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Abstract

The complexities and heterogeneity of the ageing process have slowed the development of consensus on appropriate bio-
markers of healthy ageing. The Medical Research Council–Arthritis Research UK Centre for Integrated research into
Musculoskeletal Ageing (CIMA) is a collaboration between researchers and clinicians at the Universities of Liverpool,
Sheffield and Newcastle. One of CIMA’s objectives is to ‘Identify and share optimal techniques and approaches to monitor
age-related changes in all musculoskeletal tissues, and to provide an integrated assessment of musculoskeletal function’—in
other words to develop a toolkit for assessing musculoskeletal ageing. This toolkit is envisaged as an instrument that can be
used to characterise and quantify musculoskeletal function during ‘normal’ ageing, lend itself to use in large-scale, inter-
nationally important cohorts, and provide a set of biomarker outcome measures for epidemiological and intervention studies
designed to enhance healthy musculoskeletal ageing. Such potential biomarkers include: biochemical measurements in bio-
fluids or tissue samples, in vivo measurements of body composition, imaging of structural and physical properties, and
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functional tests. This review assesses candidate biomarkers of musculoskeletal ageing under these four headings, details their
biological bases, strengths and limitations, and makes practical recommendations for their use. In addition, we identify gaps
in the evidence base and priorities for further research on biomarkers of musculoskeletal ageing.
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Introduction

Biomarkers of ageing

Ageing is associated with the accumulation of damage to all
the macromolecules within and outside cells leading to pro-
gressively more cellular and tissue defects and resulting in
age-related frailty, disability and disease [1]. There is sub-
stantial inter-individual variability in the ageing process, so
that biological age can differ considerably from chrono-
logical age [2]. However, the complexities and heterogene-
ities of the ageing process have made it difficult to define
and to measure ageing, and this has slowed the develop-
ment of consensus on appropriate biomarkers.

Despite the limited consensus on biomarkers of ageing,
Butler and colleagues have usefully defined three criteria for
such markers [3]: the biomarker should predict the outcome
of a wide range of age-sensitive tests in multiple physiological
and behavioural domains, in an age-coherent way, and do so
better than chronological age; it should predict remaining lon-
gevity at an age at which 90% of the population is still alive,
and do so for most of the specific illnesses that afflict the
species under study; and its measurement should not alter life
expectancy or the outcome of subsequent age-sensitive tests.

Building on the concept of the healthy ageing phenotype
(HAP) introduced by Franco et al. [4], Lara et al. proposed a
pragmatic set of measures of the HAP designed for use in
community-based intervention studies aiming to promote
healthy ageing [5]. In a parallel exercise, a working group
from five UK universities, funded by the Medical Research
Council (MRC), developed a panel of biomarkers of healthy
ageing which may have utility in epidemiological studies of
human ageing, in health surveys of older people, and as
outcomes in intervention studies that aim to promote
healthy ageing [6]. Based on comprehensive reviews of the
literature, the working group identified a series of candidate
markers across five domains in which function declines
with ageing, viz. cognition, physical capability, physiological
function, and endocrine and immune function [6]. The pre-
dictive value of various putative markers of ageing remains
uncertain. However, trajectories of healthy ageing, obtained
from estimates of the HAP measured three times over
nearly 10 years in participants in the English Longitudinal
Study of Ageing, showed the expected secular decline and
demonstrated that these trajectories were socioeconomically
patterned [7]. In addition, lifestyle factors known to influ-
ence ageing, including smoking and physical activity, were
associated with trajectories of healthy ageing (Tampubolon,
2016). The importance of using panels of biomarkers when

assessing ageing was illustrated using blood-based biomar-
kers in participants in the Long Life Family Study, where
age-related changes in individual biomarkers did not neces-
sarily correlate with disease risk or functional decline [8].

Although the need has been identified [9], to date there
appears to have been no attempt to develop a specific set
of biomarkers of ageing of the musculoskeletal system.
However, in the USA the recent development of the NIH
toolbox for assessment of neurological and behavioural
function [10] provides several relevant measures. These
include five practical, low-cost tests of motor function
across five sub-domains: dexterity—9-hole pegboard;
strength—hand grip strength; balance—standing balance;
locomotion—4-metre walking test, and endurance—2-min
walking test. In the Netherlands, Englefreit et al. proposed a
panel of biochemical markers of ageing for use in longitu-
dinal studies, with the criterion that: ‘… ideally, the sought
biomarkers should be specific for changes that occur in a
particular organ in virtually all humans as they age’ [11]. In
respect of musculoskeletal ageing, they identified eight
potential biomarkers: three for collagen—N- and C-
telopeptide cross-links of type I collagen, procollagen type I
N-terminal propeptide and C-terminal propeptide; three for
bone–bone-specific alkaline phosphatase, osteoclast-derived
tartrate-resistant acid phosphatase 5b, and osteocalcin and
one each for cartilage and muscle—cartilage oligomeric
matrix protein (COMP) and irisin, respectively [11].

The heterogeneity in types of biomarkers proposed by
each of these groups reflects the different objectives of the
proposers and the complexity of the ageing process, and
emphasises that no single biomarker of ageing is likely to be
appropriate for all tissues or in all circumstances.

Towards a toolkit for assessing musculoskeletal ageing

The MRC—Arthritis Research UK Centre for Integrated
research into Musculoskeletal Ageing (CIMA)1 is a collabor-
ation between researchers and clinicians at the Universities of
Liverpool, Sheffield and Newcastle. One of CIMA’s objectives
is to ‘identify and share optimal techniques and approaches to
monitor age-related changes in all musculoskeletal tissues, and
to provide an integrated assessment of musculoskeletal func-
tion’—in other words, to develop a toolkit for assessing mus-
culoskeletal ageing. The current report outlines the result of
that activity and extends the outcomes of a dedicated work-
shop, held in Manchester, the UK on 25 May 2016, with a
panel of experts from the UK and European institutions with

1 http://www.cimauk.org/
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well-established track records of research into musculoskeletal
ageing. The ambitions for the toolkit are that it should: char-
acterise and quantify musculoskeletal function over multiple
decades, i.e. during ‘normal’ ageing; facilitate epidemiological
assessment of musculoskeletal decline, provide a set of out-
come measures for intervention studies (using, e.g. drugs or
lifestyle) designed to enhance healthy musculoskeletal ageing
and become the protocol of choice, adopted by multiple
large-scale, internationally important cohorts.

Workshop participants were tasked with defining a
framework for the selection of biomarkers of ageing that
are relevant to the multiple tissues of the musculoskeletal
system, are distinct from markers of disease, change with
age and are sensitive to intervention.

Recognising that research on biomarkers relevant to spe-
cific musculoskeletal tissues and biomarkers of different
types is not all at the same stage of development and valid-
ation, workshop participants were asked to distinguish
between immediately useful biomarkers and those of the
next generation when making recommendations for the
proposed toolkit. Following the workshop, the draft recom-
mendations and supporting text were circulated to the parti-
cipants and to CIMA colleagues for comment and
additions. This report is the result of that process.

Aims and structure of this report

This report considers candidate biomarkers of musculoskel-
etal ageing under four headings:

• Biochemical biomarkers
• Body - composition biomarkers
• Imaging assessments
• Functional assessments, e.g. of muscle strength.

In each case, we begin with a summary of recommenda-
tions for the toolkit and go on to provide further detail on
the recommended approaches, their biological basis, and
strengths and limitations. In the final discussion and conclu-
sions section, we summarise the overall recommendations
and identify key priorities for research on biomarkers of
musculoskeletal ageing.

Biochemical biomarkers of musculoskeletal
ageing

Biochemical biomarkers are markers measurable in situ or
ex vivo in biofluid samples and tissue biopsies (e.g. precur-
sor, product, enzyme, metabolite or regulatory molecule
such as non-coding RNA) that are produced in, or released
from, a tissue and that are reasonably specific for a charac-
teristic process or cell in that tissue.

Bone biochemical biomarkers

Bone biochemical biomarkers—recommendations for the toolkit

Two well-established serum markers of bone turnover are
recommended for the toolkit:

• N-terminal propeptide of type I procollagen (PINP),
which has little diurnal rhythm and shows a large increase
during fracture healing.

• C-terminal cross-linked telopeptide of collagen type I
(CTX, also known as CTX-I), which shows a marked
diurnal rhythm with highest concentrations in the early
morning and a nadir in the afternoon.

Five further markers of bone turnover are potential
future candidates: osteocalcin; bone alkaline phosphatase;
N-terminal cross-linked telopeptide of collagen type I
(NTX); carboxy-terminal cross-linked telopeptide of type I
collagen generated by matrix metalloproteinases (ICTP) and
tartrate-resistant acid phosphatase isoform 5b (TRACP5b,
also known as TRACP5b).

Bone turnover markers

There are no biochemical markers of bone mass or density
per se. Bone turnover markers comprise markers of bone
formation: the osteoblast matrix protein, osteocalcin; the C-
and N-terminal pro-peptides of type I procollagen (PICP,
PINP), and the enzyme, bone alkaline phosphatase; and
markers of bone resorption: the collagen degradation pro-
ducts, pyridinium cross-links of collagen, deoxypyridinoline
(DPD), CTX-I, NTX-I, and ICTP, and the enzyme
TRACP5b.

In older women, high levels of these markers are asso-
ciated with greater fracture risk, faster rates of bone loss,
and a greater response to anti-resorptive and anabolic treat-
ment, while in both men and women they decrease with
anti-resorptive therapy and increase with anabolic therapy.
They may also be used in assessing growth, adaptation of
the maternal skeleton to pregnancy, and the effects of drugs
and of metabolic bone diseases including osteoporosis,
Paget’s disease and osteomalacia.

The TRIO study, a 2-year open-label parallel rando-
mised control trial of oral ibandronate, alendronate and
risedronate in 172 post-menopausal women, designed to
compare the drug effects on bone turnover and bone min-
eral density, highlighted CTX and PINP as the most
responsive markers of bone resorption and formation,
respectively [12]. Least significant change estimates identi-
fied similar results across three further studies [13–15],
while signal-to-noise ratio determination in the TRIO study
confirmed CTX and PINP as optimal reference markers. A
position paper of the International Osteoporosis Foundation
and International Federation of Clinical Chemistry and
Laboratory Medicine has also endorsed serum CTX and
PINP as reference markers [16].

It is worth noting that individual bone turnover markers
may behave differently in particular circumstances. For
example, inhibition of the bone remodelling protease, cathe-
psin K, reduced urinary CTX throughout 24 months of
treatment, while the levels of other bone resorption markers
(ICTP, TRACP5b) remained similar to those with placebo
or were increased [17].

Developing a toolkit for the assessment and monitoring of musculoskeletal ageing
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The different behaviours of these markers reflect their
production within the cycle of bone formation and resorp-
tion. Of the markers of bone resorption, ICTP is generated
by matrix metalloproteinase activity, TRACP5b reflects
osteoclast number, and CTX results from cathepsin K
activity. Of the markers of bone formation, PINP is cleared
by liver and reflects synthesis of type I collagen, osteocalcin
is cleared by kidney and reflects late osteoblast activity, and
bone alkaline phosphatase is cleared by liver and reflects
early osteoblast activity.

All these bone turnover markers have been externally
validated by reference to the gold standard approaches of
bone histomorphometry and radiotracer kinetics [18, 19].

Other potential bone biochemical markers—local and systemic
regulators

In the future, consideration will be given to adding to the
toolkit assays for regulators of bone turnover, especially those
that can be measured in the circulation. These include scleros-
tin and Dickkopf-1, which act by blocking the canonical Wnt
signalling pathway [20, 21], and periostin, a protein secreted
by periosteal osteoblasts and osteocytes that may also work
through the Wnt signalling pathway and play a role in perios-
teal apposition [22]. Regulators of bone resorption, e.g.
RANKL: receptor activator of nuclear factor κB ligand [23],
and osteoprotegerin, could be of use. However, results with
such local regulators have so far been poor, and much of the
basic physiology of the circulating forms is unknown.

Cartilage biochemical biomarkers

Cartilage biochemical markers—no current recommendations
for the toolkit

Urinary type II collagen C-telopeptide fragment (CTX-II)
and serum COMP are two potential biomarkers of cartilage
turnover for which validated commercial assays are avail-
able. Currently, these are the best-established markers of
increased risk of incidence and progression of knee and hip
osteoarthritis (OA) [24, 25]; however, they have not been
shown to be reliable markers of collagen ageing per se, inde-
pendent of OA, and thus cannot be recommended for the
toolkit.

The search for reliable cartilage biomarkers

The great majority of work on cartilage biomarkers has
focused on the detection and monitoring of OA, spurred
on by several global initiatives [26, 27], and facilitated by a
growing involvement of specialist diagnostic and pharma-
ceutical companies with active clinical programmes in
disease-modifying OA drugs. As with bone, there are no
biochemical markers of cartilage properties per se, although
there are markers of cartilage turnover.

Basic radiography remains the gold standard for asses-
sing joint damage in OA. However, its poor sensitivity and
precision precludes early detection of the disease or efficient

monitoring of joint damage progression. Thus, the search
for biomarkers has focused on two key molecules of the
cartilage extracellular matrix: the proteoglycan, aggrecan,
and the main matrix protein, type II collagen, together with
some selected non-collagenous, non-proteoglycan, proteins,
such as COMP. The metabolism of these proteins can be
followed non-invasively via the assessment in biological
samples of a variety of pro-peptides (for collagen synthesis),
degradation products and antigenic epitopes (for collagen
and aggrecan degradation) [28, 29]. CTX-II is the best charac-
terised type II collagen fragment used as a marker of cartilage
degradation, while several aggrecan-specific neoepitopes have
also been studied.

Large epidemiological studies have confirmed that urin-
ary CTX-II and serum COMP are useful for assessing both
the progression and incidence of OA in the knee and hip
[25, 27, 30–32]. However, there is room for improvement,
for example in the standardisation of assays. Moreover,
there are doubts about the specificity of these markers.
COMP, for example, is also synthesised by synovial and
tendon cells, while CTX-II has been shown to increase in
parallel with bone biomarkers, and there have been sugges-
tions that it reflects mainly an increase in calcified cartilage
tissue [33, 34]. This lack of specificity is highlighted by
depression of CTX-II after osteoporosis treatments and an
association with disc degeneration [35]. As noted earlier for
biomarkers of ageing per se [8], ‘multiplexing’ of biochemical
marker combinations may be more useful and appropriate
than individual biomarkers [33, 36]. For example, Kraus
et al. have identified several systemic candidate biomarkers
that are potential predictors of pain and structural worsen-
ing of OA [37].

Distinguishing between the effects of OA and of ageing
on cartilage biomarker levels is difficult. There is some evi-
dence of increased collagen turnover with age independent
of OA [38, 39]. However, few human studies have investi-
gated changes in collagen markers in the general population
without OA, and these have not usually involved careful
examination of different joints by X-ray, so it is not known
whether apparent increases in biomarkers are an age effect,
or simply indicative of a higher prevalence of OA with age.

Age-related collagen molecules such as pentosidine or
the D-isomer of aspartic acid are potential markers of aged
cartilage matrix, though they are not specific for cartilage
tissue when measured in biological fluid [40]. If cartilage
specific age-related molecules could be isolated they may be
possible future biomarkers of ageing. Recent studies using
matrix-assisted laser desorption ionisation mass spectrom-
etry imaging (MALDI-MSI) have identified a tryptic peptide
of COMP which was more abundant in non-OA cartilage
from old versus young horses. This peptide represents a
possible marker of age-related, but not disease-related,
changes in cartilage tissue [41]. Whether such peptides
could be measured in serum or urine and used as reliable
markers of age-related changes in cartilage in humans
remains to be determined.

G. J. Kemp et al.
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Muscle biochemical biomarkers

Muscle biochemical markers—recommendations for the toolkit

• Serum creatinine may be a reliable biomarker of skeletal
muscle mass (with appropriate dietary control).

Potential next-generation muscle biochemical biomar-
kers include: 3-methylhistidine, type VI collagen, P3NP (the
N-terminal peptide of procollagen type III), agrin and
growth differentiation factors (GDFs).

Established and emerging muscle biomarkers

The loss of muscle mass and function that are associated both
with ageing and chronic disease arises from an imbalance
between protein synthesis and protein degradation, resulting in
muscle atrophy and consequent increases in morbidity and
mortality [42]. The term ‘anabolic resistance’ describes the
reduced capacity of skeletal muscle of older people to respond
to the usual anabolic stimuli, i.e. amino acids and resistance
exercise (Cuthbertson et al., 2005; Kumar et al., 2009).
However, formal measures of the rates of these processes are
not markers of changing muscle mass (this case is analogous to
the bone turnover markers discussed above in Section 2.1).
The search continues for robust biomarkers of muscle ageing
that are practicable for diagnosis and therapy monitoring [43–
45]. These include the following potential candidate biomarkers.

Serum creatinine concentration and 24-h urinary creatin-
ine excretion appear to be reasonably reliable biomarkers of
skeletal muscle mass in humans [46]. Creatinine production
rate reflects the total body creatine pool, most of which is
intra-myocellular; thus 24-h urinary creatinine output
reflects largely muscle mass modulated by variability in
muscle creatine concentration, and potentially confounded
by variation in dietary intake of creatine in meat and meat
products. Serum creatinine concentration is proportional to
creatinine production and inversely proportional to creatin-
ine clearance (i.e. essentially, glomerular filtration rate
(GFR)); thus, it reflects muscle mass modulated by variabil-
ity in GFR (which is itself subject to ageing effects [47]). A
procedure based on D3-creatine dilution and detection of
urinary creatinine enrichment by isotope ratio mass spec-
trometry could be a useful approach to measure total body
skeletal muscle mass [48]; drawbacks are the relatively high
cost and limited availability of the necessary equipment, and
potential variability in the creatine content of muscle cells.

A recent study has demonstrated the utility of a D2O
tracer-based approach for quantifying day-to-day changes in
muscle protein synthesis which is not feasible with conven-
tional 13C tracers that may have relevance for epidemio-
logical or interventional studies [49].

3-Methylhistidine (3MH) concentration in serum and
urine is a marker of myofibrillar proteolysis because 3MH
is formed through post-translational methylation of specific
histidine residues in actin and myosin, and is released when
these proteins turn over. However, 3MH is also present in
meat and fish [50], so a period of pre-sampling meat
restriction is needed to avoid confounding [51].

Type VI collagen is a major constituent of the extracellular
matrix of skeletal muscle, and collagen fragments derived
from metalloproteinase activity, such as matrix MMP-
generated degradation fragment of collagen 6 (C6M) and type
VI collagen N-terminal globular domain epitope (IC6), are
released into the circulation. Concentrations of a number of
these peptides correlate with lean body mass [52] including
P3NP—the N-terminal peptide of procollagen type III [53].

Agrin, a protein released from motor neurons at the
neuromuscular junction (NMJ), is involved in acetylcholine
receptor clustering and NMJ formation and maintenance.
Agrin can be cleaved by neurotrypsin, a protease at the
NMJ, giving rise to two major C-terminal agrin fragments
(CAFs)—CAF110 and CAF22 [54]. These potential bio-
markers may lack tissue specificity since increased CAF
concentration is seen in patients with chronic heart failure,
and increased CAF22 concentration has been associated
with kidney failure [55]. However, recent studies have
shown that increased serum CAFs concentration can detect
skeletal muscle wasting in patients with heart failure [56]
and is associated with sarcopenia in older people with mul-
tiple morbidities living in the community [57].

Myostatin (GDF8), a negative regulator of muscle
growth and mass, is associated with muscle wasting, and
has been suggested as a putative marker for muscle atrophy.
However, its serum concentration was shown recently to
decrease with ageing [58]. In contrast, GDF11 (growth dif-
ferentiation factor 11), a transforming growth factor-beta
superfamily member similar to myostatin and binding the
same receptor, does not decline with ageing and is a risk
factor for frailty and other morbidities [58]. Serum concen-
tration of GDF15 is increased with ageing and in some
pathological conditions, including mitochondrial myop-
athies, and GDF15 may reflect mitochondrial dysfunctions
that accompany the ageing process [59, 60].

Potential novel biochemical biomarkers:
microRNAs, metabolomics and other ‘gestalt’
approaches

This report is focused on a tissue-specific approach to the
identification of biomarkers, but there are alternative
approaches, including the characterisation of non-coding
RNAs (microRNAs (miRNAs) and small nucleolar RNAs
(snoRNAs)) [61], use of metabolomics approaches [62] and
assay of products of protein oxidation, nitration and glyco-
sylation from urine or serum [63]. Of these, miRNAs are
perhaps the most promising, but all need validation in
population-based studies.

MicroRNAs—no current recommendations for the toolkit

• MiRNAs show promise as biomarkers, but further bio-
logical and clinical research is needed to improve our
understanding of the potential of these markers before
they can be recommended as candidates for the biomar-
kers of musculoskeletal ageing toolkit.

Developing a toolkit for the assessment and monitoring of musculoskeletal ageing
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MicroRNAs as biomarkers

MiRNAs are small (typically 22 nucleotides) single-
stranded, non-coding RNA species involved in post-
transcriptional regulation of gene expression. An individual
miRNA may regulate several genes and a given gene may
be regulated by multiple miRNAs [64]. Because of their
pervasive function in regulation of gene expression,
miRNA play a role in ageing and age-related disease, and
thus may have significant diagnostic and prognostic poten-
tial in researching, monitoring and preventing diseases asso-
ciated with ageing. Tissue-specific miRNA occur in brain,
skeletal muscle and heart, where they act as important regu-
lators of tissue formation and homoeostasis [65]. Since
every cell and tissue produces and releases miRNA, they
can be detected in both tissue biopsy and blood samples
using minimally invasive techniques.

MicroRNAs in musculoskeletal turnover

Research into miRNA as potential biomarkers in the mus-
culoskeletal field has investigated links with fracture risk in
patients with post-menopausal osteoporosis, diabetic oste-
opathy and idiopathic osteoporosis [66]. The abundance of
particular miRNA in serum is characteristic of post-
menopausal women with a high risk of fracture [67, 68] and
in type-2 diabetic women at high fracture risk [67], and
these biomarker candidates are currently undergoing valid-
ation in independent cohorts.

Several miRNA show promise as biomarkers of ageing
in different cells types [69]. For example, miRNA-31-5p
has been linked with the ageing phenotype of endothelial
cells [70] and may be relevant to ageing bone via cross-talk
between the endothelium and osteogenic stem cells [69]. A
significant age-related increase in miR-188 was observed in
bone-marrow mesenchymal stem cells (BMSCs) of mice,
and over-expression of miR-188 resulted in a switch in
these cells from osteogenesis to adipogenesis, bone loss,
and the accumulation of bone-marrow fat [71]. The role of
small non-coding RNA, including miRNA, as potential bio-
markers of multiple aspects of health, including musculo-
skeletal function during ageing, is a very active research
area, and there have been a number of independent obser-
vations of specific miRNA associated with age-related con-
ditions [72]. For example, Balaskas and colleagues have
reported identification of recognised and novel miRNAs,
including miR-126, which are changed during cartilage age-
ing and in OA [73]. However, population cohort studies
with a rigorously defined phenotype will be needed to dis-
entangle the effects of ageing on miRNA from those of
age-related disease.

Body composition changes with ageing

Body composition changes during development and ageing,
and such changes are linked with changes in function and
in the risk of age-related musculoskeletal disease.

Body-composition assessments

Body-composition measurements—recommendations for the
toolkit

• Dual-energy X-ray absorptiometry (DXA) remains the
most widely recommended method for diagnosing sarco-
penia (age-associated loss of muscle mass) as a stand-
alone measure or as part of the screening procedure for
sarcopenia recommended by the European Working
Group on Sarcopenia in Older People (EWGSOP) [74].

Body-composition assessments as biomarkers

Body composition changes with ageing as muscle and bone
atrophy and, in many cases, there are proportional increases
in body fat. This has led to the use of the term sarcopenic
obesity. Such compositional changes are linked with changes
in function and in the risk of age-related musculoskeletal dis-
ease. To date, DXA is the most widely recommended
approach for diagnosing sarcopenia based on skeletal muscle
mass index (SMI), obtained by dividing appendicular skeletal
muscle mass (ASM), evaluated by DXA, by body height
squared (SMI = ASM/ht2) [75]. According to this definition,
individuals presenting an ASM/ht2 between 1 and 2 standard
deviations (SD) below the gender-specific mean value of
young controls are categorised as having class I sarcopenia,
while individuals with ASM/ht2 >2 SD below this mean have
class II sarcopenia (Janssen, Heymsfield et al. 2002).

Unfortunately, DXA, like magnetic resonance imaging
(MRI) and computed tomography (CT), is expensive and
time-consuming, and the required equipment is not port-
able, thus limiting its use in screening studies. Multi-
compartment models that, in addition, involve measures of
body volume and total body water, determined by the dilu-
tion of labelled water, may be more accurate, but are even
more time-consuming. Fat mass and fat-free mass can be
estimated by air displacement plethysmography, assuming a
constant, and known, density of these body compartments,
though significant inter-individual variability exists [76].

Using data from the US National Health and Nutrition
Examination Surveys (NHANES), Goodman et al (2013)
have developed a practical screening tool to predict low mus-
cle mass, which demonstrates a strong positive association
between BMI and SMI [77]. This model could be helpful for
use in primary care settings and in treating older populations
at risk of sarcopenia. The challenge with this approach is that
the ratio of lean to fat tissue declines during ageing (even if
body mass and BMI remain unchanged), thus BMI per se may
be a rather insensitive measure. To address this issue, Prado
and colleagues developed sex- and BMI-specific reference
curves based on whole-body DXA data, obtained from the
1999-2004 NHANES, to harmonise the classification of
body-composition phenotype, which may be particularly use-
ful in the identification of sarcopenic obesity [78].

Bioelectrical impedance analysis (BIA) measures tissue
conductivity, which is directly proportional to the amount
of electrolyte-rich fluid. Skeletal muscle, the largest tissue in
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the human body, is electrolyte-rich, and therefore a domin-
ant conductor. BIA has been used to estimate SMI,
obtained by dividing appendicular skeletal muscle mass
(ASM), evaluated by BIA, by body height squared (ASM/
ht2), as for the DXA-based approach [75], and type I and
type II sarcopenia are defined using the same criteria as for
DXA, described above. The assessment of ASM by BIA is
inexpensive, easy, and readily reproducible, and is appropri-
ate for both ambulatory and bedridden patients [74].

The BIA skeletal muscle index is strongly correlated to
MRI- and DXA-measured skeletal muscle mass [79, 80].
However, specific equations must be used to estimate mus-
cle mass in different populations [81]. Muscle strength is
also highly correlated with BIA-measured skeletal muscle
mass [82]. However, muscle mass may be overestimated by
single-frequency BIA in older people, due to the expansion
of extracellular water relative to muscle mass with ageing,
although this error is reduced by using multi-frequency BIA
[83]. There is evidence that BIA can overestimate the
prevalence of sarcopenia [84]. In summary, whilst multi-
frequency bioelectrical impedance analysis (BIA) shows
promise as a biomarker, this will need further validation.

Imaging-based assessments of
musculoskeletal ageing

In vivo imaging techniques including ultrasound, DXA and
MRI have been used to measure bone and muscle volume
(as a surrogate for mass) and the size of musculoskeletal
structures (such as cartilage thickness), and may offer the
ability to assess musculoskeletal tissue structure (e.g. with
muscle pennation). X-ray techniques such as plain radiog-
raphy and computed tomography (CT) carry the risk of
ionising radiation exposure. DXA involves less ionising
radiation exposure, and MRI avoids this risk, though mag-
net contraindications and the cost and size of equipment
limit its application. Ultrasound instruments are highly port-
able and safe, provide accurate and reliable data, and can be
used effectively by non-specialist, but well-trained, staff.

A fundamental problem of identifying markers of musculo-
skeletal ageing is that it is difficult to distinguish between the
effects of ageing per se and of disuse. Both factors lead to mus-
cle atrophy, and physical inactivity has an additive effect on the
risk of sarcopenia. Physical inactivity is prevalent amongst old-
er people and, e.g. physically active septuagenarians are about
20% less active than their vicenarian counterparts [85].
Moreover, the additive effect of physical inactivity is exacer-
bated by disease associated with organ failure, and the greater
the number of organ failures the greater the atrophy [86].

Imaging-based assessments of muscle ageing

Muscle imaging biomarkers—no current recommendations for
the toolkit

• Ultrasound measurement of muscle architecture may
enable early detection of changes in muscle mass with

ageing, making it a potentially useful next-generation
biomarker.

• Extended field of view (EFOV) ultrasound assessment of
muscle quality has potential utility in the diagnosis of sar-
copenia, and may hold promise as a future biomarker of
muscle ageing.

Imaging assessments of muscle changes

Whole muscle mass, muscle strength, muscle power and
muscle fatigue are all potential markers of muscle changes
in ageing [87]. Muscle strength is of particular functional
importance [88], while muscle ‘mass’ is a key indicator for
sarcopenia.

The introduction and refinement of CT, MRI and DXA
has enabled accurate detection of tissue wasting [89]. DXA
is the most widely adopted method for the assessment of
muscle mass. However, its accuracy varies with size and
body fat, as well as age, and results may be biased due to its
limited differentiation between water and bone-free lean tis-
sue. Moreover, all three methods are expensive and may be
available only at larger institutions.

Ultrasound imaging of muscle

Ultrasound imaging is a reliable and sensitive technique for
estimating muscle volume in clinical settings, and for detect-
ing changes in muscle mass [90]. Ultrasound waves are
reflected by skin, fascia and muscle, and can be used to
measure muscle architecture (i.e. thickness, fascicle length,
pennation angle and cross-sectional area) in different types
of muscles. Ultrasound has been used to assess muscle
changes in health and disease, including assessment of
changes in muscle architecture with contraction [91],
exercise-induced hypertrophy, disuse-atrophy and ageing
[92–95]. In addition, ultrasound-derived proxy measures
may be useful indices of muscle quality/strength [96].

When assessing hypertrophy or atrophy and sarcopenia,
it is useful to establish not only how much but also where
muscle is added or lost. This information can be obtained
by ultrasound, which can distinguish effects on sarcomeres
placed in series (fascicle length) or in parallel (pennation
angle and muscle thickness or cross-sectional area). There is
preliminary evidence that fascicle length (Lf) is reduced to a
smaller extent than muscle thickness (Tm) in sarcopenia, so
that the Lf/Tm ratio increases with the severity of sarcope-
nia; this ratio has been proposed as an ‘Ultrasound
Sarcopenia Index (USI)’ [97].

The emerging technique of EFOV ultrasound is com-
parable to MRI in terms of scope and accuracy. EFOV
enables visualisation of the entire vastus lateralis muscle in
the plane of scanning, and can be used to study its regional
adaptations in response to training [98]. An interesting
application of EFOV ultrasound is the assessment of mus-
cle quality as muscle echogenicity (by grey-scale analysis). A
recent study concluded that EFOV ultrasound may be used
reliably to assess muscle size and quality simultaneously,
with high reproducibility, from a single ultrasound scan

Developing a toolkit for the assessment and monitoring of musculoskeletal ageing

iv7



[99]. Muscle echogenicity is inversely correlated with muscle
strength in middle-aged people of both sexes and in elderly
men [100, 101]. This may be a potentially useful biomarker
of sarcopenia.

Ultrasound assessment of tendon

Tendon ultrasound—no current recommendations for the toolkit

• Biomechanical assessment (tendon stiffness and Young’s
modulus) of tendon function measured by ultrasound is a
potential future biomarker of ageing in human tendons.

Ultrasound studies of tendon

The cross-sectional area of the tendon can be measured
with either ultrasound or MRI, and an effect of ageing has
been demonstrated in the patellar tendon using ultrasound
at a site proximal, but not distal, to tibia insertion within
the tendon [102].

Further studies have confirmed the utility of ultrasound
in assessing tendon injury and tissue biomechanics. For
example, in a study designed to classify rotator cuff tendi-
nopathy in 464 older women (aged 65–87 years), the use of
high definition ultrasound revealed a close association
between tendon pathology, age and pain [103]. Techniques
are being developed to study the sliding of tendon fascicles
under load via frame-to-frame speckle tracking [104], and
these demonstrate non-uniform deformation patterns, with
deep portions of the tendon displacing more than superfi-
cial portions, and a reduction in non-uniformity among
middle aged versus young adults. Ultrasound assessment
can also be used to measure tendon length and force, and
to calculate tendon stiffness and strain [105].

Work by Maganaris, Narici and others [106–109] has
shown decreased tendon stiffness and Young’s modulus
with ageing, assessed by ultrasound, and substantial recov-
ery of tendon stiffness with resistive training [94, 110].
Thus, tendon stiffness and Young’s modulus measured by
ultrasound are potential future biomarkers of ageing in
human tendons.

Imaging of joint cartilage

Joint imaging—no current recommendations for the toolkit

• A variety of compositional MRI techniques used for the
evaluation of cartilage degeneration in OA may hold
potential as next-generation biomarkers of ageing, if it can
be shown that they change with ageing, independently of
OA. T2 imaging is the most widely used of these, while
dGEMRIC (delayed gadolinium-enhanced MRI of cartil-
age) and T1ρ MRI may reflect the proteoglycan content
of cartilage. Musculoskeletal ultrasound has some inherent
limitations with respect to imaging cartilage, especially
since a 90° incident angle is required for good image qual-
ity of the cartilage surface. While knee femoral cartilage
can be imaged, tibial and most hand joints cannot, espe-
cially in those whose flexion is limited by age or

pathology. There are no published population cohort data
on femoral cartilage thickness, but recent case-control
studies [111] and methodological work [112] how that
undertaking such measurements in cohort studies is
feasible.

MRI of joints

The great majority of work in the imaging of joint cartilage
has focused on cartilage changes in OA, since there are no
markers of cartilage ageing per se. An advantage of MRI is
its ability to image cartilage directly. Most commonly, MRI
assessment of OA involves one or more of the following:
semi-quantitative scoring (SQS) of joint pathology, cartilage
volume quantification or compositional MRI.

Compositional MRI techniques for evaluation of cartil-
age include:

• T2 mapping is straightforward and widely used, and prob-
ably provides more information than does structural
imaging. Several studies have shown an association with
age, and recent work has suggested a weak significant
association even without radiographic OA or morpho-
logical evidence of cartilage loss on MRI [113].

• Delayed gadolinium-enhanced MRI of cartilage
(dGEMRIC) is technically straightforward, but requires
intravenous contrast agent and may be challenging in
practice. It may be more specific than T2 mapping for
proteoglycan content [114].

• Another relaxation parameter, T1ρ, is believed to respond
to proteoglycan content, and may be more specific than
T2, though its measurement is technically more challen-
ging. There is some suggestion that T1ρ may be better
correlated with age than is T2 in healthy volunteers [115].

• Glycosaminoglycan chemical exchange saturation transfer
(gagCEST) imaging is technically difficult, and works best
at high magnetic field strength. Again, it is thought to be
strongly dependent on proteoglycan content; preliminary
work suggests that it is promising for detecting cartilage
damage, but further studies are needed [114].

• Ultrashort echo-time T2* (UTE-T2*) measurement is a
developing technique with the potential to assess deep
cartilage [116].

These more advanced techniques promise to have the
sensitivity and discriminatory power to detect changes in
joint cartilage due to ageing per se, independent of OA.

Functional assessments

Functional assessment tests the workings of the integrated
musculoskeletal system. This brings the advantages of direct
relevance to clinical state and quality of life, for which sys-
tem integration is important. A general disadvantage is that
the relationships between function and underlying structure
and physiology may be complex, particularly in relation to
assessing functional capacity in daily life.
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Functional assessment of muscle ageing

Functional assessment of muscle—recommendations for the
toolkit

• The short physical performance battery (SPPB) of tests,
comprising gait speed over 4 m, standing balance, hand
grip strength (in both arms) and chair raise test, has been
extensively validated. The SPPB should be combined with
measurements of lower limb strength.

• The locomotor domain of the NIH toolbox for assess-
ment of neurological and behavioural function represents
an alternative approach, combining most of the SPPB
tests (hand grip strength, knee extensor isometric
strength, walking speed and balance) with endurance and
dexterity tests [10].

Physical capability testing

The SPPB remains an effective and inexpensive protocol,
especially suited to use in those aged over 65–70 years
[117]. In a systematic review, the SPPB was the test battery
with the highest scores for reliability, validity and respon-
siveness [118]. In addition, the SPPB has been widely inves-
tigated in different populations ranging from vigorous, or
independent, to frail.

Hand grip strength shows good correlations with lean
body mass and the SMI, and also with leg strength in frail
older people. It is advisable to measure hand grip in both
arms, since significant differences between the dominant
and the non-dominant side have been observed for hand
grip strength, in both sexes, but not for lower limb strength
[119]. However, hand grip strength does not provide a valid
means of evaluating the efficacy of intervention programs
to increase muscle mass or function in an older population
[120], and is likely to be less sensitive to training or rehabili-
tation interventions than lower limb strength [120].
Therefore, lower limb strength should be incorporated as a
key indicator of musculoskeletal function. The assessment
of lower limb strength should include the maximal volun-
tary isometric contraction (MVIC) of both knee extensor
and flexor muscle groups, enabling the simultaneous evalu-
ation of the rate of torque development (RTD). RTD of
knee flexors (KF) correlates with the number of falls in old-
er people [121], an important consideration given the
increasing prevalence of falls with ageing. Whilst muscle
power (the product of force and velocity of contraction) is
more affected by ageing than is muscle strength [122], there
is no practicable and inexpensive set of tests for measure-
ment of muscle power. Therefore, RTD could act as a
surrogate for muscle power, providing important infor-
mation about an individual’s ability to develop force
dynamically, since it is correlated with MVIC, muscle fibre
characteristics, tendon stiffness and neural activation cap-
ability [123, 124].

The use of generic cut-off threshold values for muscle
strength (e.g. hand grip) and function (e.g. gait speed) to

pre-screen subjects at potential risk of sarcopenia [74] may
overestimate risk compared with the use of specific cut-off
values from the population under study [125], and the latter
approach has been recommended for individual research
studies and for population screenings [125]. Indeed, ageing
can affect body composition and physical performance in
older adults very differently depending on lifestyle, culture
and ethnicity [126, 127]. There are also gender differences
in rate of decline in muscle strength and mass, with faster
rates of decline in men [128].

Finally, we recommend the locomotor domain of the
NIH toolbox for assessment of neurological and behav-
ioural function [10] since it encompasses measures that are
feasible, valid, and inexpensive. It comprises five sub-
domains of motor function: dexterity, endurance, locomo-
tion, balance and strength, including several of the tests dis-
cussed above, such as hand grip strength, knee extensor
isometric strength, walking speed, and balance, together
with a 2-min endurance walking test (a modified version of
the 6-min walking test) and a dexterity text (the Rolyan 9-
hole pegboard). A potential limitation of this toolbox is that
the sample size used for its validation was small. In add-
ition, its use by non-expert users (as envisioned by the pro-
posers) could be critical, especially for tests such as the use
of a hand-held dynamometer for the assessment of lower
limb strength. However, hand-held dynamometry has the
advantage of portability and reduced cost compared with
traditional laboratory-based lower limb dynamometry.

Functional assessment of tendon ageing

Functional assessment of tendon—no current recommendations
for the toolkit

Self-assessment questionnaires and similar instruments can
be used to determine disability and tendon pain, but not
loss of function. However, such instruments are not sensi-
tive to ageing per se, so cannot be recommended for the
toolkit.

Assessment of tendon ageing

Tendons are formed of highly aligned collagenous tissue,
consisting predominantly of type I collagen, and the risk of
tendon injury increases with age. Rotator cuff injury, for
example, has a prevalence of 9.7% in individuals under 20
years of age, and 62% in those over 80 years [129].

Self-assessment questionnaires and similar instruments
can determine disability and pain associated with tendino-
pathy reliably but, in general, they are not sensitive to age-
ing per se and so cannot be recommended for the toolkit.
A further issue is that many such instruments, e.g. for the
assessment of Achilles tendinopathy, are sports-related
rather than age-related [130]. Other questionnaires are
available for assessing shoulder pain and disability [131],
and all have the advantage of being simple to use and low
cost.

Developing a toolkit for the assessment and monitoring of musculoskeletal ageing
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Assessment of balance control in relation to ageing

Balance control—no current recommendations for the toolkit

• While valid and reliable tests of balance are available, and
have been shown to be associated with muscle function,
balance control is affected by factors other than musculo-
skeletal ageing per se. In addition, it is unclear whether bal-
ance problems precede decreases in muscle function.
Hence, the suitability of balance assessment as a bio-
marker of musculoskeletal ageing is not supported by the
available evidence.

• Tests of reactive balance control are more demanding
and, consequently, are more likely to reflect early changes
in muscle function, and thus show promise as future bio-
markers of musculoskeletal ageing.

Balance assessment

Balance can be defined as the ability to control the position
of the body’s centre of mass in relation to the base of sup-
port. Balance control is an important determinant of falls
risk, mobility and independence. It is dependent on function-
ing of muscle-tendon units in the trunk and lower extremities,
but also on sensory information from multiple modalities,
brain function (including function of pre-frontal areas), and
regulation of blood pressure. Consequently, balance assess-
ment is highly sensitive to subtle changes in health status. To
a large extent, balance control is context dependent, and thus
assessment of balance may need multiple tests.

A history of falls remains the strongest predictor of
future falls [132] and is an important marker of balance
problems, and so falls-related questionnaires can provide
insight into balance control. Several instruments measure
the fear of falling and its converse, balance confidence. The
international Falls Efficacy Scale (FES-i) comprises either 7
or 16 items that measure fear of falling, i.e. the concern
that one may fall during daily activities, and this has been
shown to be associated with balance impairments [133]. In
contrast, the Activities-specific Balance Confidence (ABC)
scale comprises 16 items that assess balance confidence
[134]. Both questionnaires have been widely used in groups
without significant cognitive disorders.

Static balance tests can be used to measure, for example,
the ability to maintain balance for 10 s in various standing
conditions (e.g. with legs side by side, tandem, semi-tandem,
on one leg, with eyes open or closed). Static balance tests can
be further augmented by measuring postural sway, assessed
as movement of the centre of pressure (CoP) or amplitude/
speed of the centre of mass (CoM), which is the gold stand-
ard [135].

Dynamic balance tests typically involve external perturba-
tions of the standing balance, as in the limits of stability
(LOS) [136] and mediolateral balance assessments (MELBA)
[137] tests. In the LOS test, subjects are asked to lean in dif-
ferent directions (forwards, backwards and sideways) as far as
possible, while in MELBA, subjects are asked to track a side-
ways moving target with their CoM by shifting their weight

sideways. Other dynamic balance tests assess reactive control,
for example to platform translations and rotations, via step-
ping responses or time to stabilisation.

Balance control in daily life activities such as walking poses
challenges in addition to those encountered in the tests
described above. Functional balance tests, such as the
Performance Oriented Mobility Assessment (POMA), Berg
Balance Scale (BBS), Timed Up and Go (TUG) test, and the
SPPB balance elements, focus on daily-life activities that chal-
lenge balance control, and so may be more appropriate than
the more ‘artificial’ tests of static and dynamic balance. These
tests also have the advantages of being simple and cheap, and
show good reliability between observers. However, they have
ceiling effects and they are not very specific for balance.
Assessment of treadmill walking may have potential to assess
balance in a realistic task, since its outcomes in terms of vari-
ability and local dynamic stability correlate with fall history
[138]. Two further tests are worthy of consideration as future
biomarkers: narrow beam walking [139], which has the
advantage of simplicity, and responsiveness to virtual obsta-
cles or stepping stones projected onto a treadmill or onto the
floor to form an interactive walkway [140, 141].

Assessment of indicators of balance control during
activities of daily life may provide a complete picture of the
quality of balance control in a relevant context at relatively
low cost. Measured over a week, such parameters provide a
fairly good prediction of future falls [132], but independent
validation of these findings is necessary.

Whilst clearly relevant to risk of falling, the relevance of
these measures to musculoskeletal ageing per se remains to be
determined. Most of the balance tests described above are
associated with muscle function. For example, fear of falling
tested with a single-item questionnaire is correlated with knee
extensor strength [142], the time that older adults can stand
on one leg is correlated with muscle strength, [143, 144], pos-
tural sway is correlated with the strength, and cross-sectional
area, of trunk muscles [145], and local dynamic stability of
walking is correlated with knee extensor strength [142]. For
dynamic tests, results on the MELBA test are correlated with
the strength and position sense of the hip abductor muscles
[146], and the ability to regain balance within one step after a
platform perturbation is correlated with the muscle strength
of ankle and trunk muscles [147, 148]. Finally, older adults
with weak and slow muscles are successful much less often in
regaining their balance after tripping over an obstacle than
their stronger peers [149]. However, most of these associa-
tions are found in adults aged over 65 years, and it is unsure
whether such associations exist earlier in life. While it seems
likely that this may be the case for the more challenging bal-
ance tests, this remains to be demonstrated.

Real-life monitoring of musculoskeletal function

Real-life monitoring—no current recommendations for the
toolkit

There is no fully validated system for real-life monitoring of
musculoskeletal function to date. Robust accuracy and
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validity metrics have been reported for some features, but
engineering challenges remain and definitions, protocols
and outcomes need to be standardised.

Advantages and challenges of real-life monitoring

The potential advantage of real-life monitoring is that it
may provide an accurate picture of people’s day-to-day
activity in their usual environment, in contrast to laboratory
testing which is necessarily contrived. This is exemplified by
global studies that demonstrate inequality in patterns of
physical activity across age, gender, BMI, ethnicity and
geography [150]. However, it is important to distinguish
between what people do in ‘real life’ and what they are cap-
able of doing. In terms of measuring musculoskeletal age-
ing, it may more important to measure ‘capacity’ or
‘capability’ than what people actually do, since the latter is
largely a reflection of an ‘unchallenged’, habitual and largely
sedentary lifestyle.

Real-life monitoring presents technical challenges. For
example, it may involve a variety of wearable technology
and connected devices (WTCD), from simple triaxial accel-
erometers to gyroscopes and magnetometers, allowing con-
tinuous detection of postures, postural transitions and
activities. While the utility, reliability and validity of gait
measurement with traditional gold standard laboratory-
based systems (e.g. three-dimensional motion capture sys-
tems and instrumented mattresses, such as GAITRite) is
broadly accepted, the performance characteristics of novel
WTCD are often not reported formally, or reported incon-
sistently using a variety of protocols and measures [151].
Efforts are currently underway to redress these deficits
[152–154].

The approach of using generic low-cost (<£100) body-
worn movement monitors, analysed using published algo-
rithms, may ultimately offer an affordable and scalable solu-
tion for quantitative gait evaluation in both multicentre
studies and real-world settings. Nevertheless, algorithm
development presents considerable technical challenges, so
this approach is not yet ready for recommendation in the
musculoskeletal ageing assessment toolkit.

Conclusions, future perspectives and
priorities for research

In this report, we have reviewed potential biomarkers of
musculoskeletal ageing, and the key biological and technical
issues that bear on their inclusion or otherwise in a CIMA
toolkit. Our recommendations are summarised in Table 1.

Overall progress in the field of developing and validating
biomarkers of musculoskeletal ageing in humans has been
slow and uneven and, to date, there are relatively few
accepted and reliable biomarkers for ageing of this major
body system. For bones and muscle, we have some useful
biomarkers of ageing, but for the other components of the
musculoskeletal system—tendons and joints—no such bio-
markers are currently available. There are well-established

markers of body composition, e.g. DXA and of physical
capability—we recommend the SPPB or the Locomotion
domain of the NIH Toolbox—but changes in both
domains are not necessarily specific consequences of mus-
culoskeletal ageing. However, measures of physical capabil-
ity have the advantage that, to a considerable extent, they
reflect function of the integrated musculoskeletal system.

The slow and uneven progress in developing biomarkers
of musculoskeletal ageing parallels the situation with bio-
markers of ageing per se [5, 6, 155], and reflects both the
complexity and heterogeneity of ageing, and the difficulties
in distinguishing between biomarkers of an ageing body sys-
tem and biomarkers of age-related disease in that system.
This review reveals that much research effort has been
devoted to disease-related biomarkers, and relatively little to
biomarkers of musculoskeletal ageing itself. There are both
conceptual and practical reasons for this imbalance in
research focus, and the problems are amplified at older
ages when multi-morbidity and polypharmacy are more
common [156]. This suggests that research on biomarkers
of musculoskeletal ageing is likely to be more rewarding if it
is conducted earlier in the ageing trajectory.

Despite the difficulties in defining and measuring ageing,
there has been significant progress in recent years in under-
standing its biological basis, and this may offer new insights
and directions for the development of biomarkers. For
example, Lopez-Otin et al. identified nine hallmarks of age-
ing which are common to many, perhaps all, multicellular
species that exhibit ageing [157]. One of these hallmarks is
epigenetic alterations, and it is now clear that, at some gen-
omic sites, DNA methylation status changes with age in a
predictable manner. Whilst a number of ‘DNA methylation
clocks’ have been proposed, that by Horvath appears to be
among the most useful [158]. In Horvath’s model, DNA
methylation at 353 specific CpG sites shows considerable
inter-individual differences between predicted and chrono-
logical age, and this difference between ‘methylation age’
and chronological age (Δage) is predictive of all-cause mor-
tality in later life [159].

‘Methylation age’ has utility in assessing ageing of mul-
tiple tissues but, as yet, there is limited information about
its value for musculoskeletal tissues. Using data from Ribel-
Mason and colleagues [160], Horvath observed that in mus-
cle, DNA methylation age correlated poorly with chrono-
logical age [158]. In OA patients, accelerated epigenetic
ageing was demonstrated in articular cartilage but not in

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. CIMA- recommended biomarkers of musculoskel-
etal ageing in humans

Biomarker Component of musculoskeletal
system assessed

PINP and CTX Biomarkers of bone turnover
Serum creatinine Biomarker of skeletal muscle mass
DXA Assessment of body composition
SPPB or Locomotion domain of NIH
Toolbox

Assessment of physical capability
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bone or blood [161]. We anticipate further developments in
this area as approaches for genome-wide analysis of DNA
methylation are applied to ageing cohorts in which there are
relevant additional measures of musculoskeletal function. In
the meantime, other epigenetic-based biomarkers of muscu-
loskeletal ageing are emerging, particularly those based on
non-coding RNA species [162]. In this review, we have
summarised progress in identification of miRNA which are
linked with risk of osteoporosis, and which may be biomar-
kers of joint ageing more generally. Recently, differential
expression of a number of snoRNA (another group of
non-coding, regulatory RNA) in young versus old and nor-
mal versus OA murine joints and serum has been
described, which suggests that snoRNA are also putative
markers of musculoskeletal ageing [61]. In addition, a wide
range of biological approaches, including proteomics and
metabolomics [163], are being used to identify and validate
biomarkers of ageing [164], some of which may be applic-
able to the musculoskeletal system.

This review shows that there are few reliable biomarkers
of musculoskeletal ageing in humans. This is a major evi-
dence gap which limits research on the processes involved
in, and factors modulating, musculoskeletal ageing. It is also
a major impediment to the design and conduct of interven-
tion studies that aim to maintain good musculoskeletal
function during ageing. Further, few biomarker approaches
(excepting those that attempt to monitor physical function
in real-life situations) consider all of the musculoskeletal tis-
sues as an integrated system, and there are gaps in biomar-
kers for assessing joint and tendon function during ageing.
Identification of these research gaps should stimulate fun-
ders and researchers to address these issues, not least
because of the very substantial contribution that poor mus-
culoskeletal ageing makes to the burden of age-related
frailty and disability [165]. Since debilitating age-related dis-
orders of the musculoskeletal system have major adverse
effects on the independence and quality of life of older indi-
viduals which, by limiting physical activity, amplify age-
related risks of multiple cardio-metabolic diseases, major
cancers and neurodegenerative diseases [166, 167], this
underscores the imperative to assess and maintain good
musculoskeletal function during ageing.

Success in the search for reliable biomarkers of muscu-
loskeletal ageing will require innovation, not only in the
application of new technologies and emerging understand-
ing of the biology of the ageing process, but also in experi-
mental design. There may be merit in the study of
individual trajectories in musculoskeletal function during
middle age, in advance of the disability and disease (includ-
ing non-musculoskeletal diseases) that are likely to be major
confounders. This will require repeated measures of muscu-
loskeletal function, appropriate imaging and collection of
biological samples for biomarker assessment at more fre-
quent intervals than is usual in large ageing cohorts. In add-
ition, measurement tools will need to be much more
sensitive to detect the subtler age-related changes that are
characteristic of the ageing phenotype. In summary,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Explanation of acronyms used in report

Acronym Full name

3MH 3-Methylhistidine
ABC Activities-specific Balance Confidence
ASM Appendicular skeletal muscle mass
BBS Berg Balance Scale
BIA Bioelectrical impedance analysis
BMI Body Mass Index
BMSCs Bone-marrow mesenchymal stem cells
C6M Matrix MMP-generated degradation fragment of

collagen 6
CAFs C-terminal agrin fragments
CIMA MRC—Arthritis Research UK Centre for

Integrated research into Musculoskeletal Ageing
CoM Centre of mass
COMP Cartilage oligomeric matrix protein
CoP Centre of pressure
CT Computed tomography
CTX, CTX-I, CTX-II Telopeptide of Type I Collagen
dGEMRIC Delayed gadolinium-enhanced MRI of cartilage
DPD Deoxypyridinoline
DXA Dual-energy X-ray absorptiometry
EFOV Extended field of view
EWGSOP European Working Group on Sarcopenia in Older

People
FES-i International Falls Efficacy Scale
gagCEST Glycosaminoglycan chemical exchange saturation

transfer
GDF Growth Differentiation Factor
GDF8 Growth Differentiation Factor 8 (Myostatin)
GFR Glomerular filtration rate
HAP Healthy ageing phenotype
IC6 Type VI collagen N-terminal globular domain

epitope
ICTP Carboxy-terminal cross-linked telopeptide of type

I collagen generated by matrix
metalloproteinases

κB Kappa-Β
KF Knee flexors
Lf Fascicle length
LOS Limits of stability
MALDI-MSI Matrix-assisted laser desorption ionisation mass

spectrometry imaging
MELBA Mediolateral balance assessments
MMP Matrix metalloproteinase
MRI Magnetic resonance imaging
MVIC Maximal voluntary isometric contraction
NHANES US National Health and Nutrition Examination

Surveys
NMJ Neuromuscular junction
NTX N-terminal cross-linked telopeptide of collagen

type I
OA Osteoarthritis
P3NP N-terminal peptide of procollagen type III
PICP, PINP C- and N-terminal pro-peptides of type I

procollagen
PINP Propeptide of type I procollagen
POMA Performance Oriented Mobility Assessment
RANKL Receptor activator of nuclear factor κB
RNA Ribonucleic acid
RTD Rate of torque development
SMI Skeletal muscle mass index
snoRNAs Small nucleolar RNAs
SPPB Short physical performance battery

Continued
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progress in developing and validating biomarkers of muscu-
loskeletal ageing will require multi-disciplinary teams that
are willing to embrace new ways of working. Embedding
studies within large population cohorts of initially relatively
healthy individuals, such as the UK Biobank, innovation in
measurement science including participant self-monitoring,
and the opportunities that arise from interrogation of ‘big
data’ obtained from linkage to routinely-collected data on
healthcare use may all be helpful in achieving this goal.

In conclusion, this report represents the first systematic
attempt to develop a toolkit suitable for assessing musculo-
skeletal ageing. Reviews by an expert, multi-disciplinary
group have revealed remarkably few biomarkers of muscu-
loskeletal ageing in humans which are suitable for character-
ising and quantifying musculoskeletal function during
‘normal’ ageing, or which would be appropriate for use as
outcome measures in intervention studies designed to
enhance healthy musculoskeletal ageing (Table 1). Given
that the musculoskeletal system functions in an integrated
way, measures of physical capability, e.g. the SPPB or the
Locomotion domain of the NIH Toolbox, may have par-
ticular utility in assessing musculoskeletal ageing because, to
a considerable extent, these tests reflect function of the
whole system. There appear to be no reliable measures of
ageing of joints and tendons, and those markers available
for bone and muscle assess only part of the loss of quantity
and quality experienced during ageing. There is a high prior-
ity to address this research gap, and we have suggested
some conceptual and practical approaches that may provide
traction in this difficult, but important, area of public
health.

A summary of the full names of acronyms used in this
report is included in Table 2.

Key points

• Biochemical biomarkers: We considered a wide range of
biochemical markers and two well-established serum mar-
kers of bone turnover, i.e. N-terminal propeptide of type I
procollagen and C-terminal cross-linked telopeptide of colla-
gen type I were recommended for the toolkit. ‘Omics’
approaches are revealing potential new candidate biomar-
kers and non-coding RNA species detectable in the circula-
tion show particular promise as future biomarkers.

• Body-composition biomarkers: Body composition
changes during development and ageing, and such
changes are linked with changes in function and in the
risk of age-related musculoskeletal disease. We recom-
mended serum creatinine (with appropriate dietary con-
trol) as a biomarker of skeletal muscle mass and dual-
energy X-ray absorptiometry for diagnosing sarcopenia
(age-associated loss of muscle mass).

• Imaging assessments: Multiple in vivo imaging techniques
were considered including ultrasound, dual-energy X-ray
absorptiometry and magnetic resonance imaging. Some of
these are well-established for assessment/ diagnosis of
musculoskeletal disease but none were considered suit-
able, as yet, for measuring musculoskeletal ageing.
Ultrasound measurement of muscle architecture may
enable early detection of changes in muscle mass with
ageing, making it a potentially useful next-generation
biomarker.

• Functional assessments: Functional assessments have the
advantage of direct relevance to clinical state and quality
of life, for which system integration is important. The
Short physical performance battery or the Locomotion
domain of NIH Toolbox are recommended.
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