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Abstract: In addition to providing nutrients, food can help prevent and treat certain diseases.
In particular, research on soy products has increased dramatically following their emergence as
functional foods capable of improving blood circulation and intestinal regulation. In addition to
their nutritional value, soybeans contain specific phytochemical substances that promote health
and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic
acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances
have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac
diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis.
Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid
metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review,
rather than to improve on the established studies on the reported nutritional qualities of soybeans,
we intend to examine the physiological activities of soybeans that have recently been studied and
confirm their potential as a high-functional, well-being food.

Keywords: soybean; active molecules; soy functionality; health benefit

1. Introduction

Soybean is an excellent food resource as it contains high-quality protein, a high ra-
tio of unsaturated fatty acids and dietary fiber, as well as other substances that possess
various physiological functions [1]. Due to the recent westernization of the Korean diet,
the prevalence of certain diseases, including diabetes and cardiovascular events, is increas-
ing [2,3]. Moreover, considering that the overconsumption of animal-based food products
is a contributor to the development of obesity, the functionality of soy, a plant-derived food
product, is highlighted [1,4,5]. Soybean is composed of 40% protein, which is significantly
higher than most other types of beans [5]. Furthermore, the high-quality protein in soy is
equivalent to that found in dairy, meat, and eggs but lacks cholesterol and saturated fatty
acids [1,4]. Moreover, the Food and Drug Administration (FDA) of the United States (US)
recognized that the consumption of soy protein decreases the risk of cardiovascular diseases
and applied the “healthy” food label, which increased public interest in soybean in the
US, as well as Japan [6,7]. The consumption of soy protein by obese patients is effective in
preventing and treating obesity [8,9]; not only does it inhibit fat accumulation and increase
fat metabolism, but it also contributes to weight reduction by regulating the expression of
appetite-suppressing factors [10]. Furthermore, the fermentation of soybean by effective
bacteria, including Bacillus spp., produces certain enzymes and physiochemical substances
that do not exist in the raw food product [11]. Soybean fermentation is accomplished by
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either Bacillus subtilis or Bacillus licheniformis, which weakens the putrefactive effect of
intestinal bacteria, and resists pathogenic bacteria by absorbing toxic substances [12,13].

Soybean comprises lipids (18%), proteins (38%), carbohydrates (30%, 1:1 ratio of solu-
ble and insoluble forms), and moisture, ash, and other substances (14%), which include
vitamins and minerals that are not required in large quantities by the body (Figure 1A,B;
Table 1). In relation to proteins, the nutritional value of soybean amino acids is as fol-
lows: tryptophan (1%), tyrosine (4%), valine (4%), arginine (8%), alanine (4%), aspartic
acid (7%), cysteine (3%), glutamic acid (19%), glycine (4%), histidine (3%), phenylalanine
(6%), isoleucine (5%), lysine (8%), leucine (8%), methionine (1%), proline (5%), serine (5%),
and threonine (4%) (Figure 1C). Soybean is high in fiber, protein, and phytoestrogens,
low in saturated fats, free cholesterol, and lactose, and a good source of omega-3 fatty
acids and antioxidants. Moreover, the stable storage of soybean can be improved by the
addition of 12–14% moisture [1,4]. Recently, much attention has been paid to soybean as
a functional food because several studies have shown that it contains at least 14 benefi-
cial phytochemical substances, including phytic acid, triterpenes, phenolics, flavonoids,
lignans, carotenoids, and coumarins, as well as protease inhibitors, oligosaccharides, and
dietary fibers [1,4,5,14,15]. These compounds have purported anticancer, antiaging, an-
tirenal failure, antiobesity, and anticholesterolemic properties, while also being shown
to inhibit HIV, and prevent gallstone formation, senile dementia, and hyperlipidemia.
Furthermore, soybean promotes diuretic action, suppresses arteriosclerosis, provides relief
from constipation, and prevents cardiovascular diseases (Figure 2) [15–19]. Soybean also
contains substances that are involved in intestinal regulation, have antioxidative properties,
prevent osteoporosis, lower blood pressure, have antithrombotic effects, boost immunity,
and promote liver functions, and therefore, can be inferred to be closely related to the
prevention of certain chronic diseases [15–21].

Table 1. Concentration of nutritional components of soybean [1].

Component Nutritional Value
(Per 100 g) Component Nutritional Value

(Per 100 g)

Carbohydrates 30.20 g Glycine 1.88 g
Sugars 7.30 g Proline 2.38 g
Protein 36.49 g Serine 2.36 g

Tryptophan 0.59 g Fat 19.94 g
Threonine 1.77 g Saturated FA 2.89 g
Isoleucine 1.97 g Monounsaturated FA 4.40 g
Leucine 3.31 g Polyunsaturated FA 11.26 g
Lysine 2.71 g Water 8.54 g

Methionine 0.55 g Vitamin A 0.001 g
Phenylalanine 2.12 g Vitamin B6 0.006 g

Tyrosine 1.54 g Vitamin C 0.047 g
Valine 2.03 g Vitamin K 0.277 g

Arginine 3.15 g Calcium 1.57 g
Histidine 1.10 g Magnesium 0.28 g
Alanine 1.92 g Phosphorous 0.704 g

Aspartate 5.12 g Sodium 1.797 g
Glutamate 7.87 g Zinc 0.002 g

Total calories 466 kcal
FA, fatty acid.
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Figure 1. Nutritional value of carbohydrates, proteins, and fats (A), ratio of soluble and insoluble forms of carbohydrate 
(B), and composition of protein-derived amino acids (C) in soybeans [1]. 

Interestingly, certain compounds in soybean, such as lectin and trypsin inhibitors, 
were originally reported as harmful substances; however, new physiological functions, 
including the prevention and improvement of diabetes and antitumor activity, have been 
identified [22,23]. Moreover, phospholipids, which are also abundant in soybean, reduce 
plasma lipid and total cholesterol levels [24]. Soybean oligosaccharides have the ability to 
promote the proliferation of probiotic bacteria, such as Bifidobacterium and Lactobacillus 
spp. [25,26]. Additionally, the low molecular weight compounds in soybean have demon-
strated various functions [5,27]. For instance, phytic acid, an inositol with six attached 
phosphates, saponin, and isoflavone, which are primarily responsible for the bitter taste 
of soybean, have also exhibited antitumor and antioxidant properties [15–21]. The pri-
mary aim of this review is to highlight the novel functionality of various soybean-derived 
molecules that have recently received immense attention.  

 
Figure 2. Potential beneficial health effects of soybean molecules. 
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Figure 2. Potential beneficial health effects of soybean molecules.

Interestingly, certain compounds in soybean, such as lectin and trypsin inhibitors,
were originally reported as harmful substances; however, new physiological functions,
including the prevention and improvement of diabetes and antitumor activity, have been
identified [22,23]. Moreover, phospholipids, which are also abundant in soybean, reduce
plasma lipid and total cholesterol levels [24]. Soybean oligosaccharides have the ability
to promote the proliferation of probiotic bacteria, such as Bifidobacterium and Lactobacillus
spp. [25,26]. Additionally, the low molecular weight compounds in soybean have demon-
strated various functions [5,27]. For instance, phytic acid, an inositol with six attached
phosphates, saponin, and isoflavone, which are primarily responsible for the bitter taste
of soybean, have also exhibited antitumor and antioxidant properties [15–21]. The pri-
mary aim of this review is to highlight the novel functionality of various soybean-derived
molecules that have recently received immense attention.
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2. Phenolic Compounds

Most plants contain antioxidants, referred to as phenolic compounds (or phenolics),
that include flavonoids, hydroxycinnamic acid derivatives, phenolic acids, and tannic
acid [28]. Tannic acid is a naturally occurring polyhydroxyl phenol ester of gallic acid [29].
In addition, soybeans contain isoflavone, a derivative of phenolic acids and flavonoids [30].

2.1. Phenolic Acids

Soybeans contain eight phenolic acids, namely, p-hydroxy benzoic acid, chlorogenic
acid, cinnamic acid, ferulic acid, gentisic acid, salicylic acid, syringic acid, and vanillic
acid (Figure 3) [31,32]. Chlorogenic acid is hydrolyzed to form caffeic acid, both of which
cause browning, a harmful effect in food, that leads to nutrient loss and affects color and
flavor [33]. The removal of phenolics with activated carbon has been shown to increase
flavor and improve digestibility in vitro [34]. Conversely, caffeic acid and chlorogenic
acid also have the potential to block nitrosamine genesis both in vitro and in vivo [35]. In
addition, these phenolics inhibit the metabolism of aflatoxin B1 in rat liver [36]. Phenolic
acid can also act as an antioxidant to inhibit DNA damage caused by reactive oxygen
species [37].
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2.2. Isoflavones

Isoflavones are phytoestrogens which, along with lignans, are found in plants [30].
These are phytochemicals that have physiological activity similar to estrogen and are
activated by the intestinal flora [12,30]. Soybean hypocotyls contain many isoflavones
that are classified into four categories based on their chemical structures: (i) aglycons
including daidzein, genistein, and glycitein; (ii) glycosides including daidzin, genistin, and
glycitin; (iii) three types of acetyl glycosides; and (iv) three types of manonyl glycosides
(Figure 4) [12,38]. According to several studies, isoflavones have the ability to activate
estrogen receptors in the vagina, oocytes, and mammary glands, and can possess estrogen
or antiestrogen properties depending on the physiological environment or their chemical
structure [39,40]. For instance, isoflavone is an antiestrogen that reduces the risk of breast
and prostate cancers [41,42], and also has antioxidant effects similar to vitamin E and
C in vivo and in vitro [43,44]. Furthermore, isoflavone is produced by an oncogene and
functions as an inhibitor of tyrosine protein kinase [45]. Among the soybean isoflavones,
genistein inhibits the growth of cells that cause breast, colon, lung, prostate, and skin
cancers in vitro (Figure 5) [36,46]. In addition, genistein inhibits the formation of boils by
preventing vasculogenesis, thus blocking the supply of oxygen or nutrients [47].
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Figure 5. Schematic of multiple signaling pathways involved in isoflavone-induced cancer cell
death [30]. Wnt-3α, a protein of the Wnt family, plays critical roles in regulating pleiotropic cellular
functions [30]. AR, androgen receptor; Akt, a serine/threonine-specific protein kinase known as
a protein kinase B; BAD, Bcl2-associated agonist of cell death; GSK-3β, glycogen synthase kinase
3 beta; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; TCF, T-cell specific
transcription factor; IKK, IκB kinase; p53, tumor protein-53; β-catenin, a core component of the
cadherin protein complex; PI3K, phosphatidylinositol-3-kinase; NF-κB, nuclear factor kappa light-
chain-enhancer of activated B cells; Notch, a family of type-1 transmembrane proteins; →, activation;
⊥, inactivation. Figure adapted from Li, Y. et al. [30].

Additionally, studies investigating the effects of isoflavone ingestion in Western
women have shown that isoflavones affect the menstrual cycle, such that it reduces the risk
of breast cancer [48]. Furthermore, isoflavones can have weak estrogenic effect and can
reduce the severity of symptoms associated with menopause, without eliciting any negative
side effects [30,49]. Isoflavones reduce blood cholesterol by as much as 35%, suggesting
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their potential as cholesterol-lowering agents [50], while casein, an animal protein, has been
found to increase blood cholesterol [51]. In people with insufficient protein intake, protein
is generated from accumulated fat [1]. Since the required fat is transported via blood
vessels, there is a corresponding increase in fat levels in the blood, which consequently
increases blood cholesterol [52]. Thus, consuming high-quality soy protein helps to lower
blood cholesterol.

In the United States, approximately 15% of women who have entered menopause
receive estrogen administration as hormone therapy [53]. However, estrogen administra-
tion increases the likelihood of cancer in reproductive organs [54]; thus, soybean, a natural
food, is gradually being considered as a potential substitute for estrogen in this popula-
tion [6]. Estrogen also lowers the risk of osteoporosis by promoting vitamin D activity,
which prevents calcium elution of bones and increases calcium absorption [55]. Specifically,
the isoflavones in soybeans are structurally and functionally similar to estrogen, which
is why they are also referred to as phytoestrogens [30]. In fact, isoflavones have been
highlighted as a potential source of estrogen that does not elicit negative side effects [30].
In addition, isoflavones exert excellent anticancer effects; most of the anticancer effects of
isoflavones are produced by genistein [30,56]. Although genistein has been primarily inves-
tigated in breast cancer, it has been shown to weakly bind estrogen receptors and promote
normal cell division while repressing cancer cell division [57]. Isoflavones also alleviate
hot flashes associated with menopause without inducing hyperlipidemia or altering the
muscle layers in the breast and uterus, which are common side effects observed following
estrogen administration [49,58]. Furthermore, isoflavones prevent bone reabsorption and
increase bone density to prevent osteoporosis, which is common in older women [20,59].
The physiological roles of isoflavones are summarized in Figure 6.
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3. Phytic Acid

Phytic acid, also called myo-inositol hexaphosphate (IP6), consists of a myo-inositol
ring and six symmetrically attached phosphate groups [60]. Although phytic acid is present
in plants, it is especially common in grains and legumes at 0.4–6.8%, while soybean seeds
contain 2.58% phytic acid [61,62]. During food processing, phytic acid is hydrolyzed and
decomposed into IP1, IP2, and IP3 (containing one, two, and three phosphate groups,
respectively), which are myo-inositols bound to fewer phosphate groups [61]. In humans,
1–3% of the total dietary phytic acid is excreted in the urine at approximately a 0.5–0.6 mg/L
concentration [63]. Phytic acid, which is widely distributed in the outer shell of beans
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and grains, forms chelates with divalent ions, such as Ca2+, Mg2+, Zn2+, and Fe2+, making
absorption into the small intestine difficult [61,64]. Phytic acid also interferes with the
utilization of minerals, acting as a non-nutritional component, and hinders the action of
important digestive enzymes such as pepsin, trypsin, and α-amylase by strongly binding
to the protein base [65,66]. Hence, phytic acid is considered a non-nutritional compound
as it can affect the utilization of minerals in the body by binding to them and reducing
their absorption [67]. However, it has recently gained favor due to its recently described
antioxidant, anticancer, and lipid-lowering effects [68].

Phytic acid has several physiologically active functions, including storage of phos-
phorus and cations [69]. Iron is known to cause oxidative damage in vivo. The hydroxyl
radicals produced by iron cause oxidative damage by inducing the oxidation of cells or
lipids [70]. Meanwhile, phytic acid can bind to iron to inhibit the production of hydroxyl
radicals, thereby preventing the oxidation of cells [67,68]. This function has also been high-
lighted in the context of food processing; research is being conducted on the use of phytic
acid supplementation to suppress oxidation that may occur during food processing [61,68].
Moreover, people with a higher intake of grains and vegetables containing large amounts
of phytic acid have a lower incidence of colorectal cancer, due to phytic acid activating
the expression of tumor-suppressor genes (e.g., p53 and WAF-1/p21) [71,72]. Phytic acid
also exhibits antitumor activity by reducing cancer cell proliferation and increasing cell
differentiation (Figure 7) [71]. In addition, lower inositol phosphates, such as IP3 and IP4
(containing three and four phosphorus groups, respectively) play an important biological
role in regulating cell-to-cell responses and are known to act on the signaling systems in
the body [73].
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4. Protease Inhibitors

Protease inhibitors (PIs) are found in soybeans and other plant systems, including
grains, grass, potatoes, fruits, vegetables, peanuts, and corn [74]. Kunitz and Bowman–
Birk types of PIs are found in soybeans and inhibit the activity of chymotrypsin, elastase,
and serine proteases [75]. For the past 40 years, the PIs of soybeans have been discussed
primarily as antinutritional inhibitory factors; however, more recently, they have also been
highlighted for their apparent anticancer properties [76]. The mechanism underlying the
health benefits of PIs is centered on their antioxidant activity, as trypsin inhibitors have
been shown to block the generation of free radicals, thereby preventing cells from being
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transformed by oxidative damage [74]. For instance, the Bowman–Birk type PI, which
has a chymotrypsin inhibitory effect, inhibits the expression of the oncogene MYC, which
encodes c-MYC, reduces the production of hydrogen peroxide, an oxygen radical in the
body, and prevents the destruction of DNA’s helical structure and DNA oxidation by
inhibiting the function of the tumor promotor 12-o-tetradecanoylphorbal-13-acetate [76,77].
According to a recent study, not only the PIs of soybeans, but also retinoids, garlic acid,
epigallocatechin gallate, nicotinic acid, and tamoxifen of some plants also function as
cancer-preventing agents that inhibit the production of superoxide radicals or H2O2 by
tumor promotor factors, despite their structural differences [78]. Furthermore, trypsin
inhibitors in soybeans promote insulin secretion, thus normalizing blood sugar levels
(Figure 8) [74,79].
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5. Lignans

Lignans are present in plants in small quantities and participate in the construction
of the cell wall framework when bound [80,81]. When ingested, they are converted to
enterodiol or enterolactone by enteric bacteria and are subsequently excreted in urine
in the form of glucuronide conjugates [81,82]. The lignan content in grains is generally
from 2–7 mg/kg, and varies depending on the type of grain [83]. For instance, flax
seeds and soybeans are rich in lignans or lignan precursors. Lignans have properties
similar to estrogen due to their similar chemical structures, and are also designated as
phytoestrogens as they are capable of regulating estrogen levels [84]. In fact, studies
have shown that ingesting large amounts of lignans may lower the body’s free estrogen
content [85]. Accordingly, regular consumption of foods rich in lignan precursors may
reduce the risk of breast cancer caused by estrogen [84]. Indeed, a study has suggested
that lignin downregulates the proliferative potential of breast cancer cells in a tissue
culture system [86]. Specifically, lignans inhibit the activity of 5α-reductase and 17β-
hydroxysteroid dehydrogenase [87], which are involved in the biosynthesis and metabolism
of estrogen, or inhibit 7-α-hydroxylase activity, which is involved in the formation of bile
acids from cholesterol [88], thereby potentially lowering the risk of sex hormone-related
cancer and colon cancer, respectively [89,90]. Furthermore, the ingestion of foods high in
lignans can enhance anticancer properties through synergistic effects with flavonoids and
other phytochemicals (Figure 9) [84,91,92].
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and apoptotic induction contribute to tumor progression, survival, and invasion potentials. Inhibiting
various cellular signaling pathways associated with downstream intracellular kinases, including AKT,
ERK, and mitogen kinases, regulates cellular metabolic pathways, triggering the suppressed tumor
growth and progression [91]. In addition, lignan-containing diets or supplements can enhance general
health and prevent various diseases. Cdc42, cell division control protein 42 homolog; AKT1, RAC-
alpha serine/threonine-protein kinase; p-FAK, phosphorylated focal adhesion kinase; GADD45A,
growth arrest and DNA damage inducible alpha; IGFR, insulin-like growth factor 1 receptor; p-ERK,
phosphorylated extracellular-signal-regulated kinase; p-paxillin, phosphorylated focal adhesion-
associated adaptor protein; RhoA, Ras homolog family member A; Rac1, Ras-related C3 botulinum
toxin substrate 1; MMP2/9/14, matrix metalloproteinase-2, -9, and -14; FoxM1, forkhead box protein
M1; PCNA, proliferating cell nuclear antigen; Cyclin, a protein family that controls the progression of
a cell through the cell cycle; MKI67, marker of proliferation Ki-67; CDK2, cyclin-dependent kinase-2;
CDKN3, cyclin-dependent kinase inhibitor 3; p-Src, phosphorylated proto-oncogene tyrosine-protein
kinase; PDGF, platelet-derived growth factor; p-AKT, phosphorylated protein kinase B; p-GSK3β,
phosphorylated glycogen synthase kinase 3 beta; p-MDM2, phosphorylated E3 ubiquitin-protein
ligase; EGFR, epidermal growth factor receptor; ERα/β, estrogen receptor alpha/beta; FASN, fatty
acid synthase; CYP3A4, cytochrome P450 3A4; COX-1/2, cyclooxygenase-1/2; E2F, E2 factor; E2F1,
E2F transcription factor 1; KLK3/4, prostate-specific antigen 3/4; Survivin (BIRC5), an inhibitor of
apoptosis protein; RBL1, retinoblastoma-like protein 1; VEGF, vascular endothelial growth factor;
VEGFR2, vascular endothelial growth factor receptor-2; Cytochrome C, a heme protein localized in
the compartment between the inner and outer mitochondrial membranes; PARP, poly (ADP-ribose)
polymerase; Caspase-3, an endo-protease which regulates inflammatory and apoptotic signaling
networks; p-p53, phosphorylated tumor suppressor p53; Bcl-2, B-cell lymphoma-2 as an apoptotic
regulator. Figure adapted from De Silva, S.F. et al. [91].

6. Saponins

Soybeans have the highest saponin content among all edible legumes [93]. Saponins
can be categorized as either steroid or triterpene saponins according to the chemical
properties of the covalently attached non-saccharide [94,95]. Triterpene saponin can be
further classified into oleanane, ursane, dammarane, and cycloartane according to the
skeleton of the non-saccharide segment [96]. Soyasaponins are classified into group A
(soyasapogenol A), group B (soyasapogenol B), or group E (soyasapogenol E) according to
the non-saccharide segment (Figure 10A) [97]. A total of 11 different saponins, six from
group A and five from group B, can be isolated from the hypocotyl of soybean [98]. The
monosaccharides of soyasaponins are D-galactose, D-glucose, L-arabinose, L-rhamnose,
D-xylose, and D-glucuronic acid. Saponins are most common in the germ layer and are
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also found in the hypocotyl, but are not present in the outer skin [99]. The type and content
of soyasaponins vary from species to species [97]. Group A saponins can be isolated
from the hypocotyl at levels of 0.36–0.41%, while group B ranges from 0.26–2.75% [97,100].
Additionally, group B saponin content increases during germination [101]. Although there
have only been a few studies on the changes in saponin content during the cooking or
processing of soybeans, its abundance is reduced during fermentation by enzymes from
microorganisms [4,102].
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Figure 10. Chemical structure and in vitro cholesterol-lowering mechanism of saponin (A), and
schematic representation of plausible anticancer mechanism of saponin derivatives at the cellular
level (B) [95]. p21, a potent cyclin-dependent kinase inhibitor; β-catenin, a core component of
the cadherin protein complex; COX, cyclooxygenase; PARP, poly (ADP-ribose) polymerase. →,
activation; ⊥, inactivation; —, indirect activation. Figure adapted from Podolak, I. et al. [95].

Saponin is a bipolar, heat-stable sugar complex that was previously known as a non-
nutritional substance with a bitter and stringent taste [103]. However, recent research has
revealed that it possesses physiologically active functions such as lowering cholesterol,
stimulating immune responses, and anticancer effects, resulting in it being spotlighted as a
functional nutrient [104–107]. Specifically, soybean saponin can reduce the time required
for harmful substances to contact the mesentery, thus facilitating more rapid absorption of
these harmful components, effectively weakening their toxicity [105,108]. Since saponin
shares a similar chemical structure with cholesterol, it also inhibits cholesterol absorption,
thereby increasing its release [52]. In addition, the synergistic effect of saponin and vitamin
E (tocopherol) prevents skin blemishes and facilitates blood circulation [109]. Vitamin
E not only reduces the level of low-density lipoprotein (LDL), frequently called as “bad
cholesterol”, in the circulation and lowers blood viscosity to help blood flow more smoothly,
but also prevents the formation of brown spots (also known as age spots) that form on the
face of middle-aged and elderly people [110–112].

Additionally, saponins, such as phytic acids, function as antioxidants, thereby in-
hibiting cell damage caused by free radicals [16]. Saponins can also suppress the rate
of DNA mutation, which prevents colon cancer in particular [113]. Soybean saponins
have a chemical structure similar to licorice saponins, and their function as an anticancer
agent is being investigated [114]. Specifically, the role of saponin as an enhancer of killer
cell activity, as a sarcoma-specific cell toxin, in the inhibition of DNA synthesis in tumor
cells, and in the reduction of cervical and epidermal cancer cell growth has been reported
(Figure 10B) [95,115,116]. Recently, group B saponins extracted from soybeans have been
shown to inhibit HIV infection [117].
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7. Dietary Fiber and Soy Oligosaccharides

Soybean is rich in dietary fiber, a food component that cannot be broken down by
digestive enzymes in the body. Dietary fibers can be classified into water-soluble fibers,
such as pectin and gum, and water-insoluble fibers, such as cellulose and lignin [118].
Water-soluble dietary fiber is fermented by colonic microorganisms and is involved in the
production of short-chain fatty acids, including acetic acid, butyric acid, and propionic
acid, which are all major nutrients of colonic cells, and function in cholesterol absorp-
tion [119,120]. Water-insoluble dietary fiber is effective in preventing constipation as it
increases bowel movements by enhancing intestinal function [121]. Soybean shells contain
large quantities of water-soluble fibers, while insoluble fibers and pectin make up the
cell wall [118,122]. The properties of dietary fiber include water retention, swelling, or-
ganic molecule absorption, ion absorption and exchange, and decomposition by intestinal
microorganisms, so it acts alone or in combination to elicit several physiological activi-
ties [118,123]. In particular, one of the most important effects of soybean dietary fiber is
the lowering of cholesterol levels [52]. Furthermore, soybean fiber plays an important role
in normalizing bowel movement, is involved in controlling constipation, and reduces the
intestinal transit time of food [124].

Soybean oligosaccharide is a generic term for the soluble oligosaccharides in soybeans
that contain approximately 4% stachyose and 1% raffinose (Figure 11A) [125]. They are not
abundant when the plant is immature, but levels rapidly increase during maturity [125,126].
Soybean oligosaccharides are indigestible, meaning they are not digested or absorbed as a
nutrient in humans, but are instead considered as a flatulence factor that induces production
of gases, such as CO2 or methane, by the flora in the large intestine [126,127]. However, they
have recently received increasing attention due to their promotion of beneficial bacterial
growth in the intestines [107,127]. Moreover, soybean oligosaccharides and dietary fiber
promote vitamin synthesis in the intestine, inhibit the growth of harmful and external
bacteria, and inhibit the production of ammonia and amines [123,128]. In addition, they act
as a growth promotor of Bifidobacterium, a useful bacterium that acts as an anti-inflammatory
agent by enhancing immune function and promoting peristaltic movement of the intestine,
while aiding in digestion and absorption [127,129]. Bifidobacterium produces lactic acid
to maintain the intestinal pH, thereby suppressing the growth of harmful bacteria and
improving bowel movement to help prevent constipation or deterioration of intestinal
function [130,131]. In addition, it functions to prevent the absorption of ammonia and H2S,
which are harmful substances in the intestines, suppress the production of carcinogens such
as indole, skatole, and phenol, and reduce the effect of insulin resistance and cholesterol
concentration on high blood pressure (Figure 11B) [123,132].
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8. Soy Proteins and Peptides

Soy protein contains most of the protein types necessary for humans, making soybeans
a major source of vegetable protein, providing cheap, high-quality proteins, and essential
amino acids [1,5,133]. Soy protein is used in various foods, such as baby food, sports
drinks, milk or meat substitutes, and grain-fortified foods to provide physicochemical
functions [108,134]. In fact, soy protein-based diets have recently received attention as a
biological response modifier for heart disease, obesity, cancer, and diabetes [5,52,135,136].
Serum cholesterol levels are highly correlated with the development of atherosclerosis,
while dietary proteins and lipids affect serum cholesterol levels. In particular, compared
to animal protein, the consumption of vegetable proteins, including soy proteins, is more
effective at lowering the concentration of serum cholesterol, highlighting the benefit of
consuming a well-balanced protein diet [5,52,137]. Recently, the prevalence of diseases
caused by obesity, such as diabetes and cardiovascular diseases, has increased due to the
influence of Western diets [136]. Excessive consumption of animal foods has been raised
as a primary cause of obesity, and the functionality of soybeans, a vegetable food, has
emerged to combat this [5,52]. Soybeans contain approximately 40% protein, and soy
protein inhibits fat accumulation, increases fat metabolism, and controls the expression of
appetite suppressors, thereby contributing to weight control [9,52].

Soybean supplies the majority of the protein content that humans consume and is a
leading source of high-quality and essential amino acids derived from plants [138]. Al-
though there have been numerous studies discussing the technical use of soy protein since
the 1950s, the consumption of the protein has yet to draw level with its production [139].
Soy protein is used in foods of physiological functionalities like infant formulas, sports
beverages, dairy products, meat substitutes, and fortified grain products [4]. Soy protein
has recently received attention as a phytochemical substance for its significance in car-
diovascular diseases, obesity, cancer, and diabetes [5,52,140–142]. Serum cholesterol level
is significantly correlated with the onset of arteriosclerosis, and lipids as well as dietary
protein affect the serum cholesterol level [142–144]. Compared to animal-based protein,
plant-derived protein is particularly effective in lowering the serum cholesterol level, and
thus a balanced consumption of both types of protein is recommended. Among the other
sources of plant-derived protein, soy protein especially manifests a cholesterol-lowering
effect [5,52,137].

Peptides are a combination of varied amino acid chains that form polymeric low molec-
ular amino acids of less than 10,000 Da [5]. Peptides are involved in supplying nutrition,
the sensory function of taste, solubility, and emulsifiability, as well as various physio-
logical activities, including anticancer properties, lowering of blood pressure and serum
cholesterol levels, strengthening of immunity, and promotion of calcium absorption [5,14].
Soy protein is partially hydrolyzed into soy peptides through enzymatic reactions. The
soy amino acids are absorbed by the body well and hydrophobic amino acids are broken
down at their C or N terminals, lessening their bitter taste [145,146]. Furthermore, soy
peptides exhibit strong gel-forming abilities, which fortify their emulsifying and foaming
functions [147,148]. By checking the reabsorption of bile acids within digestive organs,
soy peptides (i.e., lactostatin (IIAEK)) can effectively lower blood cholesterol levels, thus
effectively decreasing LDL and fat accumulation (Figure 12), which enables their use in
preventing and treating arteriosclerosis [5]. Soy proteins also contain angiotensin-I con-
verting enzyme (ACE-I)-inhibiting peptides that decrease blood pressure levels (Figure 13),
as well as antithrombotic peptides that inhibit platelet aggregation [149,150]. The diverse
effects of soybean-derived bioactive peptides are summarized in Table 2. Indeed, new
functional foods that contain soy peptides, capable of eliciting physiological activities, have
recently been commercialized and made available for applications in health-oriented foods,
functional foods, pharmaceuticals, and cosmetics [5].
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Table 2. Potential bioactive peptides derived from soybean and its by-products [5,134].

Peptide Sequences Biological Effects

APP; IPP; AFH; PPYY; PPYY; YVVPK; IPPGVPYWT;
LAIPVNKP; LPHF; VLIVP; SPYP; WL; NWGPLV; IVF; LLF;
LNF; LSW; IAV; LEF; LEPP; FFYY; FVP; LHPDAQR; VNP;

WNPR; WHP; VAHINVGK; YVWK; SY; GY

ACE inhibitor

ADPVLDNEGNPLENGGTYYI ACE inhibitor and antioxidant
KNPQLR; EITPEKNPQLR; RKQEEDEEQQRE Fatty acid synthase inhibitor

VRIRLLQRFNKRS Appetite suppressant
HCQRPR; QRPR Phagocytosis-stimulating peptide

VK; KA; SY Lower triglyceride
ILL; LLL; VHVV Lipolysis

HHL; PGTAVPK; YVVFK; IPPCVPYWT; PNNKPFQ; NWGPLV;
TRRVF Antihypertensive

PGTAVPK; HTSKALDMLKRLGK Antimicrobial
RQRK; VIK Anti-inflammatory

IQN Adipogenesis inhibition
QRPR; HCQRPR Immunomodulator

LPYP; LPYPR; WGAPSL; VAWWMY; FVVNATSN; IIAEK Hypocholesterolemic
Vglycin Antidiabetic

IAVPGEVA; IAVPTGVA; Hypocholesterolemic and
antidiabetic

LLPHH; RPLKPW Antioxidative and antihypertensive
(X)MLPSWSPW; SLWQHQQDSCRLQLQGVNLFPCEL

HIMELIQGRGDDDDDDD Anticancer

Bowman-Birk inhibitor Anticancer, protease inhibition, and chemoprevention
SKWQHQQDSCRKQKQGVNLTPCEKHIHEKIQGRGD

DDDDDDDD
Antioxidative, anti-inflammatory, anticancer, and

hypocholesterolemic
LPYPR; PGP Antiobesity

YPFVV; YPFVVN; YPFVVNA Antidiabetic, immunomodulator, lower triglyceride, and
suppress feed and intestinal transit

A, Alanine; R, Arginine; N, Asparagine; D, Aspartic acid C, Cysteine; E, Glutamic acid; F, Phenylalanine; K, Lysine; L, Leucine; I, Isoleucine;
M, Methionine; Q, Glutamine, G, Glycine, H, Histidine; S, Serine; T, Threonine; W, Tryptophan; Y, Tyrosine; V, Valine.

9. Lecithin

Lecithins are complex lipids that are abundantly present in egg yolk, soybean oil,
liver, and brain and form a lipid or lipid protein in fat spheres [151]. They are composed
of a fatty acid chain on one side, with strong lipophilicity, and a phosphoric acid and
choline moiety on the other, with strong hydrophilicity; thus, they are widely used as an
emulsifier to stabilize mixtures of water and oil [151,152]. Moreover, lecithin is commonly
used as an antiscattering agent as well as a humectant, to reduce viscosity and control
crystallinity [152,153]. The term lecithin, in its natural state, refers to various phospholipid
mixtures, such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidyli-
nositol (Figure 14, left panel), which are collectively called lecithin, however, chemically,
lecithin refers to phosphatidylcholine [154,155]. Egg yolk lecithin refers to lecithin ex-
tracted from eggs, whereas soybean lecithin refers to that extracted from soybeans [156].
The difference between soybean lecithin and egg yolk lecithin primarily lies in the differ-
ences in phospholipid and fatty acid composition [157]. Soybean lecithin contains equal
proportions of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol,
whereas egg yolk lecithin contains approximately 70% phosphatidylcholine, low levels of
phosphatidylinositol, and some sphingomyelin [158,159].
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Phospholipids in vivo are not only important components of cell membranes but are
also distributed throughout tissues and organ systems, thus playing an important role in
physiological functions (Figure 14, right panel). Consequently, lecithin is involved in a
myriad of metabolic processes, including absorption of fat-soluble nutrients and vitamins,
as well as discharge of waste products [160,161]. It is also involved in solubilization of
cholesterol to reduce blood cholesterol [162,163]. In addition, it is effective in prevent-
ing diabetes, maintaining kidney function, normalizing liver function, and improving
digestibility [4,40,164]. In fact, supplementing lecithin in a low-fat, low-cholesterol diet has
been shown to lower LDL cholesterol by 15% compared to that by low-fat diet alone, while
significantly increasing HDL cholesterol levels [165]. Considering that lecithin dissolves,
washes, and transports fats in the body, it is beneficial for skin health as it not only removes
triglycerides, but also waste and oily substances in blood vessels [157]. It is also used as an
antioxidant to minimize oxidative damage of vitamin A [166].

Lecithin has positive effects by improving brain function and preventing senile demen-
tia [167]. Moreover, lecithin in soybeans effectively prevents the reduction of acetylcholine
in the brain [168]. For instance, one study showed an increase in the amount of acetylcholine
in the brains of rats that were administered lecithin [169]. Increased activity of the cere-
brum increases the consumption of acetylcholine [170]. Phosphatidyl choline affects lipid
metabolism, fat absorption, and nerve function, while phosphatidyl inositol is involved in
hormone expression, cell proliferation, cell division, and liver metabolism [171,172]. On
the other hand, choline, the base constituent of phosphatidyl choline, is a precursor to
acetylcholine, which prevents amnesia [173].

10. Conjugated Linoleic Acid

Conjugated linoleic acid (CLA) is a group of unsaturated fatty acid derivatives that
are named according to the position and geometric isomers of CLA (e.g., 9-cis, 12-cis-
octadecadienoic acid) [174]. Linoleic acid has two double bonds, thus, a total of eight
isomers are naturally present, accounting for more than 98% of all CLA isomers [175]. All
of these isomers are assumed to be trans fatty acids and are not nutritionally beneficial.
CLA was first isolated from fried ground beef, and has attracted attention as a poten-
tial anticancer agent as it inhibits the development of skin cancer in mice [174]. Since
then, the ability of CLA to suppress cancers, including breast and colon cancers, has been
demonstrated through animal studies with cancers induced by various types of chemical
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carcinogens [176]. Of the eight CLA isomers, 9-cis, 11-trans-octadecadienoic acid exerts
a strong anticancer action [176,177]. Moreover, CLA exhibits an antioxidant effect that is
stronger than that of α-tocopherol and similar to that of butylated hydroxy toluene [178].
The antioxidant effect of CLA is expected to exert an anticancer activity by protecting
the cell membrane from free radicals [175,179]. In addition, CLA has an inhibitory ef-
fect on atherosclerosis by significantly lowering total cholesterol, LDL cholesterol, and
triglycerides in the blood, thereby effectively reducing the development of atheroscle-
rotic plaques [180,181]. Furthermore, supplementing CLA in livestock feed promotes
growth and improves feed efficiency by reducing body fat and increasing the amount
of lean meat [182]. Meanwhile, CLA in the meat or milk of livestock is produced by
conversion of linoleic acid into CLA by commensal microorganisms, especially intestinal
bacteria [183,184]. Activation of CLA-mediated CYP7A was associated with the regu-
lation of adipocyte differentiation, insulin resistance, lipid metabolism, carcinogenesis,
inflammation, and immune functions (Figure 15).
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Figure 15. Schematic illustration of the CLA-regulated biological pathway during carcinogenic,
adipose, diabetic, and cardiovascular diseases. CLA conjugated to nuclear receptors such as PPARs
combines with a counterpart nuclear receptor named RXR to transcriptionally downregulate the
target genes related to lipid metabolism including cellular differentiation of adipocytes, cancer cells,
inflammatory cells, and pancreatic cells [184]. CLA, conjugated linoleic acid; PPAR, peroxisome
proliferator-activated receptor; PPRE, peroxisome proliferator responsive element; RXR, retinoid X
receptor. Figure adapted from Yang, B. et al. [184].

11. Pinitol

Pinitol (D-Pinitol, 3-O-methyl-D-chiro-inositol) is a naturally occurring blood sugar
regulator found in legumes and pine needles and is an active ingredient in many plants
used as folk remedies for diabetes in numerous countries around the world. Chiro-inositol,
a structural isomer of myo-inositol, is a compound in which a methyl group is bound to
the 3rd carbon by an ether bond [185–188]. Pinitol is converted to chiro-inositol by the
removal of the methyl group attached to the 3rd carbon under the influence of gastric
acid [188,189]. Chiro-inositol is then absorbed into the blood vessels where it triggers
galactosamine and insulin signaling to participate in normal energy metabolism [190,191].
The concentration of chiro-inositol in the body is low in diabetic patients with impaired
glucose tolerance or insulin resistance, while administration of artificial chiro-inositol has
been shown to improve insulin resistance, suggesting improved sugar metabolism and
blood sugar regulation [192,193]. Hence, ingested pinitol may have similar effects to chiro-
inositol in the normalization of sugar metabolism [194]. Indeed, pinitol has previously
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been used as an oral hypoglycemic agent to control blood sugar in patients with type
2 diabetes [195].

D-Pinitol (DP) has been shown to prevent diabetes-induced endothelial rupture in
the cardiovascular arterial vessel [196]. The preventive activity has been attributed to its
antioxidative effect on nitric oxide-mediated signaling [196]. However, the mechanistic ex-
planation how DP exerts antihyperglycemic functions is unclear [196]. Figure 16 illustrates
the presumable antihyperglycemic activity of DP. Regarding DP-associated pharmacology,
several plant remedies are projected to gain a huge amount of interest owing to their
pharmaco-biological functionalities toward anti-inflammatory and antioxidative features.
The multiple in vitro and in vivo functions exerted by pinitol can reduce and prevent
inflammatory and oxidative circumstances [196].
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Figure 16. Insulin-resistant effects of pinitol. IRS, insulin receptor substrate; p85/p110, phosphoinositide-
3-kinase-alpha subunits; PI3K, phosphoinositide-3-kinase; PIP2/3, probable plasma membrane intrinsic
aquaporin protein; PDK, phosphoinositide-dependent protein kinase; AKT, protein kinase B; SREBP1c,
sterol regulatory element-binding protein 1; GSK3, glycogen synthase kinase 3; PDE3B, cyclic nucleotide
phosphodiesterase 3B; mTORC1, mechanistic target of rapamycin (mTOR) complex 1; FOXO, the O class
of the forkhead box class transcription factors. Figure adapted from Antonowski, T. et al. [196].

12. Conclusions

Soybeans contain high-quality proteins and are a nutritionally superior food resource
containing high unsaturated fatty acid ratios and high levels of dietary fiber. In addition
to the excellent nutritional properties of soybeans, their value has increased recently
as it has been reported that substances previously known as antinutritional factors can
exert anticancer actions as well as several other physiological functions. Soybeans have
been reported to contain various physiologically active substances including soy protein,
oligosaccharides, dietary fiber, isoflavone, saponin, lecithin, phytic acid, protease inhibitors,
and pinitol. In addition, soybeans contain more vitamin B1 and E than other grains. They
are also a desirable food in terms of nutrients, containing both water-soluble and fat-soluble
vitamins. They are also a good source of vitamin C as the oligosaccharides in soybeans can
be reduced to vitamin C. Moreover, vitamin A, a fat-soluble vitamin, exists in the form
of beta carotene. Vitamin E, or tocopherol, functions as an antioxidant to prevent aging.
Asparagine in soybeans also helps to relieve hangovers by removing oxides formed during
metabolism of highly toxic alcohols. Recently, the benefits of soybeans have surpassed
their nutritional value to highlight their functional role in the prevention and treatment
of diseases, and as a result, research on soybeans is rapidly growing. Further studies are
necessary for the discovery of new functional substances of soybean and to investigate the
various underlying mechanisms associated with them.
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13. Perspectives

This review aims to discuss the characteristics of the unique soybean-derived bioactive
substances and its potential as a highly functional food, rather than the plants produced
with the latest technology to improve crop production and environmental adaptation. Over
the past 50 years, research on crop and food improvement through genetic modification,
especially in soybean, has been actively conducted. Currently, with the global advances in
the field of biotechnology related to agriculture and food, the research studies in the devel-
opment of new crops and new varieties are moving toward a strategy to combine molecular
breeding with traditional breeding [197]. Genetically modified (GM) crops refer to those
produced by a technique that modifies the genetic material of a host plant by combining
it with the genetic materials derived from other plant species or its own, to increase its
productivity following better environmental adaptation [198]. Such genetic modification
technologies have been widely used in recent years, especially due to the advantages
of improving productivity and resistance to environmental stress and disease in a short
time [199]. In other words, the importance of genetic engineering technology is increasing
as it can effectively create new crops to cope with the current climate change problem and
global population growth [200]. However, the concerns, including controversies, over its
safety for human consumption and impact on the environment, and popular prejudices
against GM crops and many unscientific, irrational regulations, need to be addressed to
successfully implement GM crops as food [201–203].

Furthermore, with the advancement of technologies, several studies reporting many
GM crops have been documented worldwide. In particular, GM soybeans are cultivated
in many parts of the world, and products obtained from such GM crops are either served
on our table in various forms of food or are integrated with processed food items [199].
Thus far, there have been divided opinions on how these GM crops and foods will affect
our health; with some warning of their adverse effects on the environment and humans
and requesting special regulations to ensure their minimization [203]. In some European
countries, more stringent legal regulations govern the production and import of GM
crops [204]. Therefore, in recent years, more advanced genetic engineering technologies,
including genome editing [205], are being applied to develop new methods to correct genes
without using genetic modification technology. These new technologies are combined
with various advanced biotechnological tools to create a new generation of genetically
engineered crops [199]. The increasing rate of population growth foreseen in the near
future and other global problems such as climate change, food shortage, and environmental
pollution indicate that the traditional breeding techniques are inadequate to meet the ever-
growing demand. Therefore, the convergence of biotechnology, genetic engineering, and
molecular breeding technologies with traditional crop breeding is expected. Furthermore,
it can also solve the difficulties in the development of highly functional health foods.
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