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Programming nonreciprocity and reversibility in
multistable mechanical metamaterials
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Nonreciprocity can be passively achieved by harnessing material nonlinearities. In particular,

networks of nonlinear bistable elements with asymmetric energy landscapes have recently

been shown to support unidirectional transition waves. However, in these systems energy

can be transferred only when the elements switch from the higher to the lower energy well,

allowing for a one-time signal transmission. Here, we show that in a mechanical metamaterial

comprising a 1D array of bistable arches nonreciprocity and reversibility can be independently

programmed and are not mutually exclusive. By connecting shallow arches with symmetric

energy wells and decreasing energy barriers, we design a reversible mechanical diode that

can sustain multiple signal transmissions. Further, by alternating arches with symmetric and

asymmetric energy landscapes we realize a nonreciprocal chain that enables propagation of

different transition waves in opposite directions.
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Nonreciprocity—asymmetric transmission of energy
between any two points in space—is receiving increasing
interest in many areas of physics1,2, including optics3,4,

electromagnetism5,6, elasticity7,8, and acoustic9–12. Focusing on
elastic systems, nonreciprocity has been successfully exploited to
realize selective signal transmission13–17, logic elements18,19,
direction-dependent insulators20,21, and switches22. To achieve
such remarkable behaviors, both active and passive strategies have
been proposed. On the one hand, nonreciprocity for linear waves
has been obtained either by imparting a rotation to the medium23

or by introducing activated materials with time-modulated
properties in space and time24–26 to break time-reversal sym-
metry. On the other hand, nonreciprocity has also been
demonstrated in passive media by harnessing nonlinear
phenomena27–30. In particular, mechanical metamaterials with
two or more stable equilibrium states have recently emerged as a
powerful platform to realize nonreciprocity, as they support only
unidirectional transition wave propagation when comprising an
array of bistable building blocks with asymmetric energy
wells19,31–34. However, although this strategy is appealing for its
simplicity and robustness, it typically leads to nonreversible wave
propagation since these systems release a net amount of energy
upon propagation of the pulses and needs to be manually
“recharged” (i.e., all elements need to be reset to their higher
energy well) to sustain a second wave.

Here, we demonstrate the realization of a multistable
mechanical metamaterial for which nonreciprocity and reversi-
bility can be independently programmed. Such control of the
dynamic response is made possible by the rich and highly tunable
behavior of shallow arches, as their energy landscape can be easily
adjusted to exhibit target energy barriers as well as symmetric or
asymmetric wells. We first show that chains comprising identical
arches with symmetric energy wells support the propagation of
nonlinear pulses that sequentially switch the elements to their
inverted stable configuration. However, although such signal
propagation is reciprocal and reversible, it is not stable (Fig. 1a), as
the wave evolves during propagation. Then, we demonstrate that
by carefully designing the arches and their arrangement to break
symmetry either at the structural or element level, we can enable
not only stable propagation of the signal but also a wide range of
nonreciprocal behaviors. For example, a reversible diode can be
created by connecting shallow arches with symmetric but graded
on-site energy potentials (Fig. 1b). Further, a tunable 1D non-
reciprocal chain, which enables propagation of different transition
waves in opposite directions, can be obtained by alternating
shallow arches with symmetric and asymmetric energy potentials
(Fig. 1c). As such, our work opens avenues for the design of the
next generation of nonlinear structures and devices with robust,
nonreciprocal elastic wave-steering capabilities.

Results
Symmetric elements—symmetric array. We consider 1D chains
comprising N shallow arches connected via rotating hinges that
impose continuity of rotations between adjacent elements. All
arches have end-to-end distance L= 120 mm and are made of
spring steel shims with thickness h= 0.3048 mm, width b=
10 mm, length l∈ [103.1, 105.0] mm, volumetric density ρ=
7850 kg/m3 and Young’s modulus E= 170 GPa (see Supple-
mentary Information “Fabrication” section for details). To excite
the system, we move with an indenter the midpoint of either
the first or last arch in the array at a constant speed α= 15 mm/s.
We then monitor the response of the chain with a high-speed
camera and track the position of the central point of the j-th arch,
wj(L/2, t), as a function of time t (see Supplementary Information
“Testing” section for details).

We start by focusing on an array comprising three arches (i.e.,
N= 3) with rise ej= wj(L/2, t= 0)= 12.4 mm (j= 1, 2, 3)
realized by elastically buckling flat metallic shims of length l=
105 mm (see Supplementary Information “Fabrication” section
for details). The results reported in Fig. 2a, b for a test in which
the indenter acts on the leftmost arch show two key features.
First, as recently observed for individually hinged arches under
displacement control35, the indenter makes the leftmost arch
snap to its symmetric stable configuration through the activation
of the first asymmetric deformation mode (see Fig. 2a). Second,
and most important, this reconfiguration does not remain
localized as the energy released by the arch upon snapping is
transmitted to the neighboring element through the rotation of
the hinges. As a result, the snapping of the first arch triggers a
cascade of snapping events that sequentially switches the other
two elements to their symmetric stable configuration (see
Supplementary Movie 1). This response is fully reciprocal and
reversible since actuating the first or the last arch (i.e. left-to-right
vs. right-to-left), from the top or the bottom (i.e., up-to-down vs.
down-to-up) always produces the same dynamic behavior (see
Supplementary Fig. 8 for details). However, if a fourth arch is
added to the chain (i.e., for N= 4), the input provided by the
indenter is not sufficient to generate a signal that switches all the
elements of the lattice (Fig. 2c, d, see Supplementary Movie 1).

Predictive numerical model. To get a deeper understanding of
the snapping signal transmission through the chain, we establish
a numerical model. We focus on the j-th arch, use Euler-Bernoulli
beam theory36 to describe its response35,37–42 and impose con-
tinuity of rotations between neighboring elements43,44

∂wj�1

∂xj�1

�
�
�
�
xj�1¼L

¼ ∂wj

∂xj

�
�
�
�
xj¼0

; ð1Þ

where xj∈ [0, L] represents the local axial coordinates and wj(xj, t)
denotes the time-dependent profile of the j-th arch. Importantly,
the constraints described by Eq. (1) introduce concentrated
moments at both ends of the j-th arch,MLj

, andMRj
(Fig. 2e), and

these satisfy

MRj�1
¼ �MLj

; MRj
¼ �MLjþ1

: ð2Þ
It follows that the response of a chain comprising N arches can be
described by

ρA
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for j ¼ 1; :::;N
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where A and I are the area and moment of inertia of the arches’
cross-section, ρ and E are the volumetric density and Young’s
modulus of the material, β represents the viscous damping
coefficient and δ1j and δNj are Kronecker delta functions. More-
over, Q1 is the reaction force measured at the indenter, and w0j

and pj are the initial unstressed position of the midsurface and the
midplane force produced by the stretching of the midsurface of
the j-th arch, respectively (see Supplementary Information
“Mathematical model” section for more details). For our system,
wj(xj, t) can be expressed as a series of sine functions35

wjðxj; tÞ ¼ w0jðxjÞ þ ∑
Nt

n¼1
ψnjðtÞ sin

nπxj
L

� �

: ð4Þ

Substitution of Eq. (4) into Eqs. (3) leads to a system of Nt ×N
coupled ordinary differential equations that we numerically solve
to obtain the modal amplitudes ψnj. As shown in Fig. 2b, d,
the numerical predictions are in very good agreement with the
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experimental results when choosing Nt= 3 and β= 1.4 kg/(m⋅s)
(see Supplementary Information “Mathematical model” section
for details and Supplementary Movie 2) and capture both the
propagation of the snapping signal through the entire chain for
N= 3 and its arrest for N= 4.

To understand the absence of a stable propagation in the
system comprising N= 4 elements, we focus on a single hinged
arch and use Euler-Bernoulli beam theory to determine its energy
landscape when one of its ends is forced to rotate (see
Supplementary Information ‘Mathematical model’ for details).
As observed in our experiments, we find that it is energetically
more favorable for the arches to activate the first antisymmetric
mode when snapping between the two stable states (see cyan path
in Fig. 2f). However, despite the asymmetric deformation path,
the on-site energy potential of the arches is symmetric and
characterized by two wells of equal height at wL/2= ±ej separated
by an energy barrier Vb= 26 mJ. As such, there is no net-release
of energy when the arches snap between their two stable
configurations, and the stable propagation of the snapping signal
is only possible in unrealistic systems without any form of
dissipation (see numerical results for β= 0 in Supplementary
Fig. 9).

Symmetric elements—graded and asymmetric array. To achieve
stable wave propagation as well as to independently control
reciprocity and reversibility, we then introduce asymmetry into

the system both at the structural and arch levels. To begin with,
we build a 1D non-symmetric array by assembling elastically
deformed shallow arches with monotonically decreasing rises
(Fig. 3a and Supplementary Table 1 for details). Since the energy
barrier Vb monotonically decreases as ej becomes smaller (Fig. 3b,
c), the effect of dissipation can be counteracted by tuning the rises
to make ΔVb

j ¼ Vb
j�1 � Vb

j larger than the energy dissipated by
the j-th arch during snapping. As shown in Fig. 3d, when the
indenter excites the leftmost arch with the highest rise, a stable
snapping wave propagates from left-to-right. Importantly, such
wave propagation is reversible and nonreciprocal. Since all the
arches have a symmetric energy landscape, the wave can be
excited by snapping the first arch both up-to-down and down-to-
up and there is no need to “manually” recharge the system to
propagate a new signal (i.e., the behavior is fully reversible—see
Supplementary Fig. 10). However, when the indenter excites the
arch with the lowest rise the energy released upon its snapping is
not enough to make the next arch jump. As such, there is no wave
propagation from right-to-left and the system acts as a
mechanical diode (see Supplementary Movie 3).

Although in Fig. 3d, we focus on a specific system with N= 10
and Δej= ej− ej+1 ~ 500 μm, we next use our model (which
nicely captures the experimental results of Fig. 3d) to system-
atically investigate the effect of Δej on the signal propagation in
1D arrays of graded shallow arches. We find that Δej plays a very
important role, as it directly affects the difference in an energy

a Symmetric elements – Symmetric array

Reciprocal, reversible - (not stable)

…

b Symmetric elements – Graded and asymmetric array

c Symmetric/Asymmetric elements – Asymmetric array

…

… …

Nonreciprocal (diode), reversible 

Nonreciprocal, nonreversible

…

On-site energy potential 

Fig. 1 Programming nonreciprocity and reversibility. a Signal propagation in a chain comprising identical bistable elements with symmetric energy wells is
reciprocal and reversible, but not stable. b Signal propagation in a chain comprising bistable elements with symmetric energy wells, but decreasing energy
barriers is nonreciprocal and reversible. c Signal propagation in a chain comprising bistable elements with both symmetric and asymmetric energy wells is
nonreciprocal and nonreversible.
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Fig. 2 Symmetric elements—symmetric array. a, b Array comprising three identical arches with rise ej= 12.4 mm (j= 1, 2, 3) and symmetric energy wells.
a Snapshots at t= 0 s, 0.88 s, 0.90 s and b evolution of the positions of the midpoints of the arches, wj(L/2, t), for a test in which the indenter acts on the
leftmost arch. Thick-dotted and thin lines correspond to experimental and numerical results, respectively. c, d Same as a, b but for an array comprising four
arches. e Schematic of the system. f On-site energy potential for an elastically deformed shallow arch as a function of ψ2 and w(L/2). Note that w(L/2)=
ψ1− ψ3 (see Eq. 4). The red line indicates a deformation path along which only the first symmetric mode is activated. The cyan line corresponds to the
minimum energy path. g Comparison between the red and cyan paths shown in f, highlighting the symmetry of the two energy minima and the energy
barrier, Vb, separating them.
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barrier between neighboring elements, ΔVb
j (see Fig. 3b). More

specifically, the numerical results reported in Fig. 3e show that for
Δej ≤ 150 μm, the velocity of the transition wave (calculated by
monitoring the time at which the arches reach the inverted stable
configuration—see Supplementary Fig. 11 for details) mono-
tonically decreases during propagation and eventually vanishes.

For such small values of Δej, ΔVb
j is not sufficient to overcome the

effects of dissipation of the system, and stable wave propagation is
not supported. By contrast, for Δej > 150 μm the difference in
energy barriers between consecutive arches is larger than the
dissipation upon snapping and the signal propagates through
the entire chain. Further, our numerical results indicate that the
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Fig. 3 Symmetric elements—graded and asymmetric array. a Schematic of the system with N= 10 arches with decreasing rises. b Energy barrier, Vb,
versus arch rise, ej. c Normalized on-site energy potential, V �minðVÞ, versus the position of the arch midpoint. d Evolution of the positions of the
midpoints of the arches, wj(L/2, t), for tests in which the indenter acts on the leftmost (left-to-right) and rightmost (right-to-left) arches (see
Supplementary Fig. 19 for corresponding numerical contour maps). Thick-dotted and thin lines correspond to experimental and numerical results,
respectively. e Local speed of the transition wave along the chain for different values of Δej as predicted by our model.
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waves accelerate during propagation. This is because the energy
that the arches need to absorb to overcome the energy barrier and
snap monotonically decreases along the chain, causing a faster
transition rate.

Symmetric/asymmetric elements—asymmetric array. The
results of Fig. 3 indicate that graded 1D arrays of shallow arches
with symmetric energy landscape can support stable, reversible,
and unidirectional propagation of transition waves. Next, to
achieve additional control on nonreciprocity, we introduce ele-
ments with asymmetric on-site energy potential. Such asymmetry
at the arch level can be easily realized by plastically deforming the
metallic shim into the target shape, ej sinðπx=LÞ. As shown in
Fig 4a, the plastic deformation makes the two energy minima
different. Specifically for arches with ej= 12.4 mm, our model
predicts that the transition between the two stable states involves
a net change ΔV= 34.8 mJ in stored potential energy. Depending
on the direction of the transition, the arch either absorbs energy45

or releases it, enabling unidirectional propagation of transition
waves over long distance19,32. Although previous studies have
considered arrays of purely asymmetric elements19,31–33, here we
investigate the dynamic response of systems comprising a mix-
ture of symmetric and asymmetric elements. This is possible

because the plastically and elastically deformed arches, despite
their different energy landscape, share the same shape and,
therefore, are geometrically compatible and can be easily com-
bined to form arrays. For example, in Fig. 4b we consider a chain
comprising seven arches with symmetric on-site potential (i.e.,
elastically deformed arches—see blue arches in Fig. 4b) and three
with asymmetric energy profile (i.e., plastically deformed arches—
see purple arches in Fig. 4b) set in their higher energy well—all
with rise ej= 12.4 mm. When the arches are arranged as in
Fig. 4b (with one plastically deformed arch every two elastically
deformed ones), the energy released upon snapping by the plas-
tically deformed arches enables signal propagation through the
entire array both left-to-right and right-to-left (see Fig. 4c).
However, because of the structural asymmetry of the chain, the
energy is released by the asymmetric elements at different loca-
tions when the wave travels left-to-right and right-to-left, leading
to different signal propagation in the two directions. When the
indenter acts on the leftmost unit, the second arch reaches the
inverted stable configuration at tsnap2 ¼ 0:89 s, whereas the last
one snaps at tsnap10 ¼ 0:93 s. By contrast, when the rightmost unit
is excited, the pulse is initiated at tsnap9 ¼ 0:62 s and arrives at the
other end of the chain at tsnap1 ¼ 0:66 s. Interestingly, while for
left-to-right propagation the arches snap in sequence (i.e., the
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midpoints of the arches, wj(L/2, t), for tests in which the indenter acts on the leftmost (left-to-right) and rightmost (right-to-left) arches (see
Supplementary Fig. 19 for corresponding numerical contour maps). Thick-dotted and thin lines correspond to experimental and numerical results,
respectively.
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leftmost arch snaps first and the rightmost one snaps as last), for
right-to-left propagation the arch excited by the indenter is the
last one to snap at tsnap10 ¼ 0:85 s. Finally, it is important to
note that the signal propagation in this system is nonreversible as
the plastically deformed arches can only snap from the high
energy well to the lower energy well. As such, the chain needs to
be manually recharged to support the propagation of a new signal
(see Supplementary Fig. 13 and Supplementary Movie 4).

Next, to better understand how the global structural asym-
metry affects the nonreciprocity of wave propagation, we
numerically investigate the response of chains comprising N=
48, 49, and 50 (Fig. 5a and Supplementary Fig. 14) elastically and
plastically deformed arches periodically arranged according to the
pattern shown in Fig. 4b. We find that for all considered chains
the pulses propagate at a speed cglobal ~ 243 unit/s in both
directions. However, the time at which the signal is initiated for
left-to-right and right-to-left propagation can be programmed by
altering the asymmetry of the chain through N. More specifically,
in a symmetric chain with N= 50 the snapping signal is initiated
at the same time for both propagation directions (i.e., tsnap2 ¼
0.89 s and tsnap49 ¼ 0.89 s for left-to-right and right-to-left
propagation, respectively). Differently, for N= 49 and 48 the
system is asymmetric (as there are either one or no elastically
deformed arches separating the rightmost plastically deformed
one from the right end) and the wave starts at tsnap48 ¼ 0.62 s and
tsnap47 ¼ 0.80 s when the rightmost arch is excited.

While asymmetry enables as to tune the time at which the
pulses are initiated from the left and right end, control on the
speed of the pulses can be achieved by varying the density of
plastically deformed elements in the chain. To demonstrate this
point, in Fig. 5b we report the numerically predicted velocity for
left-to-right propagation in chains with N= 49 plastically and
elastically deformed arches arranged according to different
periodic patterns. First, we find that stable wave propagation is

only possible when the plastically deformed arches are separated
by three or less elastically deformed ones. Second, the results
indicate that cglobal monotonically increases with the density of
plastically deformed arches and approaches ~497 units/s in the
limit of a chain comprising only plastically deformed elements.
Note that cglobal can be evaluated by balancing the total
transported kinetic energy, Ed, the difference ΔV between the
higher and lower energy well for the asymmetric elements, and
the energy dissipated as ref. 46

cglobal ¼
2βLEd

ΔV
: ð5Þ

where Ed can be estimated as

Ed ¼ ∑
nsc

j¼1

1
2

1
n
∑
n

i¼1
vðj�1Þnþi

� �2

nL; ð6Þ

n denoting the number of arches in the super-cell that captures
the periodic pattern of elastic/plastic arches and nsc being the
number of super-cells in the chain. Moreover, vj is the speed at
which the j-th arch snaps (i.e., the snapping-speed), which can be
computed as

vj ¼
jwjðL=2; tinÞj þ jwjðL=2; tendÞj

tend � tin
ð7Þ

tin and tend denoting the instants of time at which the snapping of
the j-th arch starts and ends, respectively (see Supplementary
Fig. 15). In Fig. 5b we compare the predictions from Eq. (5) with
the numerical results for chains with varying density of plastically
deformed elements and find that the model nicely captures the
wave speed observed in the simulations. Finally, it is interesting to
point out that the alternation of elastically and plastically
deformed elements leads to pulses with locally modulated speed.
This is because the energy released upon snapping by the
plastically deformed arches makes the following elastic element to
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Fig. 5 Tuning nonreciprocity and wave speed. a Snapping times for transition waves propagating both left-to-right and right-to-left in chains comprising N
= 48, 49, and 50 elastically and plastically deformed arches periodically arranged according to the pattern shown in Fig. 4b. Note that for N= 49 the
arches do not snap in sequence when excited right-to-left (the blue dot representing the snapping time for the 49-th arch is tsnap49 ¼ 0.86 s. b Local speed of
the transition waves along the chain for different patterns of elastically/plastically deformed arches. The dashed lines correspond to the predictions of Eqs.
(5–7). (i) Chain with all plastic arches, (ii) chain with one plastic and one elastic arches, (iii) chain with one plastic and two elastic arches, (iv) chain with
one plastic and three elastic arches, (v) chain with one plastic and four elastic arches.
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snap faster, whereas the absence of released energy between
consecutive elastically deformed ones delays their snapping.

Discussion
To summarize, we have shown that in 1D multistable systems
nonreciprocity and reversibility can be programmed independently
and easily realized. A reversible diode can be created by assembling
elements with symmetric on-site energy potentials but decreasing
energy barriers. On the other hand, chains capable of sustaining
nonreciprocal transition waves traveling in opposite directions can
be realized by alternating arches with symmetric and asymmetric
energy wells. Although the dynamic response of the reversible
diode is controlled by the difference in rise between the arches,
the behavior of the nonreciprocal chain can be tuned by varying
the arrangement of the symmetric and asymmetric elements and is
negligibly affected by their rise (see Supplementary Fig. 16). Fur-
ther, all the considered systems are input-independent, as the
speed of the supported waves is insensitive to the loading rate α at
which the indenter moves the first arch (see Supplementary
Fig. 17). Although in this study we verified the concept for 1D
chains, our findings can be easily generalized to 2D and 3D net-
works of arches to realize passive smart systems with enhanced
selective signal transmission and wave guidance capabilities.

Methods
Details on the geometry, design, fabrication, testing, analytical model, and
numerical solutions of the 1D chains comprising shallow arches are provided in the
Supplementary Information.

Data availability
The experimental and numerical data in support of the findings in this study are available
from the corresponding author upon request.

Code availability
All numerical codes used to study the nonreciprocity and reversibility of 1D chains of
shallow arches are available from the corresponding author upon request.
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