or diagnostic category indicates a

greater risk for these changes compared to the overall cohort on all

days of ICU stay. This metric thus specifically assesses hypogly-

cemic risk due to intra-patient variability in insulin sensitivity and

its daily evolution.

Hence, these two metrics measure overall variability and

hypoglycemic risk from variability. Clinically, the quadratic

measure is one of risk to glycemic control performance and

outcome arising due to variability in insulin sensitivity, and the

one-sided threshold assesses risk to patient safety in glycemic

control.

These metrics are illustrated on Figure 1, which shows the

evolution of the insulin sensitivity of a 67 years old male patient

(FT5002) with septic shock principal diagnosis (all other, non-

operative category) through 162 hours. Each patient has such a

trajectory. For every hour, the distribution of SI nz1ð Þ was

predicted based on SI nð Þ using the model of Lin et al [9], which is

illustrated with the underlying colormap representing the cumu-

lative distribution function of the predicted distribution. 50th

percentile (i.e. median) of this predicted distribution of SI nz1ð Þ is

explicitly shown. The Figure also illustrates how these metrics are

calculated, showing the predicted distribution and the actual SI
for a given hour.

Analysis of variability
An overall variability score can be calculated for a given

diagnosis group by averaging the overall variability scores for

patients belonging to that group. However, if the individual length

of stay differs, simple arithmetic averaging would assign unequal

weights for each patient’s measurements. To avoid the problems

associated with unequal weighting due to patient discharge, only

series of equal length were averaged. In particular, results and

analysis were divided by the first 24 hours (‘‘day 1’’), second

24 hours (‘‘day 2’’), third 24 hours (‘‘day 3’’), and remaining time

in ICU (‘‘day 4+’’). Thus only complete 24 hour intervals were

used (except for day 4+, of course) to avoid bias.

Per-patient average penalty score distributions by diagnosis

group each day are shown using violin plots [11]. Violin plots bear

similarities to boxplots, but use kernel density estimation to directly

convey information on the shape of the distribution for more

accurate comparison.

Statistical methods
To have an overall impression on the effect of the time spent in

ICU on the SI variability, a LOWESS estimator [12] was plotted

for the scatterplot of quadratic metric and time spent (in minutes)

per diagnosis group on Figure 2. It is immediately obvious that

time has a complex effect on SI variability, which exhibits a

biphasic behaviour in most of the cases. This might be worthy of

pursuit, despite the fact that the estimation at long length of stays is

unreliable due to relatively lower sample size.

However, now we will confine our attention to investigate the

early, seemingly mostly linear response of the first few days. (To

Figure 2. Evolution of quadratic SI variability per diagnosis group. LOWESS estimators for the scatterplot between minute-precision length
of stay and quadratic metric of SI variability, segregated according to diagnosis group. Dashed vertical lines indicate the end of the first four days.
doi:10.1371/journal.pone.0057119.g002
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illustrate this, the first four day is marked on Figure 2.) We

restricted the database to observations having Time v 8 000 min-

utes (i.e. the first 5.5 days of stay) for the estimation of the

forthcoming models, hence limiting it to the ‘‘linearity region’’ of

the SI variability vs. time function, as evidenced by Figure 2. The

linear functional form is also more tractable and easier to estimate.

To account for the grouping of the data, linear mixed-effects

modelling was used to find significant differences in SI variability

metrics between diagnosis groups and/or days [13,14]. The

(longitudinal) data were arranged in a two-way classification, with

time a within-subject factor and diagnosis group considered a

between-subject factor. In our model, the fixed effects were the

Time (time spent in ICU in minutes as a continuous variable) and

the Diagnosis (as a nominal factor with 6 levels) without intercept

(‘‘cell means coding’’). Minute-precision length-of-stay (Time) was

used for measuring time to make the estimation of the mixed-

effects model possible. The random effect was added with per-

patient grouping, with both random intercept and random slope

permitted with respect to time, both of which was deemed

necessary with LR-test (pv0:001 for both quadratic and one-sided

penalty) [15]. The inclusion of an AR(1) autocorrelation of the

within-subject errors was not found to be necessary for the

quadratic penalty (p~0:9961) [15]. The fixed effects interaction

terms between Time and Diagnosis were found to be insignificant

(p~0:8227 for quadratic penalty, p~0:2077 for one-sided

penalty) showing that that the slope with respesct to the time

spent in ICU does not depend on the diagnosis group, and were

thus eliminated. (Effect of Diagnosis was significant (pv0:0001 for

both penalty), so the intercept does depend on the diagnosis

group.) The resulting statistical model for the quadratic penalty of

SI variability was therefore the following:

Variabilityi,j~ b0,NOpC
:Classi,NOpCzb0,NOpG

:Classi,NOpGz . . .
�

zb0,OpO
:Classi,OpOzb0,i

�
z b1zb1,ið Þ:Timei,jzei,j ,

ð1Þ

where i identifies the patient, j identifies the measurement (i.e.

Timei,j is the time of the jth measurement on patient i), Classi,C is

the indicator variable for Class C (i.e. takes the value of 1 if patient

i is in class C, 0 otherwise). For the one-sided threshold penalty –

as the response is essentially binary – generalized linear mixed

effects (GLME) modeling [16] was used instead of the traditional

linear mixed effects (LME) modeling. The link function was

chosen to be logistic, and the distribution family was binomial. For

the quadratic penalty, LME modeling was used, but the penalty

score was (monotonically) logit-transformed beforehand to map

the skewed distribution on 0,0:25½ � to an approximately normal

one on the real line [15]. This sacrifies the interpretability of the

coefficients for the correct specification of the model, but the

former was of little concern for us, as we will not use the numerical

values of the coefficients for further analysis. Linearity for the

transformed data was still feasible.

The coefficients are denoted with b for the fixed, and with b for

the random effects. The fixed effects coefficient of Time

characterizes – for the whole population – how variability changes

over time, with positive value implying increasing variability,

negative implying decreasing variability, and the absolute value

showing the size of this effect. The fixed effects coefficients of

diagnosis groups show the estimated variability of a patient in the

given diagnosis group when admitted to the ICU.

Restricted maximum likelihood (REML) was used for the

estimation of LME models and Laplace-approximation for

GLME. Residual variance was rather high in both cases,

indicating that the models were only able to capture a small part

of the variation – but this is to be expected, given that we use no

information other than time spent in ICU and diagnosis group.

After performing ANOVA to assess the significance of main

effects, post-hoc testing on significant effects was carried out using

Tukey’s Honestly Significant Differences (HSD) method [17],

providing the correction that takes the multiple comparisons

situation into account.

Data processing
Data processing was done using Mathworks Matlab (version

2009a). Statistical analysis was performed under the R statistical

program package [18], version 2.15.1 with nlme package for LME

modeling [19] and lme4 package for GLME modeling [20].

Results

Figure 3 shows the distribution of the percentile of actual

SI nz1ð Þ on its predicted distribution for different days and

diagnosis groups. Figure 4 shows the violin plot of the distributions

of per-patient overall variability metrics in different diagnosis

groups, segregated according to ICU day and diagnosis group.

Parameters of the fitted GLME model (for one-sided threshold

penalty) and LME model (for quadratic penalty) are shown in

Table 2.

The distributions in Figure 3 suggest poor coverage of the

whole-cohort model on day 1, almost ubiquitously across diagnosis

groups. On day 2, every diagnosis group ‘‘flattens’’, except for

Operative - Cardiac. On day 3, the predictions are acceptable in

every diagnosis group in that the actual distribution of SI nz1ð Þ
largely matches the whole cohort-predicted distribution. Finally,

on day 4 and onwards the coverage is very over-conservative in the

Operative - All other category.

Figure 4 (top row) suggests that one-sided threshold penalties

exhibit much larger, typically positively-skewed variations. There

is a slight trend in the central tendency, as median variability in

this metric appears to decrease as time increases. A trend towards

reduced spread in this (one-sided) variability over time is more

pronounced, indicating decreasing risk of hypoglycemia over time

when all else is equal.

In contrast, quadratic penalties are much more centrally

concentrated, and have a smaller coefficient of variation. The

continuous lowering of variability over time in every group is also

seen, but a reduction in spread is not as pronounced. The two

metrics are consistent in assigning ‘‘higher’’ and ‘‘lower’’

variabilities similarly over time and diagnostic group, albeit on

different scales.

As can be seen from Table 2, time trend was significant

(pv0:0001) with a coefficient of {0:1234/day for the one-sided

threshold penalty, and {0:1810/day for the (transformed)

quadratic penalty, indicating the decreasing variability over time

in both cases. These results also imply a decreasing risk of

hypoglycemia inducing variability in insulin sensitivity over time,

matching trends in Figure 4.

Figure 3. Distribution of predictions according to diagnosis and day of stay. Histograms of the percentile of actual SI nz1ð Þ values on their
predicted distribution grouped according to day (rows) and diagnosis group (columns). Dashed line indicates the ideal (uniform) case of perfect
prediction. The number of hourly measurements which was used to construct the histogram is shown in the title.
doi:10.1371/journal.pone.0057119.g003
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Post-hoc testing for diagnosis groups also revealed significant

differences. Using Tukey’s HSD method (see Table 3), Non-

operative - Cardiac group had significantly (p~0:0175) higher

variability than Non-operative - Gastric for the one-sided

threshold penalty. Non-operative - All other category also

exhibited marginally significantly (p~0:0832) lower SI variability

than Non-operative - Cardiac patients. The Operative - Cardiac

exhibited significantly (p~0:0444) higher variability than Non-

operative Gastric for the (transformed) quadratic penalty. These

results suggest that the Non-operative - Gastric group is amongst

the least variable groups, while the Cardiac groups exhibit the

highest variability irrespective of day. These results are consistent

with Figure 4, though it is worth noting that cardiac patients

‘‘change place’’ from day 1 to day 2 irrespective of penalty: Non-

operative - Cardiac patients are more variable than Operative -

Cardiac group on day 1, but this order is reversed from day 2

onwards.

Discussion

Clinically, those results indicate a decreasing likelihood of

hypoglycemia induced by large rises (variations) in insulin

sensitivity over short measurement and intervention intervals as

days of ICU stay increase based on the one-sided threshold results.

The overall risk of increased variability of both forms (one-sided

and quadratic metrics) by diagnostic category is highest for

Cardiac patient groups.

This latter observation is matching the increased hypoglycemia

observed in glycemic control studies in these cohorts (e.g. [21]).

The highest variability on day 1 is consistent with the increased

hypoglycemia and range observed in the first 24 hours in the study

by Bagshaw et al [4], which was associated with increased risk of

death. The overall higher variability (quadratic measure) on day 1

in all groups is also reflective of increased hypoglycemia and

variability reported in most glycemic control studies irrespective of

cohort [3,4].

The major strength of the present study is that it also provides a

rigorous statistical framework, which makes the quantification of

these effects possible. It is, however, limited in some sense because

it is inherently linked to the SPRINT protocol (as it interprets

variability as the deviation of the actual SI from its prediction

provided by the particular algorithm in that protocol).

The physiological causes of this variability have links to the

counter-regulatory and oxidative stress responses, and inflamma-

tory acute immune response typically seen in hyperglycemic

critically ill patients. That the variability declines over days 1–4 as

the acute phase passes also matches expectations and physiological

observations. Drug therapies, such as glucocorticoid or inotrope

use [22] among others, may also be implicated as a causative

factor. However, the high level of patient-specificity observed

within any group makes determining specific causes or magnitude

of effect difficult.

For glycemic control, high levels of variability combined with

infrequent BG measurement are a major disincentive to higher

insulin doses and/or low glycemic targets. The only study to

reduce both mortality and hypoglycemia [10] was notable in

modulating both insulin and nutrition inputs to achieve good

control with lesser insulin and thus reduce hypoglycemic risk.

Hence, either higher targets [23] and/or adding nutritional intake

into consideration in providing glycemic control [24] must be

considered for at least some diagnostic groups (e.g Cardiac

patients) and days of ICU stay (day 1) based on these results.

Table 3. Significance of the effect of diagnosis group with
Tukey-HSD correction for multiple comparisons.

Comparison One-sided penalty
(Transformed) Quadratic
penalty

Estimate p Estimate p

OpC - NOpC 20.3285 0.4188 0.0606 0.9992

NOpG - NOpC 20.7724 0.0172 20.5451 0.1505

OpG - NOpC 20.2984 0.5130 20.1889 0.8637

NOpO - NOpC 20.4096 0.0835 20.2317 0.6190

OpO - NOpC 20.5104 0.1438 20.3434 0.5038

NOpG - OpC 20.4440 0.3607 20.6057 0.0444

OpG - OpC 0.0300 1.0000 20.2495 0.4946

NOpO - OpC 20.0811 0.9890 20.2923 0.1525

OpO - OpC 20.1819 0.9335 20.4040 0.2077

OpG - NOpG 0.4740 0.2765 0.3563 0.5179

NOpO - NOpG 0.3628 0.5024 0.3135 0.5799

OpO - NOpG 0.2621 0.9034 0.2017 0.9539

NOpO - OpG 20.1112 0.9503 20.0428 0.9992

OpO - OpG 20.2120 0.8732 20.1545 0.9518

OpO - NOpO 20.1008 0.9919 20.1117 0.9817

Estimates of differences and the p-values for the test of their significance (using
Tukey-HSD post hoc testing for the multiple comparisons situation) for the
pairwise comparison of diagnostic categories.
doi:10.1371/journal.pone.0057119.t003

Table 2. Fixed effect coefficients of the fitted models for the
one-sided and the quadratic penalty.

Variable
One-sided
penalty

(Transformed)
Quadratic penalty

Non-operative - Cardiac 21.5807 20.5033

Operative - Cardiac 21.9092 20.4427

Non-operative - Gastric 22.3532 21.048

Operative - Gastric 21.8791 20.6922

Non-operative - All other 21.9903 20.7350

Operative - All other 22.0911 20.8467

Time (per minute) 20.00008571 20.0001257

Time (per day) 20.1234224 20.1810

pv0:0001 pv0:0001

Summary of the estimated fixed effect coefficients of the LME model for (logit-
transformed) quadratic penalty and the GLME model for the one-sided
threshold penalty, and the p-value for the test of significance for Time. The
coefficient of Time is given both per minute and per day (24:60~1440 times
the former).
doi:10.1371/journal.pone.0057119.t002

Figure 4. Distribution of per-patient variability scores according to diagnosis and day of stay. Violin plots of per-patient overall
variability scores segregated according to day and diagnosis group. Upper row shows one-sided threshold penalty metric, while lower row shows the
quadratic penalty metric. Thick vertical lines indicate the interquartile range, the crossing horizontal line is at the median. Dots indicate the mean.
doi:10.1371/journal.pone.0057119.g004
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Conclusions

Inter-patient variability in insulin sensitivity peaks on day 1

across diagnostic groups and metrics. Operative - All other

patients are more predictable after day 4 than an all patients and

days of stay model accounted for, shown by conservative coverage.

The distribution of overall intra-patient variability assessed per-

patient and the mixed-effects model shows there are distinctive

differences between diagnosis groups, irrespective of the time spent

in the ICU. In particular, the Non-operative - Gastric group

exhibits the smallest variability, while Cardiac groups are amongst

the most variable. Clinically, these results show decreasing risk of

hypoglycemia as length of stay increases, as well as some reduction

in glycemic variability when all else is equal. The overall results

can be used to guide the design and implementation of glycemic

management specific to diagnosis group and ICU day of stay to

improve control and reduce risk.
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