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Introduction  

Irritable bowel syndrome (IBS) is a chronic functional gas-
trointestinal disorder characterized by recurrent abdominal pain 
related to defecation and/or changes in the frequency or form of 
stool.1 According to the predominant stool form of the patients, IBS 
is classified as IBS with predominant diarrhea (IBS-D), IBS with 

predominant constipation (IBS-C), IBS with mixed bowel habits, 
and IBS unclassified.2 The mechanism of symptom generation is 
multifactorial, including altered motility of the gut, visceral hyper-
sensitivity, central dysfunction, low-grade inflammation, increased 
intestinal permeability, disorders of the brain-gut axis, and altered 
gut microbiota.3-5 Over the last decade, microbiota and their metab-
olites have been paid attention to as the cause of IBS symptoms.5-8 

Alteration of the gut microbiota has been reported in patients 
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Gut microbiota and their metabolites like bile acid (BA) have been investigated as causes of irritable bowel syndrome (IBS) symptoms. 
Primary BAs are synthesized and conjugated in the liver and released into the duodenum. BA biotransformation by gut microbiota 
begins in the intestine and results in production of a broad range of secondary BAs. Deconjugation is considered the gateway reaction 
for further modification and is mediated by bile salt hydrolase, which is widely expressed by the gut microbiota. However, gut bacteria 
that convert primary BAs to secondary BAs belong to a limited number of species, mainly Clostridiales. Like gut microbiota modify 
BA profile, BAs can shape gut microbiota via direct and indirect actions. BAs have prosecretory effects and regulates gut motility. BAs 
can also affect gut sensitivity. Because of the vital role of the gut microbiota and BAs in gut function, their bidirectional relationship 
may contribute to the pathophysiology of IBS. Individuals with IBS have been reported to have altered microbial profiles and modified 
BA profiles. A significant increase in fecal primary BA and a corresponding decrease in secondary BA have been observed in IBS 
with predominant diarrhea. In addition, primary BA was positively correlated with IBS symptoms. In IBS with predominant diarrhea, 
bacteria with reduced abundance mainly belonged to the genera in Ruminococcaceae and exhibited a negative correlation with 
primary BAs. Integrating the analysis of the gut microbiota and BAs could better understanding of IBS pathophysiology. The gap in 
this field needs to be further filled in the future. 
(J Neurogastroenterol Motil 2022;28:549-561)
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with IBS.9 The impact of the microbiome on disease etiology could 
occur via the actions of microbiota-derived metabolites, including 
bile acids (BAs). BAs are amphipathic molecules produced in the 
liver, which solubilize lipids into micelles for digestion and absorp-
tion.10 Approximately 95% of secreted BAs are reabsorbed in the 
terminal ileum, and the remaining BAs reach the colon, where they 
are metabolized by gut microbiota, forming a plethora of microbi-
ally modified secondary BAs.11 According to the characteristics of 
BA profiles, BAs can exert their variable effects on gut function, in-
cluding fluid secretion, mucosal permeability, and bowel motility.12-14 
BAs can also modify gut microbiota.15 Given the vital role of gut 
microbiota and BAs in regulating gut function, their bidirectional 
relationship may contribute to the pathophysiology of IBS. Indeed, 
individuals with IBS have been reported to have altered microbial 
profiles and modified BA profiles.16 

In this review, we describe BA synthesis and enterohepatic 
circulation (EHC), transformations of BAs, BA signaling mecha-
nisms, and influences of BA on gut microbiota and functions, and 
summarize the clinical trials investigating alterations of gut micro-
biota and BA profiles in patients with IBS. 

Bile Acid Synthesis and Enterohepatic  
Circulation  

BAs are hydroxylated, amphipathic molecules synthesized 
in the peroxisomes of the liver from cholesterol through 2 major 
pathways.17 The newly synthesized BAs are termed primary BAs, 
including chenodeoxycholic acid (CDCA) and cholic acid (CA), 
to distinguish them from the products of microbial transforma-
tion, termed secondary BAs. Of the 2 major pathways, the classical 
pathway is more important in adult humans and produces both 
primary BAs favoring CA biosynthesis.18,19 The alternative pathway 
results in CDCA biosynthesis and involves less than 10% of BA 
synthesis.19,20 The enzyme cholesterol 7α-hydroxylase (CYP7A1) 
is the rate-limiting step in the classical pathway.21,22 7α-hydroxy-4-
cholesten-3-one (C4) is a downstream product of CYP7A1, reflect-
ing the enzymatic activity of hepatic CYP7A1. Thus, measuring 
serum C4 is a simple test for analyzing hepatic BA synthesis, al-
though it requires a standardized specimen collection time because 
of diurnal variability.8,21 The primary BAs (CDCA and CA) are 
conjugated to the hydrophilic amino acids, either glycine or taurine 
(GCDCA/TCDCA and GCA/TCA) in the liver. Humans prefer-
ably use glycine for conjugation.23 The conjugation of BAs permits 
complete ionization of BAs, which increases their solubility and de-
creases their passive diffusion across the intestinal epithelial barrier, 

leading to high intraluminal concentrations that facilitate micellar 
solubilization of dietary lipids.24,25 These primary BAs are secreted 
into the gallbladder, where they are stored until the consumption 
of food. Ingestion of food triggers the release of cholecystokinin 
by enteroendocrine cells, which causes gallbladder contraction and 
the release of BAs into the duodenum.26,27 There, BAs facilitate the 
digestion and absorption of dietary lipids, fatty acids, cholesterol, 
fat-soluble vitamins, and other hydrophobic components of the diet 
via their surfactant properties, which emulsify fats into micelles.10 
Approximately 95% of secreted BAs are reabsorbed in the terminal 
ileum and transported back into the liver via the EHC.28 The ileal 
apical Na+-dependent bile salt transporter (ASBT), which has a 
greater affinity for conjugated than non-conjugated BAs, actively 
reuptakes conjugated BAs.8,11 After the uptake of BAs by ASBT, 
ileal lipid-binding proteins bind to intracellular BAs, shuttling them 
to the heterodimeric protein, organic solute transporter alpha-beta, 
which efficiently exports them to the portal circulation.29,30 Some 
passive diffusion across the gut epithelium can also occur for both 
conjugated and non-conjugated BAs.31 The remaining 5% of BAs 
that reach the colon are either reabsorbed via passive diffusion or 
lost in the feces (Figure).11 

In ileal enterocytes, BAs activate the nuclear receptor farnesoid 
X receptor (FXR), with CDCA being the most potent agonist 
(Table 1).20,32 FXR then induces the expression of fibroblast growth 
factor 19 (FGF19; rodent ortholog is FGF15). FGF19 is secreted 
from enterocytes into the portal circulation and activates the cell sur-
face receptor, a complex of the β-klotho protein and FGF receptor 
4 in hepatocytes, resulting in the downregulation of CYP7A1 and 
thereby reducing BA synthesis.8,33-35 As serum FGF19 decreases 
and is inversely related to serum C4 during BA malabsorption, it 
could be used for screening tests for malabsorption.8,36-38

Microbial Transformations of Bile Acids  

Small quantities of primary BAs that escape EHC reach the 
colon and undergo extensive microbial biotransformations, includ-
ing deconjugation, 7α-dehydroxylation, oxidation/epimerization, 
and sulfation by the gut microbiota, to produce a broad range of 
secondary BAs.39 In fact, BA biotransformations begin in the small 
intestine and continues in the colon. Deconjugation of BAs changes 
their physiochemical properties, making them more lipophilic and 
susceptible to microbial biotransformation; thus, this is considered 
the gateway reaction for further modification.40-44 Cleavage of amino 
acid side chains on conjugated BAs is mediated by bile salt hydro-
lase (BSH) enzymes that are widely expressed by the gut micro-
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biota.39-43,45 
The diversity of intestinal gram-positive bacteria, including 

Clostridium, Lactobacillus, Bifidobacterium, Enterococcus, and 
Listeria, contributes to amino acid hydrolysis.45-50 Some gram-neg-
ative bacteria such as Bacteroides, Stenotrophomonas, and Brucella 
are also capable of amino acid hydrolysis.51-53 Using metagenomic 
analysis, Jones et al44 identified functional BSH among all major 
bacterial divisions and archaeal species in the gut. Most metage-
nomic BSH-active clones belonged to the phyla Firmicutes, Bac-
teroidetes, and Actinobacteria. In addition, Methanobrevibacter 
smithii and Methanosphera stadmanae encode proteins with high 
identity to bacterial BSH enzymes. This widespread distribution 
indicates that BSH is enriched in the human gut community. How-

ever, BSHs display different catalytic efficiencies and substrate spec-
ificities.54 The organization and regulation of genes encoding BSH 
differ between species and genera, and conjugations are important 
in substrate specificity.41 In a taxonomic analysis of BSHs among 11 
different populations from 6 continents, 591 BSHs were identified 
over 117 genera from 12 phyla.54 Among the bacteria positive for 
BSH activity, more than half of the bacteria belonged to Firmicutes. 
Notably, significant variations in BSH distribution patterns were 
also observed based on the geographic region but not sex, age, or 
body mass index. In addition, BSHs within genera showed a broad 
range of sequence dissimilarities, owing to the paralogs of BSHs in 
many strains. Thus, the genus-level patterns of BSH abundance 
did not reflect the functional variations, necessitating the reclas-

Table 1. Receptors Involved in the Signaling of Bile Acids 

Receptor Sites BA agonist Functions

FXR Nuclear receptor, widespread throughout 
the body, abundant in the liver, intestine, 
and kidneys

CDCA > DCA > LCA > CA Regulation of BA synthesis, absorption, and transport
Maintenance of metabolic homeostasis
Modulation of immune system

TGR5 Membrane receptor, widespread throughout 
the body including the intestine, liver, 
biliary tract, and gallbladder 

LCA > DCA > CDCA > CA Regulation of the intestinal motility and secretion
Maintenance of metabolic homeostasis
Maintenance of intestinal immune homeostasis

PXR Nuclear receptor, abundant in the liver 
and intestine

LCA, only weakly to CDCA, DCA, 
CA, and conjugated BAs

Detoxication of xenobiotics and LCA
Maintenance of intestinal immune homeostasis
Modulation of BA homeostasis

VDR Nuclear receptor, widespread throughout 
the body, abundant in the intestine

LCA Detoxication of LCA
Modulation of BA synthesis
Maintenance of bone and calcium homeostasis

BA, bile acid; FXR, farnesoid X receptor; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; LCA, lithocholic acid; CA, cholic acid; TGR5, Takeda G 
protein-coupled receptor 5; PXR, pregnane X receptor; VDR, vitamin D receptor.

Figure. Bile acids (BAs) synthesis, 
enterohepatic circulation, and factors af-
fecting BA profiles. BA synthesis could 
be affected by conditions (eg, decreased 
in cirrhosis). Small intestinal bacterial 
overgrowth (SIBO) elevates level of 
unconjugated BAs in the small intestine. 
Dysbiosis, BA malabsorption, and rapid 
gut transit could be associated with in-
creased fecal primary BAs. BSH, bile 
salt hydrolase.
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sification of BSHs. BSH activity and subsequent BA modification 
could significantly affect host physiology, including the regulation of 
cholesterol metabolism, energy, and inflammation homeostasis.55-57 
When treating recurrent Clostridioides difficile infection with fe-
cal microbiota transplant, the restoration of gut BSH functionality 
contributes to the efficacy of transplant.58 Because of the important 
roles of BSHs, gaps in the understanding of these enzymes require 
further research. 

Once deconjugated, free primary BAs are metabolized by 
the resident microbiota into free secondary BAs, such as deoxy-
cholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic 
acid (UDCA) via 7α-dehydroxylation and oxidation/epimeriza-
tion.44,59-61 CDCA is transformed into DCA and CA into LCA by 
7α-dehydroxylation. Because DCA and LCA predominate in hu-
man feces, 7α-dehydroxylation is the most quantitatively important 
microbial transformation.41 Human intestinal bacteria capable of 
7α-dehydroxylation belong to the genus Clostridium.62-64 Multiple 
bai genes encoding proteins required for 7α-dehydroxylation have 
been characterized from Clostridium scindens.41 

Epimerization of the 3-, 7-, and 12-hydroxy groups of BAs is 
carried out by hydroxysteroid dehydrogenase (HSDH) expressed 
by intestinal bacteria, which diversifies the chemistry of secondary 
BAs. Epimerization is a reversible change in stereochemistry from 
the α to β configuration (or vice versa) with the generation of a 
stable oxo-BA intermediate. While α-hydroxy BAs are amphipa-
thic, both faces of BA are hydrophilic in β orientation.41 Epimer-
ization requires 2 distinct steps: oxidation of the hydroxyl group 
by a position-specific HSDH, followed by the reduction of the 
hydroxyl group by another position-specific HSDH.39,41 CA can be 
epimerized to form ursoCA, 12-epiCA, or isoCA, and CDCA can 
be epimerized to form either UDCA (7β-hydroxy) or isoCDCA. 
Epimerization of UDCA to CDCA can also be carried out by 
7β-HSDH.41 3-oxoLCA and isoLCA produced by 3α-HSDH 
are known to suppress differentiation of T helper cells expressing 
IL-17A and may contribute to gut immune homeostasis.65 Al-
though their enzyme characteristics vary, several intestinal microbes 
have been observed to produce HSDHs, including a small number 
of species of Clostridium, Rumminococcus, Bacteroides, and Esch-
erichia coli.66-77 

Secondary BAs may undergo further modification including 
sulphation, imparting changes in their solubility, metabolism, excre-
tion, and toxicity.78,79 Specifically, sulfated BAs are more rapidly ex-
creted in the urine, and sulfated LCA is less efficiently reabsorbed in 
the intestine than non-sulfated.79 Sulfation of BAs may be associated 
with constipation.80 In a subset of children with functional constipa-

tion, dominant fecal BA was the 3-sulfate of CDCA. Such sulfation 
may abolish the secretory activity of CDCA and contribute to consti-
pation. In an animal experiment, sulfation prevented secretion caused 
by di-α-hydroxy BAs (DCA and CDCA) in the colon.81 Notably, 
increased fecal sulfated BAs were also observed in patients with IBS-
D compared with that in IBS-C.36 Further research that includes 
measurements of sulfotransferase and sulfatase activity is necessary. 

Bile Acids in Small Intestinal Bacterial  
Overgrowth  

Small intestinal bacterial overgrowth (SIBO) is one manifesta-
tion of gut microbiome dysbiosis and is highly prevalent in IBS.82 
Many bacteria in the small intestine have the capacity to metabolize 
BAs. Shindo et al83 isolated bacterial species from the jejunal fluid 
obtained from patients with progressive systemic sclerosis and posi-
tive 14CO2 breath test. The isolated Bacteroides vulgatus, Eubacte-
rium lentum, Enterococcus, and Lactobacillus bifidus (except for E. 
coli and Aerobacter aerogenes) were capable of hydrolyzing conju-
gated BAs in ox gall. Similarly, higher unconjugated BAs from the 
upper gut aspirate have been observed in malabsorption syndrome 
patients with SIBO than those without SIBO.84 However, the 
amount of unconjugated BAs did not correlated with colony counts 
of isolated bacteria. This observation suggests the different BSH 
activity among the isolated bacteria. As unconjugated BAs are 
absorbed from the small intestine into the portal blood, elevated un-
conjugated serum BA levels have also been found in patients with 
SIBO.85 Because BA profiles in the small intestine are less affected 
by gut transit and ileal absorption, investigating the associations be-
tween the BA profile and gut microbiome using small bowel aspira-
tion samples of individuals with SIBO could offer us opportunities 
to further fill the gap of knowledge (Figure). 

Bile Acid Signaling Mechanisms  

Because of the variety of levels and types of BAs in the intestine, 
biliary tract, and liver, BAs have emerged as important regulators of 
epithelial physiology and pathophysiology.11,86 Since the discovery of 
BA receptors, there have been advances in understanding how BAs 
exert their effects. 

G protein-coupled BA receptor 1, also called Takeda G 
protein-coupled receptor 5 (TGR5), is responsive to BAs as a cell 
surface receptor.87,88 TGR5 is a member of the G protein-coupled 
receptor family, which stimulates cAMP synthesis and activates 
protein kinase-A, leading to the expression of target genes.87 TGR5 
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is widely expressed throughout the body, including in the intestine, 
liver, biliary tract, and gallbladder.56,87,89-91 The functions of TGR5 
are thought to be broader than just being a metabolic regulator of 
energy homeostasis, BA homeostasis, and glucose metabolism.92 
Particularly notable is that the activation of TGR5 on the intestinal 
motor neurons by BAs regulates intestinal motility.93 Conjugated 
and unconjugated BAs bind to TGR5, with the secondary BAs 
LCA and DCA being most potent, followed by CDCA and CA.87 

Physiological concentrations of free and conjugated BAs acti-
vate the nuclear receptor FXR as ligands.94,95 The structure–activity 
relationship of BAs in activating FXR shows the order of potency 
of CDCA > DCA > LCA > CA.96 CDCA is an extremely 
effective activator of FXR, whereas CA is inactive. CA and con-
jugated BAs are hydrophilic compounds that do not readily cross 
cell membranes; instead, they are passively diffused or facilitated by 
BA transport proteins.96,97 FXR is widely expressed throughout the 
body and highly expressed in the liver, intestine, and kidneys.32,98 As 
aforementioned, the primary function of FXR activation by BAs is 
the feedback inhibition of BA synthesis through the downregula-
tion of CYP7A1.8,33-35 In addition, FXR is important in metabolic 
homeostasis.99,100 Pregnane X receptor (PXR) is another nuclear 
receptor that can be activated by BAs and is highly expressed in 
the liver and intestine.101 The role of PXR in the detoxication of 
xenobiotics and LCA is well known.102,103 PXR also contributes 
to maintaining intestinal immune homeostasis104,105 PXR down-
regulates BSH-active bacteria in the intestine and modulates BA 
homeostasis.101 PXR is activated by LCA but only weakly responds 
to CDCA, DCA, CA, and conjugated BAs.106 Vitamin D recep-
tors (VDR) are another type of BA-sensitive nuclear receptor, 
widely expressed throughout the body, with an abundance in the 
intestine.107 In addition to the classic endogenous ligand, 1,25-dihy-
droxy vitamin D3, LCA can activate VDR.108 It contributes to the 
metabolism of BAs as well as calcium homeostasis and bone main-
tenance. Activation of VDR by LCA or vitamin D induced the 
expression of CYP3A and the multidrug resistance-associated pro-
tein-3 (MRP3).108,109 Hydroxylation of LCA by CYP3A reduces 
the toxicity of LCA, which is hepatotoxic and a potential enteric 
carcinogen in the liver and intestine, and MRP3 effluxes LCA into 
the blood to protect colon cells from LCA toxicity. 

Influence of Bile Acids on Gut Microbiota  

Like bacterial enzymes chemically modify BA profile, BAs 
can modify the gut microbiota. BAs are potent antimicrobials and 
play an important role in the innate immune defense within the 

intestine.15 As BAs act as detergents in the gut, they allow for the 
disruption of bacterial membranes, leading to the leakage of proton, 
potassium ion, and other cellular components and eventually cell 
death.110 The antimicrobial potency of DCA is greater than that of 
CA due to its hydrophobicity and detergent properties on bacterial 
membranes.111 When tested against Staphylococcus aureus, uncon-
jugated BAs exhibit more potent antibacterial action than conju-
gated BAs.15 Because deconjugation by BSH makes the BAs more 
lipophilic,112 unconjugated BAs are likely to disrupt membranes 
and cause intracellular damage.110,113 On the other hand, conju-
gated BAs can have a more indirect action on the gut microbiota. 
Activation of FXR induces genes involved in enteroprotection and 
inhibits bacterial overgrowth and mucosal injury, resulting in the 
protection of the small intestine from bacterial invasion.114 

Gram-negative bacteria are thought to have a higher BA 
tolerance than Gram-positives.115 Salmonella, E. coli, and Campy-
lobacter are very bile resistant and have been isolated from the gall-
bladder. Although gram-positive bacteria are more sensitive to the 
deleterious effects of bile than gram-negative bacteria, bile tolerance 
is a strain-specific trait, and tolerance of species cannot be general-
ized.116 For example, Listeria monocytogenes cholecystitis has been 
reported suggesting a very high level of bile resistance.117 However, 
decreased levels of BAs in the gut favor gram-negative bacteria al-
lowing proinflammatory microbial taxa to expand, and increased 
BAs levels favor gram-positive bacteria of the Firmicutes, includ-
ing bacteria that 7α-dehydroxylate primary BAs to toxic secondary 
BAs.115,118 In rats, CA feeding induced the significant expansion 
of DCA-producing bacteria, expanding phylum Firmicutes, class 
Clostridia, and genus Blautia.119 

Influence of Bile Acids on Gut Functions  

Generally, BAs induce colonic fluid secretion at high levels.13 
However, there is a marked structural specificity for BA-induced 
secretion, and the α-dihydroxy BAs CDCA and DCA have 
prosecretory effects.120,121 The trihydroxy BA (CA) does not have 
prosecretory effects, and UDCA (7β-OH epimer of CDCA) has 
antisecretory effects.13,122 The conjugation status of BAs is also an 
important determining factor of their secretory effects.121 Because 
conjugated BAs are hydrophilic and need to be more lipophilic 
to cross the cell membrane, they do not have secretory effects. 
However, conjugated BAs can increase epithelial permeability at a 
relatively high concentration, which allows them to gain access to 
regions where they can exert their secretory effects.123 In contrast 
to prosecretory effects at pathophysiological concentrations, lower 
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levels of DCA is known to downregulate colonic epithelial secretory 
function.124 These observations suggest that BAs play an important 
role in regulating colonic fluid levels. 

In addition to the regulation of fluid transport, BAs can exert 
their effects on gut motility.12-14 In humans, rectal CDCA infusion 
induces propagating pressure waves arising in the proximal colon.14 
In another human infusion study, CDCA was more strongly associ-
ated with a higher colonic motility index than TCA, which contrasts 
with the animal (rabbit) results obtained in the same study.125 In 
an in vitro study, DCA increased isolated human colon motility, 
whereas CDCA and CA did not.126 The mechanism of action of 
DCA on smooth muscle activity was revealed as a local neuronal 
phenomenon in the rabbit colon in vitro.127 However, inhibitory ac-
tions of BAs on colon motility have also been shown in animal stud-
ies. Luminal bile from the gallbladder and conjugated primary BA 
(TCA and TCDCA) inhibit contractions of the intestine (isolated 
rabbit terminal ileal segment and isolated guinea pig ileum smooth 
muscle strips).128,129 A mouse intestine study demonstrated that 
DCA inhibits intestinal motility by activating TGR5 on inhibitory 
motor neurons to release nitric oxide, whereas the effects of UDCA 
and TDCA were not significant.93 However, contractile inhibition 
of in vitro colon tissue in particular muscle strips does not indicate 
decreased gut motility, because peristalsis requires the both contrac-
tion and relaxation of gut muscles. In a mouse study, DCA reduced 
the contractility of colonic longitudinal muscles but could stimulate 
the ascending contraction and descending relaxation components of 
the peristaltic reflex of the flat sheet preparation of the proximal co-
lon.130 Furthermore, oral administration of CDCA improved bowel 
function in patients with either IBS-C or chronic constipation.131,132

BAs can also affect gut sensitivity. Rectal infusion of DCA 
and CDCA at physiological concentrations reduces rectal sensory 
thresholds.14,133 The mechanism of visceral hypersensitivity induced 
by BAs has been investigated in animal studies.134,135 BAs stimulate 
the release of nerve growth factor from mucosal mast cells through 
the activation of FXR, resulting in the activation of transient recep-
tor potential vanilloid 1.134 TGR5 agonists, including DCA, also 
activate subsets of colonic sensory neurons and evoke colonic af-
ferent mechanical hypersensitivity via a transient receptor potential 
ankyrin A1-dependent mechanism.135

Altered Bile Acid Profile and Gut Microbiota 
in Patients With Irritable Bowel Syndrome  

In several clinical studies, the BA profiles of patients with IBS 
and those of healthy controls (HC) differ (Table 2).16,36,136-141 The 

level of total fecal BA was higher in IBS-D patients than that in 
HC, according to 3 studies of Asian groups.136-138 On the other 
hand, Western studies demonstrated no differences in the level of 
total fecal BA between IBS-D groups and HC.16,36,139 Most stud-
ies had measured total BA excretion in a single stool, which might 
be acceptable but is not ideal.142 When stool samples were collected 
over 48 hours, the level of total fecal BA was higher in IBS-D 
group than in IBS-C group, but not in HC.139 In addition, total 
fecal BA correlated with stool weight. However, because total fecal 
BA was determined from total 3α hydroxy BAs, some subgroups of 
BAs could have been missed. Taken together, the levels of fecal total 
BAs in the IBS-D group showed an increasing tendency compared 
with the levels in IBS-C group or HC. Notably, a systematic review 
showed that 32% of patients with symptoms consistent with IBS-D 
had moderate BA malabsorption (75selenium homotaurocholic acid 
test 7 day retention < 5% of baseline value).143 Zhao et al137 inves-
tigated the connection between the gut microbiota in IBS-D group 
and BA excretion. Twenty-five percent of patients with IBS-D (71 
of 290, BA+IBS-D) had an excess of total BA excretion in feces by 
the 90th percentile cutoff value, determined from the HC (n = 89). 
BA+IBS-D group exhibited increased C4 and decreased FGF19 
levels in sera, as well as an increased severity of diarrheal symptoms 
compared with the corresponding values in the BA–IBS-D group 
and HC. Different microbial profiles were found in BA+IBS-D 
compared to either HC or BA–IBS-D. The relative abundances of 
the phyla Firmicutes, Actinobacteria, Fusobacteria, and Proteobac-
teria increased, and that of Bacteroidetes decreased in the BA+IBS-
D group. At the genus level, the abundance of Clostridia bacteria, 
including Ruminococcus, Clostridium, Eubacterium, and Dorea, 
was increased in BA+IBS-D. The abundance of Bifidobacterium, 
Escherichia, and Bilophila was also increased. Correlation analysis 
revealed that the abundance of Clostridia genera and C. scindens 
species was positively correlated with the concentrations of total fecal 
BAs and serum C4 but negatively correlated with serum FGF19 
levels, suggesting that Clostridia-rich microbiota influences BA 
synthesis and excretion in IBS-D. In addition, Clostridia-derived 
BAs attenuated intestinal FGF19/15 production. 

As the fecal BA pool is modulated by the gut microbiota and 
gut dysbiosis is implicated in the pathophysiology of IBS.6 Al-
though conjugated BAs increased in IBS-D group, only a small 
subgroup of patients had a high conjugated BAs to unconjugated 
BAs ratio.136 Thus, impaired deconjugation of BAs may not widely 
exist in IBS-D.136 Duboc et al16 observed a significant increase in 
fecal primary BA and a corresponding decrease in secondary BA 
in IBS-D compared with that in HC, which has consistently been 
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reported.36,136,138 Moreover, fecal primary BA percentage was posi-
tively correlated with the Bristol stool score and stool frequency, 
whereas secondary BA was negatively correlated with these param-

eters. Similarly, in other studies, primary BA was positively corre-
lated with the Bristol stool score36 and defecation frequency,36,138 and 
secondary BA was negatively correlated with defecation frequen-

Table 2. Summary of Clinical Studies Investigating the Bile Acid Profiles and Fecal Microbiota in Irritable Bowel Syndrome 

Study Participants (n) Fecal BA profile Fecal microbiota

Wong et al 
(2012)139

HC (26), IBS-C (26),  
and IBS-D (26)

Higher total BA in IBS-D than in IBS-C but not than in HC
Total BA correlated with stool weight and fat 

Not investigated

Duboc et al 
(2012)16

HC (18) and  
IBS-D (14)

Similar total BA in IBS-D and HC
Increased PBA (%) and decreased SBA (%) in IBS-D than in HC 

Decreased the leptum and Bifidobacterium 
groups in IBS-D than in HC

Increased E. coli species in IBS-D than 
in HC

Shin et al 
(2013)140

HC (30), IBS-C (30),  
and IBS-D or FD 
(31)

Increased total UBA in IBS-D than in IBS-C but not than in 
HC

Higher primary UBA (%) in IBS-D than in HC 
Lower secretory CDCA and DCA (%) in IBS-C than in HC 
Higher non-secretory secondary LCA (%) in IBS-C than in HC

Not investigated

Dior et al 
(2016)36

HC (15), IBS-C (15), 
and IBS-D (16)

No differences of total BAs among the three groups
Increased PBAs and decreased SBAs in IBS-D compared to HC
Increased sulfated BAs and UDCA in IBS-D compared to HC
Increased CDCA, sulfated BAs, and UDCA in IBS-D  

compared to IBS-C

No differences in the total fecal bacteria 
counts in the 3 groups

Increased relative counts of E. coli in 
IBS-D compared to HC

Increased relative counts of Bacteroides 
and Bifidobacterium in IBS-C  
compared to IBS-D and HC

Zhao et al 
(2020)137

HC (89) and  
IBS-D (290)

Increased total BA in IBS-D than in HC
Increased amounts of CA, CDCA, DCA, LCA, 7-KDCA, 

UDCA, and ωMCA and increased % of CA, CDCA, UDCA, 
and 7-KDCA and decreased % of LCA and 12-KLCA in  
IBS-D with high BA excretion compared with HC

Increased abundances of Clostridia  
bacteria, Bifidobacterium, Escherichia, 
and Bilophila and decreased abundances 
of Alistipes and Bacteroides in IBS-D 
with high fecal BA excretion 

Positive correlation of the abundances 
of Clostridia genera and C. scindens 
species with total BAs and serum C4

Wei et al 
(2020)136

HC (28) and  
IBS-D (55)

Increased total fecal BA in IBS-D than in HC
Increased PBAs and decreased SBAs in IBS-D than in HC
Decreased LCA in IBS-D than in HC
Increased CBAs, UBAs, and ratio of CBAs/UBAs in IBS-D

Increased Proteobacteria, Gammapro-
teobacteria, Enterobacteriales,  
and Enterobacteriaceae and decreased 
Clostridia, Clostridiales,  
and Ruminococcaceae in IBS-D

Decreased 9 genera including 5 from 
Ruminococcaceae in IBS-D

Negative correlation of PBAs and  
positive correlation of SBAs with  
8 genera among decreased 9  

Wei et al 
(2021)138

HC (32) and  
IBS-D (52)

Increased total fecal BA in IBS-D than in HC
Increased PBAs and decreased SBAs in IBS-D than in HC

Not investigated

James et al 
(2021)141

HC (97), IBS-D (52), 
and IBS-C (24)

Increased CA in IBS-D than in HC but not in IBS-C
Increased CDCA in IBS-D than in IBS-C and in HC
Decreased GCA in IBS-C than in IBS-D and in HC

Not investigated

BA, bile acid; HC, healthy control; IBS-C, constipation-predominant irritable bowel syndrome; IBS-D, diarrhea-predominant irritable bowel syndrome; PBA, 
primary bile acid; SBA, secondary bile acid; E. coli, Escherichia coli; FD, functional diarrhea; UBA, unconjugated bile acid; CDCA, chenodeoxycholic acid; DCA, 
deoxycholic acid; LCA, lithocholic acid; UDCA, ursodeoxycholic acid; CA, cholic acid; 7-KDCA, 7-ketodeoxycholic acid; ωMCA, ω-muricholic acid; 12-KLCA, 
12-ketolithocholic acid; C. scindens, Clostridium scindens; C4, 7α-hydroxy-4-cholesten-3-one; CBA, conjugated bile acid; GCA, glyco-CA.
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cy.138 Two α-dihydroxy BAs, CDCA and DCA, have prosecretory 
effects. Indeed, CDCA and DCA correlate with stool frequency 
and the score in IBS-D,140 and percentages of CDCA and DCA 
were lower in IBS-C than that in HC.140,141 However, decreased 
secondary DCA in IBS-D was also observed.16 From other stud-
ies providing the absolute amounts of individual BAs, differences 
in DCA were not significant, but CDCA was 20 times to 30 times 
higher in IBS-D than in HC.136,138 Thus, the change in CDCA 
amount seems to predominantly exert an effect on the stool score 
and frequency in IBS-D. The relationship between fecal BA excre-
tion, fecal BA profile, and colon transit appears to be very complex 
as being a cause and/or consequence. First, clarification is necessary 
regarding whether the altered BA profile is due to a dysfunction of 
microbial biotransformation related to gut dysbiosis or due to rapid 
gut transit, decreasing the time for gut microbiota to metabolize 
BAs in patients with IBS-D. 

In addition, primary BA showed a positive correlation with 
abdominal pain in IBS-D.36 Wei et al138 investigated the relationship 
between BAs and their receptors (TGR5 and VDR) in patients 
with IBS-D. They observed that the level of TGR5 immunoreac-
tivity in rectosigmoid mucosal biopsies was higher in IBS-D than 
that in HC. Furthermore, the level of TGR5 was higher in patients 
with more severe or frequent abdominal pain and was positively as-
sociated with primary BAs and negatively associated with secondary 
BAs. Although no direct link between fecal BAs and abdominal 
pain has been demonstrated, BAs might contribute to the hyper-
sensitivity of patients with IBS-D via increased TGR5 level in the 
colon. Increased TGR5 expression is thought to be a compensa-
tory response to decreased levels of potent agonists, secondary BAs 
(LCA and DCA).

Importantly, an imbalance between primary and secondary BAs 
in IBS-D has been consistently reported. Because BAs are metabo-
lized by the gut microbiota, dysbiosis could be a critical factor in 
the altered BA profiles observed in IBS-D patients. Duboc et al16 
demonstrated the presence of gut dysbiosis and altered BA profiles 
in patients with IBS. They observed an increase in E. coli and a 
decrease in Bifidobacterium and Clostridium leptum in patients 
with IBS-D compared with that in HC. Although a decrease in the 
number of bacteria involved in BA transformation could lower the 
biotransformation of BAs, the results did not show a direct causal 
link. Thus, they performed an in vivo test to determine the ability 
of feces to deconjugate BAs in the following study.36 Deconjugation 
activity was decreased in IBS compared with that in HS and did not 
differ between IBS-D and IBS-C groups. The BA profiles in stool 
and blood were also similar between IBS-D and IBS-C. However, 

the IBS-D group showed an increase in E. coli compared with that 
in the HC group, and IBS-C showed an increase in Bifidobacte-
rium and Bacteroides compared with that in the HC and IBS-D 
groups. 

To determine whether the alteration of BA profiles is due to a 
dysfunction in biotransformation related to gut dysbiosis, establish-
ing a direct link between the BA profile alteration and microbial 
variations is necessary. Wei et al136 assessed the correlation between 
fecal BAs (CA, CDCA, DCA, LCA, and UDCA) and the gut 
microbiome in Chinese patients with IBS-D. At the genus level, 
nine genera were significantly less abundant, including the genera in 
Ruminococcaceae (Anaerofilum, Anaerotruncus, Faecalibacterium, 
Gemmiger, and Oscillibacter), in Lachnospiraceae (Coprococcus), 
in Porphyromonadaceae (Odoribacter), in Rikenellaceae (Alis-
tipes), and in Synergistaceae (Cloacibacillus); 8 genera were more 
abundant, including Escherichia/Shigella, Enterococcus, Strepto-
coccus, Rothia, Klebsiella, Saccharibacteria genera incertae sedis, 
Fusobacterium, and Veillonella. The 8 genera that were reduced in 
IBS-D, except for Cloacibacillus, exhibited a negative correlation 
with primary BAs (CA and CDCA) and a positive correlation with 
secondary BAs (DCA, LCA, and UDCA). However, correlations 
cannot be equated to causal associations, and a longitudinal study is 
required to confirm these results. 

Other Conditions That Affect the Luminal 
Bile Acid Profile  

Conditions other than microbial biotransformation are linked to 
changes in luminal BA characteristics. The BA pool in patients with 
cirrhosis is depleted due to decreased synthesis.144 The decrease in 
fecal BAs promotes the depletion of Firmicutes and expansion of 
proinflammatory pathogenic bacteria of Proteobacteria.115 Deple-
tion of 7α-dehydroxylation bacteria leads to an increased primary to 
secondary BA ratio in patients with cirrhosis. Because the gallblad-
der stores and releases primary BAs, cholecystectomy may affect 
BA homeostasis. Gallbladder removal may increase the formation 
and pool size of secondary BAs due to the increased exposure of 
primary BAs to bacterial biotransformation in the intestine. How-
ever, cholecystectomy does not lead to significant changes in the BA 
profile in the long term.145,146 Defects in the formation and transport 
of BA could affect the BA pool.147 Several inherited defects in en-
zymes, including CYP7A1, could be involved in BA synthesis. In 
multiple biosynthetic pathways, a single enzyme defect is usually 
not sufficient to block the production of all BAs. These rare genetic 
diseases are characterized by cholestasis, neurological disorders, and 
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fat-soluble vitamin deficiency.148 Inherited transporter defects are 
also rare, and the spectrum ranges from benign conditions such as 
benign recurrent intrahepatic cholestasis to progressive familial in-
trahepatic cholestasis.149 Typically, the first presentation of progres-
sive familial intrahepatic cholestasis is in early childhood, frequently 
followed by a severe course requiring liver transplantation before 
adulthood.150

Conclusion  

Diverse BA profiles can regulate gut functions in terms of fluid 
absorption and secretion, motility, and sensitivity. Elucidating the 
underlying mechanisms of action help clarify their contributions 
to the pathophysiology of IBS, especially in IBS-D. Because of the 
reciprocal relationship between altered BA profiles and dysbiosis in 
IBS, integrating their analysis seems necessary and could provide 
insights into the pathophysiology and treatment of IBS. However, 
few relevant studies have been conducted, and they involved only 
a small number of subjects, mostly patients with IBS-D. Further-
more, the observational and cross-sectional study designs did not 
show causal associations among altered BA profiles, gut dysbiosis, 
and bowel symptoms. Therefore, associations between the BA pro-
file and gut microbiome require further investigation using several 
conditions and samples, for example, small bowel aspiration samples 
of patients with SIBO. In addition, large longitudinal and interven-
tional studies are warranted to verify previous observations. 
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