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Ovarian serous cystadenocarcinoma is a commonmalignant tumor of female genital organs. Treatment is generally less effective as
patients are usually diagnosed in the late stage.Therefore, a well-designed prognostic marker provides valuable data for optimizing
therapy. In this study, we analyzed 303 samples of ovarian serous cystadenocarcinoma and the corresponding RNA-seq data. We
observed the correlation between gene expression and patients’ survival and eventually established a risk assessment model of five
factors using Cox proportional hazards regression analysis. We found that the survival time in high-risk patients was significantly
shorter than in low-risk patients in both training and testing sets after Kaplan-Meier analysis. The AUROC value was 0.67 when
predicting the survival time in testing set, which indicates a relatively high specificity and sensitivity.The results suggest diagnostic
and therapeutic applications of our five-gene model for ovarian serous cystadenocarcinoma.

1. Introduction

Ovarian serous cystadenocarcinoma is a common female
genital cancer that causes more deaths than any other cancer
of the female reproductive system. According to Global Can-
cer Statistics, approximately 230,000 women are diagnosed
with ovarian cancer every year, and an estimated 150,000
women die of this disease annually [1]. Ovarian serous
cystadenocarcinoma, a type of epithelial ovarian cancer,
accounts for about 90% of all ovarian cancers [2]. Studies
suggest that the risk factors for the disease include nulliparity,
early menarche, late menopause, and family history [3]. Since
the disease is often asymptomatic, themajority of patients are
diagnosed at an advanced stage, with tumor invasion. Studies
showed that the 5-year survival of stage I patients is greater
than 90%, while that of patients in stages III to IV is less than
20% [4, 5]. The recent increase in the incidence of ovarian
cancer has attracted the interest and attention of researchers
worldwide.

With the development of sequencing technology, the
research focus has been on the study of signature analysis for
prognostic monitoring of ovarian cancer [6–12]. Microarray
studies require precise design of probes despite the currently

available and well-studied biomarkers for ovarian cancers.
Other studies using miRNAs as biomarkers also suggest the
limited value for clinical application, and miRNA therapy
is still not clinically feasible. Compared with the foregoing
methods, gene expression markers not only possess higher
practical value, but also yield higher accuracy.

Here, we analyzed 303 clinical samples of ovarian serous
cystadenocarcinoma and the corresponding RNA-seq data.
We determined the relationship between gene expression
data and survival time, in an effort to develop effective and
accurate biomarkers for outcome prediction and personal-
ized treatment.

2. Materials and Methods

2.1. Patient Samples and Gene Expression Data. We collected
data from a total of 587 samples of serous cystadeno-
carcinoma (April 2016) from TCGA (http://cancergenome
.nih.gov/) and finally used 303 samples (Table S1, at
Supplementary Material available online at http://dx.doi.org/
10.1155/2016/6945304) in this study after excluding 284 sam-
ples with unknown survival time or insufficient gene expres-
sion data. The 303 samples were assigned into 13 batches
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and randomly allocated to training and testing sets. The
prognostic marker model was established with a training
set containing 8 batches (batches 9, 11–15, and 17-18) with
168 samples and validated using a testing set, comprising 5
batches (batches 19–22, 24, and 409) with 135 samples.

2.2. Statistical Analysis. Initially, we screened the samples
by excluding those with unclear survival time or status. We
retained only those genes expressed in more than half of the
samples for further analysis. The expression level was then
determined by logarithmic transformation and univariate
Cox regression analysis. The significance of genes with 𝑝
value less than 0.001 was evaluated using random forests.
We selected 100 genes of the largest importance to perform
multivariate Cox’s analysis. Considering the practicality of
clinical testing, we established 75,287,520 models with vari-
ables ranging from one to five genes using Cox proportional
hazards regression analysis [35]. Further, all the 75,287,520
models were subjected to Receiver Operating Characteristic
(ROC) analysis and the model with the largest area was
selected.

Kaplan-Meier analysis was then conducted in both
training and testing groups to validate the efficiency of
the model. In order to test the independence and repro-
ducibility of our model, we divided the samples into
different datasets according to their ages and disease
stages. We then performed Kaplan-Meier analyses and ROC
analyses in each condition with IBM SPSS Statistics 22
(http://www.ibm.com/analytics/us/en/technology/spss/).

3. Results

3.1. Sample Characteristics. According to the screening cri-
teria described, we randomly allocated the 303 samples with
explicit survival time, survival state, and expression data
into training and testing sets for modeling and validation,
respectively. The median age of diagnosis in the selected
patients was 58 years, the median survival time was 949 days,
and the median survival of late-stage patients was 1069 days.
A single patient was found in clinical stage I and 21, 241, and
38 patients were in stages II, III, and IV, respectively. The
clinical stages of two patients were unknown (Table 1).

3.2. Obtain Genes Associated with Survival Time. Subse-
quently, we constructed 75,287,520models comprising factors
from 1 to 5 based on the 100 genes with the highest signifi-
cance in the random forest method.The survival risk score of
each patient was calculated according to the corresponding
risk formula in each model, and the ROC curves were
drawn. We extracted a batch of 5 genes (GPR128, AGXT,
CYTH3, C10orf76, and TSPAN9) (Table 2) with the largest
AUROC using the following formula: risk score = (0.0796 ×
expression point of GPR128) + (0.3451 × expression point of
AGXT) + (0.3402 × expression point of CYTH3) + (0.6198 ×
expression point of C10orf76) + (0.2534 × expression point
of TSPAN9). All of these genes were reported previously
(Table 3). The CYTH3 gene was expressed in the liver alone,
playing a key role in regulating protein sorting andmembrane

Table 1: Assignment of patient demographic and clinical character-
istics.

Characteristic Patients
Training set Testing set Total

Age at diagnosis (years)
Median 57 59 58
Range 34–87 30–87 30–87

Vital status
Living 58 62 120
Dead 110 73 183

Follow-up (days)
Median 1018 883 949
Median (dead) 1155 919 1069

Clinical stage
Stage I 0 1 1
Stage II 8 13 21
Stage III 142 99 241
Stage IV 18 20 38
Unknown 0 2 2

trafficking [21]. Its use as a prognostic molecular marker in
liver disease is also discussed. TSPAN9 is probably directly
related to the proliferation of cancer cells. Other genes not
directly correlated with the development of cancer may affect
metabolism via signal transduction and indirectly affect the
development of cancer.

3.3. Test the Predictive Ability of the Constructed Model Using
Testing Set. After constructing the five-variable model with
training set, we performed a Kaplan-Meier survival analysis
of both training and testing sets to determine its prognostic
value. In the training set, by calculating each patient’s risk
score using the model, we divided the patients into two
groups, designated as high-risk (𝑛 = 84) and low-risk
groups (𝑛 = 84), based on their risk scores. The average
survival time of patients in the low-risk group was 1,443
days, longer than in the high-risk group, which was 892
days. Kaplan-Meier analysis indicated a significant difference
(𝑝 < 0.001) between the high-risk and low-risk groups
in survival time [Figure 1(a)]. The prognosis of high-risk
group appeared worse than that of the low-risk group,
indicating that our model successfully distinguished the risk
pattern. The higher risk tended to result in shorter survival
time. Similar results of Kaplan-Meier analysis were found
in the test group [Figure 1(b)], suggesting that our model
was universally applicable in determining the risk level and
predicting the survival of patients.

In order to further confirm the prognostic value of our
model in predicting the survival time, we performed ROC
analysis of the test group, setting 3 years as the cut-off, and
calculated the risk score as the variable. The AUROC value
of 0.670 (Figure 2) indicated a relatively high specificity and
sensitivity.
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Table 2: Five genes strongly correlated with patients’ survival time in training set.

Gene name 𝑝 value Hazard ratio Coefficient Variable importance Relative importance
GPR128|84873 0.00092 1.0828 0.0796 0.0009 0.2478
AGXT|189 0.00038 1.4121 0.345 0.0005 0.1442
CYTH3|9265 0.00048 1.4052 0.3402 0.0005 0.1432
C10orf76|79591 0.00037 1.8585 0.6198 0.0009 0.2446
TSPAN9|10867 0.0008 1.2884 0.2534 0.0002 0.0518

Table 3: Five-gene functions in previous research.

Chromosomal Start site End site Function

GPR128 chr3 100328433 100414323
Playing important role in the transduction of intercellular signals across the plasma
membrane; related to weight gain and intestinal contraction frequency in mouse
[13–16].

AGXT chr2 240868479 240880502
Expressing proteins involved in glyoxylate detoxification in the peroxisomes; its
mutation causes primary hyperoxaluria type I, a severe inborn error of metabolism
[17–20].

CYTH3 chr7 6161776 6272644
Mediating the regulation of protein sorting and membrane trafficking; related to
HCC (hepatocellular carcinoma) tissues and could serve as prognostic factor
[21–24].

C10orf76 chr10 101845599 102056193 Currently unknown; a recent study suggested the loss of C10orf76 resulted in the
upregulation of several genes [25–29].

TSPAN9 chr12 3077355 3286564
Mediating signal transduction events that play a role in the regulation of cell
development, activation, growth, and motility; associated with adhesion receptors
of the integrin family and regulates integrin-dependent cell migration [30–34].
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Figure 1: Kaplan-Meier curves with two-sided log rank test show correlation between five-gene model and survival time in both training set
and testing set. (a) In training set, by calculating each patient’s risk score out of the model, we divided the patients into two groups, named as
high-risk group (𝑛 = 84) and low-risk group (𝑛 = 84), based on their risk scores. Kaplan-Meier analysis was then performed and significant
difference (𝑝 < 0.001) was found between high-risk and low-risk group in the level of survival time. (b) Similar process and results are showed
in testing set.
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Table 4: Cox proportional hazard regression analyses in training and testing sets.

Variables Univariable model Multivariable model
HR (95% CI) 𝑝 value HR (95% CI) 𝑝 value

Training group
Five-gene model 2.672 (1.801–3.965) <0.001 2.536 (1.832–3.509) <0.001
Age 1.683 (1.153–5.457) 0.007 1.013 (0.994–1.031) 0.173

Testing group
Five-gene model 2.248 (1.397–3.620) 0.001 2.224 (1.379–3.586) 0.001
Age 1.224 (0.772–1.941) 0.389 1.153 (0.726–1.830) 0.546

Training group
Five-gene model 2.672 (1.801–3.965) <0.001 2.725 (1.821–4.078) <0.001
Stage 1.080 (0.670–1.741) 0.752 0.883 (0.541–1.442) 0.62

Testing group
Five-gene model 2.248 (1.397–3.620) 0.001 2.385 (1.387–3.562) <0.001
Stage 1.032 (0.580–1.461) 0.453 0.685 (0.432–1.238) 0.428
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Figure 2: Receiver Operating Characteristic (ROC) analysis of the
selected five-gene model. AUROC value is 0.670 (𝑝 < 0.001).

3.4. The Independence and Reproducibility of the Five-Gene
Model. The survival of patients is associated with their age,
clinical stage, and other factors. To determine the inde-
pendence of our model, we conducted a multivariate Cox
regression analysis using age and disease stages. We found
that the five-gene model was independent of age and disease
stage (Table 4).

Further Kaplan-Meier analysis and ROC analysis were
then conducted (Table 5). We merged the training and
testing sets into an overall dataset, which was divided into
two separate groups by age 57. The Kaplan-Meier analysis

Table 5: Kaplan-Meier analysis and ROC analysis were conducted
to validate the reproducibility of five-gene model.

Prognostic
factor Group Kaplan-Meier

𝑝 value AUROCs

Age ≤57 (146) <0.001 0.653
>57 (157) 0.001 0.683

Stage
I, II (22) 0.018 0.625
III (241) <0.001 0.664
IV (38) <0.1 0.778

revealed that, in both groups, patients in low-risk group
survived longer than in the high-risk group (𝑝 ≤ 0.001).
Similar results were obtained with the groups of patients at
different disease stages (stages I and II were merged because
of limited specimen) except stage IV (Figure S1), which may
be attributed to the relatively small sample size. However,
the AUROC of this group was rather high. These analyses
established that our model was independent of other risk
factors and successfully distinguished low risk from high risk
in each dataset.

4. Discussion

Ovarian serous cystadenocarcinoma is a common female
genital cancer. Due to the absence of early-stage clinical
symptoms and effective diagnosis, most patients were diag-
nosed with advanced disease. Further, due to the lack of
effective treatment, the management of epithelial ovarian
cancer is passive. Developing reliable prognostic molecular
markers provides meaningful guidance for a reasonable and
effective management program.

In this study, we analyzed 303 clinical samples of ovarian
serous cystadenocarcinoma and the corresponding RNA-seq
data, observed the correlation between gene expression and
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survival time, and eventually established a risk assessment
model based on five factors. Two of these genes (TSPAN9
[30–34], CYTH3 [21–24]) were directly correlated with can-
cer, with CYTH3 identified as a biomarker in liver cancer.

By calculating each patient’s risk score, we found that each
set showed significant differences in survival time between
low-risk and high-risk groups, indicating that the model
accurately predicted the mortality risk. The AUROC value
in testing group is 0.670, representing a relatively high
specificity and sensitivity.

In conclusion, our gene expression biomarkers can be
used for accurate patient risk assessment, demonstrating
practical value in predicting clinical outcomes. Our results
are based on the samples derived from 303 individuals.
Expanding sample size, especially including early-stage can-
cer patients, will further improve the prognostic value of the
model.
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