

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Letter to the Editor

Re-purposing of domestic steam disinfectors within the Hospital-at-Home setting: Reconciliation of steam disinfector thermal performance against SARS-CoV-2 (COVID-19), norovirus and other viruses' thermal susceptibilities

KEYWORDS
Disinfection;
SARS CoV-2;
COVID-19;
Heat inactivation;
Thermal inactivation
Norovirus

Highlights

- Description of time/temperature thermal performance of a domestic steam-disinfector device is presented.
- Thermal susceptibility of SARS-CoV-2 (COVID-19), norovirus and other viruses is presented.
- Knowing the thermal susceptibility of viruses and performance of device can help predict fate of viruses in such devices.

Dear Editor,

Recently, our group published a paper in *Infection, Disease* & *Health* describing the re-purposing of domestic steam disinfectors to eradicate bacterial pathogens within the Hospital-at-Home scenario [1]. The main value of this paper is the description of time/temperature combinations within the steam disinfector device, as determined by employment of calibrated thermocouple probes, as shown in Table 1 (Thermal performance of steam disinfector using the A0 Concept according to EN ISO 15883). This table shows the duration of time (sec) that the device remains at \geq 70 °C, \geq 80 °C, \geq 90 °C and \geq 93 °C. Whilst this manuscript was

solely focussed on the elimination of bacterial pathogens, subsequent interest has been expressed as to how these time/temperature data could be exploited to determine how the disinfector would eradicate non-bacterial targets, particularly respiratory and gastrointestinal viruses.

To address this, we now present an additional table (Table 2) of thermal lethality data against viral targets, compiled from previously published thermal inactivation reports.

We hope that a synthesis of both these tables will now allow the reader to predict the fate of these viruses within the steam disinfector device.

Probe position	Maximum temperature reached (°C)) Time (sec) at (A0 equivalent)							
		≥70 °C	≥80 °C	\geq 90 °C	≥93 °C				
Upper Layer									
(i) No Fan; 90 I	mls fill volume, lower layer empty								
1	100.0	800 (A _o = 60)	$600 (A_o = 600)$	400 ($A_o = 3000$)	$340 (A_o = 6000)$				
2	100.1	820 ($A_o = 60$)	620 ($A_o = 600$)	400 ($A_o = 3000$)	$320 (A_o = 6000)$				
3	100.5	$800 \ (A_o = 60)$	580 ($A_o = 60$)	$400 (A_o = 3000)$	$320 (A_o = 6000)$				
4	99.9	780 ($A_o = 60$)	580 ($A_o = 60$)	$400 (A_o = 3000)$	$340 (A_o = 6000)$				
5	100.1	$800 (A_o = 60)$	$600 \ (A_o = 600)$	420 ($A_o = 3000$)	$340 (A_o = 6000)$				
(ii) Fan [30mins]; 90 mls fill volume, lower layer empty									
1	98.0	516 ($A_o = 6$)	400 ($A_o = 60$)	280 ($A_o = 600$)	$200 (A_o = 3000)$				
2	98.4	520 ($A_o = 6$)	$400 (A_o = 60)$	280 ($A_o = 600$)	220 ($A_o = 3000$)				
3	99.0	500 ($A_o = 6$)	$400 (A_o = 60)$	280 ($A_o = 600$)	240 ($A_o = 3000$)				
4	98.1	500 ($A_o = 6$)	400 ($A_o = 60$)	280 ($A_o = 600$)	$200 (A_o = 3000)$				
5	98.5	520 ($A_o = 6$)	420 ($A_o = 60$)	$300 (A_o = 600)$	220 ($A_o = 3000$)				
(iii) No Fan; 90	mls fill volume, lower layer filled wit	h baby bottles							
1	95.7	510 ($A_o = 6$)	$300 (A_0 = 60)$	120 ($A_0 = 600$)	$60 (A_0 = 600)$				
2	96.7	510 ($A_0 = 6$)	$330 (A_0 = 60)$	120 ($A_0 = 600$)	$60 (A_0 = 600)$				
3	96.7	510 ($A_o = 6$)	$330 (A_0 = 60)$	150 ($A_0 = 600$)	90 ($A_0 = 600$)				
4	95.3	$480 (A_0 = 6)$	270 ($A_0 = 60$)	90 ($A_0 = 600$)	$30 (A_0 = 600)$				
5	96.7	510 ($A_o = 6$)	$300 (A_0 = 60)$	120 ($A_0 = 600$)	$60 (A_0 = 600)$				
Lower Layer									
(i) No Fan; 90 I	nls fill volume, lower layer empty								
6	89.9	460 ($A_0 = 6$)	320 ($A_0 = 60$)	0	0				
7	88.8	$360 (A_0 = 6)$	$200 (A_0 = 60)$	0	0				
8	86.1	$360 (A_0 = 6)$	$180 (A_0 = 60)$	0	0				
9	93.0	$480 (A_0 = 6)$	$400 (A_0 = 60)$	160 ($A_0 = 600$)	1				
10	89.6	480 ($A_0 = 6$)	240 ($A_0 = 60$)	0	0				
(ii) Fan [30 mir	ns]; 90 mls fill volume, lower layer en	npty	()						
6	89.3	180 ($A_0 = 6$)	60 ($A_0 = 60$)	0	0				
7	88.0	260 ($A_0 = 6$)	$160 (A_0 = 60)$	0	0				
8	83.5	$320 (A_0 = 6)$	$180 (A_0 = 60)$	0	0				
9	90.0	260 ($A_0 = 6$)	140 ($A_0 = 60$)	0	0				
10	89.0	$380 (A_0 = 6)$	$260 (A_0 = 60)$	0	0				
(iii) No Fan; 90	mls fill volume, inside baby bottles								
6	95.2	560 ($A_0 = 6$)	$380 (A_0 = 60)$	220 ($A_0 = 600$)	$100 (A_0 = 600)$				
7	96.5	$660 (A_0 = 60)$	$480 (A_0 = 60)$	220 ($A_0 = 600$)	$160 (A_0 = 600)$				
8	95.0	$640 (A_0 = 60)$	$400 (A_0 = 60)$	161 ($A_0 = 600$)	79 ($A_0 = 600$)				
9	95.3	$620 (A_0 = 60)$	421 ($A_0 = 60$)	$200 (A_0 = 600)$	141 ($A_0 = 600$)				
10	97.1	719 ($A_0 = 60$)	559 ($A_0 = 60$)	320 ($A_0 = 3000$)	241 ($A_0 = 3000$)				

Table 1	Thermal performance of ste	am disinfector	r using the A	, Concept a	according to	EN ISO 1	5883. F	Reprinted fi	om [1]	with
permission	n from Elsevier.									

 Table 2
 Thermal susceptibility of SARS CoV-2, norovirus and other viruses.

Virus	Sample	Treatment	Temp. (°C)	Time (min)	Viral Titre Before Heat	Log ₁₀ reduction (LRF)
SARS-CoV-2						
SARS-CoV-2 England [2]	Tissue culture fluid	Heat block	56	15	5.8 log ₁₀ pfu/ml	2.7
			56	30	5.8 log ₁₀ pfu/ml	4.9
			56	60	5.8 log ₁₀ pfu/ml	2.1
			80	15	5.7 log ₁₀ pfu/ml	3.5
			80	30	5.7 log ₁₀ pfu/ml	4.4
			80	30	5.6 log ₁₀ pfu/ml	4.1
			80	60	5.6 log ₁₀ pfu/ml	≥5.1
			80	90	5.6 log ₁₀ pfu/ml	≥5.1
			95	1	5.7 log ₁₀ pfu/ml	≥5.2
			95	5	5.7 log ₁₀ pfu/ml	≥5.2
						(continued on next page)

Table 2 (continued)						
Virus	Sample	Treatment	Temp. (°C)	Time (min)	Viral Titre Before Heat	Log ₁₀ reduction (LRF)
SKU:026V-03883 (Berlin,	Cell culture	Heat block	56	30	3.3 × 10 ⁶	>5
Germany) [3,4]	supernatant		60	60	$3.3 imes 10^{6}$	>5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			92	15	3.3×10^{6}	>6
SKU:026V-03883 (Berlin,	Nasopharvngeal	Heat block	60	60	3.5×10^{5}	>5
Germany) [4]	swab		56	30	3.5×10^{5}	>5
SKU:026V-03883 (Berlin,	Blood sera	Heat block	56	30	3.5×10^{5}	>5
Germany) [4]			60	60	3.5×10^{5}	>5
SARS-CoV-2/human/Liverpool/ REMRO0001/2020 [5]	NK	NK	80	60	1.1 × 10 ⁷	None detected
NK [6]	N95 Respirators	Drv heat	70	60	7.8 log	None detected
SARS-CoV-2, strain USA_WA1/	Virus stock	Heating block	100	5	6.0 log	None detected
2020 [7]	Virus stock	Heating block	56	45	6.0 log	None detected
SARS CoV-2 (France) [8]	Cell culture	Water Bath	56	15	6 6 109	3 37
	supernatant	Hater Bath	56	30	6 6 109	None detected
	Supernatane		65	15	6 6 109	None detected
	Nasonharvngeal	Water bath	65	5	6 57 log	1 74
	sample	Water bath	65	10	6 57 log	None detected
	Sumpte		95	0.5	6 57 log	0.34
			95	3 3	6 57 log	None detected
	Sera	Water bath	56	5	6.2 log	1 33
	Jera	water bath	56	10	6.2 log	2.62
			56	15	6.2 log	None detected
SARS CoV 2 isolatos (designated	Virus culturo	Thormo block	56	20		None detected
bCoV-19/Cambodia/1775/	virus cutture	Inerno-block	56	60	4-5 log	None detected
2020, 1775; hCoV-19/ Cambodia/2018/2020, 2018; and, hCoV-19/Cambodia/ 2310/2020, 2310) [9]			98	2	4-5 log	None detected
Norovirus (CL & CII) [10]	Cow's milk		95	1	8 log	6 6 0 2 log
			85	ו כ	8 log	$0.0 \pm 0.2 \log_{10}$
			00	2 00c	8 log	8 log
			90 05	903 60c	8 log	8 log
			7J 100 5	40s	8 log	8 log
Human Norovirus surrogates			100.5	-103	0 10910	0 10910
Murine porovirus [11]	DRS	Water bath	56	10	10 ⁵ PELL/ml	None detected
Tulane virus [11]	DRS	Water bath	56	30	10^5 PFU/ml	None detected
Aichi virus [11]	DBC	Water bath	56	10	10^5 PEU/ml	None detected
Tulano virus [12]	DBC	Water bath	56	30	10^5 PEU/ml	None detected
	F D J	water bath	50	10	10^5 PEU/ml	None detected
			72	5	10^5 PFU/ml	None detected
Muripe porovirus [13]	Modified Earlo's	Water bath	7 Z 8 5	1	$6 \times 10^6 \text{ PEU/ml}$	None detected
	medium + PBS		27	1		
Tulane virus [14]	M199-Earle's	Heating block	56	30	$4 \times 10^{1} - 6.4 \times 10^{3} $ l	None detected
	medium		63	5		None detected
Adenovirus Sabin 1 [15] Adenovirus type 5 [15] Influenza A (H1N1) [15] Mouse norovirus (MNV1) [15] Human NoroGII.4 [15]	viral culture in stool suspension	water bath	/3	3	>4 log	Complete inactivation

Authorship statement

Beverley C. Millar: Conceptualization; Formal analysis; Investigation; Methodology; Visualization; Roles/Writing -

original draft; Writing - review & editing. John E. Moore: Conceptualization; Formal analysis; Investigation; Methodology; Visualization; Roles/Writing - original draft; Writing review & editing.

Funding

This work was not supported by any external funding.

Provenance and peer review

Not commissioned; externally peer reviewed.

Ethics

This was entirely an in vitro study not involving patients, healthcare staff, any other humans nor animals and as such did not require ethical approval.

Conflict of interest

None of the authors have any conflicts to declare.

References

- [1] Millar BC, Stirling J, Maguire M, Moore RE, Murphy A, Moore JE. Re-purposing of domestic steam disinfectors within the hospital-at-home setting. Infect Dis Health 2020:15. S2468-0451(20)30068-7.
- [2] Anon. SARS-CoV-2 inactivation testing: interim report. Public Health England; 2020. Available at: https://www.gov.uk/ government/publications/covid-19-phe-laboratory-assessments-of-inactivation-methods. [Accessed 8 January 2021].
- [3] Pastorino B, Touret F, Gilles M, Lamballerie XD, Charrel RN. Evaluation of heating and chemical protocols for inactivating SARS-CoV-2. bioRxiv 2020.04.11:36855.
- [4] Pastorino B, Touret F, Gilles M, de Lamballerie X, Charrel RN. Heat inactivation of different types of SARS-CoV-2 samples: what protocols for biosafety, molecular detection and serological diagnostics? Viruses 2020;12:735.
- [5] Patterson EI, Prince T, Anderson ER, Casas-Sanchez A, Smith SL, Cansado-Utrilla C, et al. Methods of inactivation of SARS-CoV-2 for downstream biological assays. J Infect Dis 2020;222:1462–7.
- [6] Daeschler SC, Manson N, Joachim K, Chin AWH, Chan K, Chen PZ, et al. Effect of moist heat reprocessing of N95 respirators on SARS-CoV-2 inactivation and respirator function. CMAJ (Can Med Assoc J) 2020;192:E1189–97.
- [7] Jureka AS, Silvas JA, Basler CF. Propagation, inactivation, and safety testing of SARS-CoV-2. Viruses 2020;12:622.

- [8] Batéjat C, Grassin Q, Manuguerra JC, Leclercq I. Heat inactivation of the severe acute respiratory syndrome coronavirus 2. bioRxiv 2020.05.01:067769.
- [9] Auerswald H, Yann S, Dul S, In S, Dussart P, Martin NJ, et al. Assessment of inactivation procedures for SARS-CoV-2. J Gen Virol 2021 Jan 8. https://doi.org/10.1099/jgv.0.001539. Epub ahead of print. PMID: 33416462.
- [10] El-Senousy WM, Shalaby M, Deeb AMM, Alhawary II. Thermal inactivation of hepatitis A virus, noroviruses, and simian rotavirus in cows' milk. Food Environ Virol 2020;12: 310-20.
- [11] Deng W, Almeida G, Gibson KE. Co-culture with Enterobacter cloacae does not enhance virus resistance to thermal and chemical treatments. Food Environ Virol 2019;11:238–46.
- [12] Arthur SE, Gibson KE. Physicochemical stability profile of Tulane virus: a human norovirus surrogate. J Appl Microbiol 2015;119:868–75.
- [13] Seo K, Lee JE, Lim MY, Ko G. Effect of temperature, pH, and NaCl on the inactivation kinetics of murine norovirus. J Food Protect 2012;75:533-40.
- [14] Tian P, Yang D, Quigley C, Chou M, Jiang X. Inactivation of the Tulane virus, a novel surrogate for the human norovirus. J Food Protect 2013;76:712-8.
- [15] Tuladhar E, Bouwknegt M, Zwietering MH, Koopmans M, Duizer E. Thermal stability of structurally different viruses with proven or potential relevance to food safety. J Appl Microbiol 2012;112:1050–7.

Beverley C. Millar John E. Moore*

Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory,

Nightingale (Belfast City) Hospital, Lisburn Road, Belfast, Northern Ireland, BT9 7AD, UK

School of Medicine, Dentistry and Biomedical Science, The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK

*Corresponding author. Northern Ireland Public Health Laboratory, Corry Building, Nightingale Hospital, Lisburn Road, Belfast, BT9 7AD, Northern Ireland, United Kingdom. *E-mail address:* jemoore@niphl.dnet.co.uk (J.E. Moore)

> 8 January 2021 Available online 28 January 2021