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1  | INTRODUC TION

Anthropogenic activities have already led to massive species extinc‐
tion, and this loss of biodiversity is expected to continue at an un‐
precedented pace (Ceballos, Ehrlich, & Dirzo, 2017). Global warming 
is likely the most preoccupying threat given the potential synergy 
with many other environmental changes (Cahill et al., 2013; Thomas 
et al., 2004), impacting organisms at both the individual and popula‐
tion levels and resulting in local increase in extinction risks, species 
redistribution and community reshuffling (Aubret & Shine, 2010; 

Pauls, Nowak, Bálint, & Pfenninger, 2013; Walther et al., 2002). 
Ectotherms represent more than 98% of animal species and are the 
more likely to be affected because of direct physiological sensitiv‐
ity to climate conditions (Deutsch et al., 2008; Dupoué et al., 2017; 
Sinervo et al., 2010). When the conservation status of a given pop‐
ulation is uncertain, genetic studies constitute an indirect and valu‐
able approach to assess the impacts of these environmental threats 
on levels of population genetic diversity and structure, effective dis‐
persal, demographic status and possible past and future responses 
to global change (Segelbacher et al., 2010).
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Abstract
Nineteen polymorphic microsatellite loci were identified and developed for Natrix 
maura. Polymorphism was assessed for 120 individuals sampled across four sampling 
sites from the French Pyrenees Mountains. The number of alleles per locus ranged 
from 3 to 15, and expected heterozygosity per locus ranged from 0.227 to 0.863. 
We tested for deviation from Hardy–Weinberg equilibrium and linkage disequilibrium 
and assessed the presence of null alleles for all loci, resulting in a selection of 14 high‐
quality polymorphic markers. These markers will be extremely useful in identifying 
fine‐scale genetic structures and providing insight into conservation management 
plans of this species.
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The viperine snake (Natrix maura) is a common Mediterranean 
snake inhabiting natural and artificial aquatic environments in 
Northwestern Africa, Iberian Peninsula, Southern France and 
Northern Italy. Although some localities may exhibit high snake den‐
sities, populations are generally considered as declining (Santos & 
Llorente, 2009). The viperine snake is threatened by multiple fac‐
tors, such as aquatic pollution, habitat loss and fragmentation, direct 
destruction by humans because of confusion with venomous vipers 
and climate change (Santos & Fernández Cardenete, 2015; Santos & 
Llorente, 2009). All of these environmental threats are likely to in‐
teract significantly, impacting viperine snake populations (Gangloff, 
Sorlin, Cordero, Souchet, & Aubret, 2019; Muthoni, 2010). In this 
context, the development of polymorphic genetic markers is critical 
for this species in order to study patterns of genetic diversity and 
understand population structure and functioning. Here, we isolated 
and characterized 19 new polymorphic microsatellite markers for 
N. maura using Illumina high‐throughput sequencing.

2  | MATERIAL & METHODS

We sampled DNA from 120 viperine snakes from four populations 
in the southwestern France (Ariège, Table 1), using buccal swabs as 
a noninvasive sampling method (Beebee, 2008). Swabs were sus‐
pended in 1X TE buffer for DNA conservation and DNA extraction 
was performed using the RealPure MicroSpin DNA Isolation Kit 
following manufacturers' instructions (Durviz). Microsatellite de‐
velopment was performed at AllGenetics (www.allge netics.eu). A 
single DNA sample belonging to a female viperine snake was used 
to generate a library with the Nextera XT DNA Library Preparation 
Kit (Illumina). The library was then enriched in fragments with mi‐
crosatellite motifs by hybridization to four groups of biotinylated 
oligo repeats (i.e., AC, AG, ACG, and ATCT) that were captured 
with Dynabeads/M280 Streptavidin (Invitrogen, Thermo Fisher 
Scientific). The enriched library was sequenced in the Illumina MiSeq 
PE300 platform (Macrogen Inc.). Reads were processed in Geneious 
10.2.2 (Biomatters Ltd). Primer design was carried out in Primer3 
software (Koressaar & Remm, 2007; Untergrasser et al., 2012) im‐
plemented in Geneious 10.2.2.

A total of 108 primer pairs, each targeting a different locus, 
were identified and organized into 31 multiplexes using Multiplex 
Manager (Holleley & Geerts, 2009). The computer‐designed mul‐
tiplexes were validated and checked for polymorphism using DNA 

samples from an additional set of seven individuals. The polymerase 
chain reactions (PCRs) were carried out following Schuelke (2000). 
As oligonucleotide tails, we used the universal sequences M13 (GGA 
AAC AGC TAT GAC CAT), CAG (CAG TCG GGC GTC ATC), and T3 
(AATTAA CCC TCA CTA AAGGG) labeled with the HEX dye, the 
FAM dye, and the TAMRA dye, respectively. PCRs were performed 
in a final reaction volume of 12.5 µl, containing around 10 ng of 
DNA, Type‐it Multiplex PCR Master Mix (Qiagen), and Primer Mix 
1× (0.2 µM forward primers and labeled tails, and 0.02 µM reverse 
primers). The optimal PCR protocol consisted in an initial denatur‐
ation step at 95°C for 5 min, followed by 30 cycles of 95°C for 30 s, 
57°C for 90 s, 72°C for 30 s; 8 cycles of 95°C for 30 s, 53°C for 
90 s, 72°C for 30 s; and a final extension step at 68°C for 30 min. 
All PCR rounds included a negative control to check for potential 
cross‐contamination. PCR products were subsequently subjected 
to fragment analysis. Allele calling was performed using Geneious 
11.1.2 (Biomatters). Finally, the 19 primer pairs with the highest 
polymorphism were organized into seven multiplexes according to 
dye colors and expected amplicon sizes (Table 2). We finally applied 
this genotyping protocol to the 120 viperine snake samples to assess 
markers' quality.

To avoid any bias in further analyses, we first identified popu‐
lations showing HWE across the maximum number of markers. We 
used the test_HW function from the R‐distribution of the Genepop 
software (Rousset, 2008) to assess HWE for each locus and each 
population, and only retained loci showing HWE.

Considering each populations independently, we then esti‐
mated for each locus the number of alleles (na), observed and ex‐
pected heterozygosity (HO and HE, respectively) using FSTAT 2.9.3.2 
(Goudet, 1995). We also computed null allele frequency along with 
95% confidence intervals using the null.all function from the R‐pack‐
age PopGenReport (Adamack & Gruber, 2014). Loci showing a lower 
bound exceeding a null allele frequency of 5% where discarded. We 
finally assessed linkage disequilibrium across populations using the 
test_LD function (Rousset, 2008). Tests for HWE and linkage disequi‐
librium were all conducted using false discovery rate FDR‐correction 
to account for multiple‐related tests (Benjamini & Hochberg, 1995).

3  | RESULTS AND DISCUSSION

All loci amplified well (from 0% to 5.8% of missing values). Five loci 
(NM_013, NM_170, NM_346, NM_384, and NM_462) did not con‐
form to HWE. Using a subset of the 14 remaining markers, we found 
that all populations conformed to HWE.

In each considered population, the 19 loci were found to be poly‐
morphic with na ranging from 3 to 15 and HE ranging from 0.227 to 
0.863 (Table 2). Yet, the presence of null alleles was detected in five 
loci (NM_013, NM_170, NM_245, NM_346, and NM_384). These 
markers should therefore be used with caution as they can signifi‐
cantly affect the results of genetic analyses (Pompanon, Bonin, 
Bellemain, & Taberlet, 2005; Wen et al., 2013). They were discarded 
from further analyses, resulting in a new set of 14 polymorphic 

TA B L E  1   Characteristics of sampled sites: name of the sampling 
site, geographic coordinates (WGS84), number of sampled 
individuals (nind) per site

Sampling site X Y nind

Alas 42°57′00.208″N 1°02′46.365″E 32

Audressein 42°55′33.665″N 1°01′36.659″E 34

Augirein 42°55′53.390″N 0°54′58.164″E 22

Moulis 42°57′37.694″N 1°05′16.735″E 32

http://www.allgenetics.eu
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markers. Finally, we found significant linkage disequilibrium in three 
pairs of loci: NM_054/NM_364, NM_064/NM_465, and NM_321/
NM_368. Some genetic analyses do not require linkage equilibrium 
(e.g., sPCA; Jombart, Devillard, Dufour, & Pontier, 2008), and we 

here provide a useful set of 14 polymorphic microsatellite markers 
for the viperine snake. For genetic analyses requiring independent 
loci, we recommend using makers showing highest levels of poly‐
morphism (notably NM_465 in place of NM_064).

TA B L E  2   Characteristics of the 19 microsatellites developed in the viperine snake (Natrix maura). The table provides multiplex and 
locus names, primer sequences, repeat motif and number, allelic size range (in base pairs), number of alleles (na), observed and expected 
heterozygosity (HO and HE, respectively), fluorescent label, and rationale for discarding (null alleles [NA] and linkage disequilibrium [LD]). The 
14 high‐quality markers are indicated in bold

Multiplex Locus Primer sequence (5′−3′) Repeat
Size range 
(bp) na HO HE

Fluorescent 
label Rationale

1 NM_064 F: GCAAAGCTTCAACTGGCCAA (AC)12 185–235 11 0.547 0.572 6‐FAM LD (with 
NM_465)R: CCACAGGGTGACTATGGCTG

NM_368 F: CTGTGAAATGTTGGTGGCGC (ATC)15 198–243 11 0.848 0.799 HEX LD (with 
NM_321)R: CACATTGAAGTCCCGGGTGA

2 NM_268 F: ACGGAAGTGACCCTCCAGTA (AC)14 127–134 3 0.218 0.267 6‐FAM –

R: CGAAACGGTGGCACTGGATA

NM_085 F: GCTGGTTCCAGAAGGGTCTC (AG)15 185–213 5 0.213 0.227 HEX –

R: TCCTTGGTGGGTCAAACTGG

NM_170 F: GCATCTTGAGCTCGTGAGGT (AC)30 204–238 11 0.492 0.704 TAMRA NA

R: TCCGCCGATTCCAATTCCTT

3 NM_384 F: GCCAAGGAACTGCTGAACCT (AC)17 102–121 7 0.495 0.685 6‐FAM NA

R: CATTTGGGACTGGCAGCATG

NM_462 F: CACTAGTGGCAGCAGAGTGT (AG)12 98–106 7 0.521 0.587 HEX –

R: TGGGCTGCAGAGATTCAGAG

NM_497 F: TTGCTTGCTGTGATGTGCTG (AC)17 124–158 7 0.697 0.636 TAMRA –

R: ACGAAGTGTTGAGCGGAAGG

NM_364 F: AGAAGCAACCCAACACCAGA (AC)29 191–214 13 0.778 0.778 HEX LD (with 
NM_054)R: CTGCCATGGGTGTAGGACTG

4 NM_013 F: GTCCTTTGGGAGAAGGGTGG (AAAC)15 125–156 6 0.499 0.723 HEX NA

R: CCTTCTCCAGTGGTGGGTTC

NM_214 F: TATCTTTCCGGCTTTGCGGA (AC)24 108–135 13 0.653 0.750 TAMRA –

R: TGCACAGTCACATGGAACCA

NM_465 F: TGCTTCTCTTGCCTCTTCGT (AC)17 253–276 6 0.543 0.565 TAMRA LD (with 
NM_064)R: AGCCACCACTCTGAGAGTCA

5 NM_245 F: TGCGCCAAGAACAATCACAC (AATAG)11 140–195 11 0.489 0.678 6‐FAM NA

R: TGCCACTCCACAACCAATCA

NM_051 F: CTTGCAACACAACGGAGTCG (AC)15 126–132 3 0.486 0.528 TAMRA –

R: ACAACATCTGTGACGGCAGT

6 NM_346 F: ATTGCTTGGCTTGGTTTGGC (AAGG)14 190–292 15 0.445 0.863 6‐FAM NA

R: CCTAGAAATGAGGGCGGGAG

NM_054 F: GCCGCAAACCCAAACACTAG (AC)12 138–229 11 0.519 0.627 HEX LD (with 
NM_364)R: ACCAGTGATGGCGAACCTTT

7 NM_321 F: TCGTGACAGTGAGTTGGCAG (AAAG)18 129–183 12 0.771 0.774 6‐FAM LD (with 
NM_368)R: TCTTTCCTCCTCTCCCTCCC

NM_093 F: CATGTGTCTGCCTGCATTGG (AC)7 75–133 4 0.715 0.497 HEX –

R: CTTCATGTGGGATTGCGCTG

NM_076 F: ACCAGTTCACAAGTCCACGG (ACCT)18 243–275 9 0.770 0.798 TAMRA –

R: AAAGAAGGATGCAGCGTGGA
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The viperine snake N. maura is a well‐suited model species as 
it is both common in Southwestern Europe while being threatened 
by multiple environmental factors, inducing distribution shifts and 
individual perturbations (Aubret & Shine, 2010; Muthoni, 2010). The 
new set of 14 high‐quality polymorphic markers developed in this 
study (Table 2, in bold) may be used in several scientific contexts 
from conservation surveys to population genetic studies.

ACKNOWLEDG MENTS

We greatly thank the members of the ECTOPYR project and 
AllGenetics laboratory team. This work was supported by the 
INTERREG POCTEFA ECTOPYR project (no. EFA031/15). Our 
work complies with the international animal care guidelines of the 
Association for the Study of Animal Behaviour, and all required 
French permits (permit no. 2017‐s‐02) relating to an authorization 
of capture, marking, transport, detention, use, and release of pro‐
tected snake species. The project was approved by the “Conseil 
Scientifique Régional du Patrimoine Naturel (CSRPN)” of the region 
Occitanie on March 30 2017.

CONFLIC T OF INTERE S T

None declared.

AUTHOR CONTRIBUTIONS

All authors contribute significantly to the present study and to the 
revision of the manuscript. H.L.C., with support from A.T., J.G.P., and 
F.A., wrote the manuscript. H.L.C. and E.D. performed DNA extrac‐
tions and PCR. N.M.‐M. and B.C. performed sequencing, primer 
identification and selection. Statistical and genetic analyses were 
performed by J.G.P, A.T., H.L.C., and E.D. Animal captures and DNA 
sampling on the field were performed by H.L.C., E.D., C.B., J.S., O.G., 
O.C., R.B., L.B., G.P., A.M.‐S., I.V.‐F., M.M.‐T. Research project was 
leaded by F.A.

DATA AVAIL ABILIT Y S TATEMENT

The microsatellite data are available on Dryad: https ://doi.
org/10.5061/dryad.0vd1fj3

ORCID

Hugo Le Chevalier  https://orcid.org/0000‐0002‐3695‐6819 

R E FE R E N C E S

Adamack, A. T., & Gruber, B. (2014). PopGenReport: Simplifying basic 
population genetic analyses in R. Methods in Ecology and Evolution, 
5(4), 384–387.

Aubret, F., & Shine, R. (2010). Thermal plasticity in young snakes: 
How will climate change affect the thermoregulatory tactics of 

ectotherms. Journal of Experimental Biology, 213(2), 242–248. https ://
doi.org/10.1242/jeb.035931

Beebee, T. J. (2008). Buccal swabbing as a source of DNA from squa‐
mate reptiles. Conservation Genetics, 9(4), 1087–1088. https ://doi.
org/10.1007/s10592‐007‐9464‐2

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: 
A practical and powerful approach to multiple testing. Journal of the 
Royal Statistical Society: Series B (Methodological), 57(1), 289–300.

Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via 
the ongoing sixth mass extinction signaled by vertebrate population 
losses and declines. Proceedings of the National Academy of Sciences, 
114(30), E6089–E6096.

Cahill, A. E., Aiello‐Lammens, M. E., Fisher‐Reid, M. C., Hua, X., 
Karanewsky, C. J., Yeong Ryu, H., … Wiens, J. J. (2013). How does 
climate change cause extinction? Proceedings of the Royal Society B: 
Biological Sciences, 280(1750), 20121890. https ://doi.org/10.1098/
rspb.2012.1890

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, 
C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming 
on terrestrial ectotherms across latitude. Proceedings of the National 
Academy of Sciences of the USA, 105(18), 6668–6672. https ://doi.
org/10.1073/pnas.07094 72105 

Dupoué, A., Rutschmann, A., Le Galliard, J. F., Clobert, J., Angelier, F., 
Marciau, C., … Meylan, S. (2017). Shorter telomeres precede popula‐
tion extinction in wild lizards. Scientific Reports, 7(1), 16976. https ://
doi.org/10.1038/s41598‐017‐17323‐z

Gangloff, E. J., Sorlin, M., Cordero, G. A., Souchet, J., & Aubret, F. 
(2019). Lizards at the peak: Physiological plasticity does not 
maintain performance in lizards transplanted to high altitude. 
Physiological and Biochemical Zoology, 92(2), 189–200. https ://doi.
org/10.1086/701793

Goudet, J. (1995). FSTAT (version 1.2): A computer program to calculate 
F‐statistics. Journal of Heredity, 86(6), 485–486.

Holleley, C. E., & Geerts, P. G. (2009). Multiplex Manager 1.0: A cross‐
platform computer program that plans and optimizes multiplex PCR. 
BioTechniques, 46(7), 511–517.

Jombart, T., Devillard, S., Dufour, A. B., & Pontier, D. (2008). Revealing 
cryptic spatial patterns in genetic variability by a new multivariate 
method. Heredity, 101(1), 92.

Koressaar, T., & Remm, M. (2007). Enhancements and modifications of 
primer design program Primer3. Bioinformatics, 23(10), 1289–1291. 
https ://doi.org/10.1093/bioin forma tics/btm091

Muthoni, F. K. (2010). Modelling the spatial distribution of snake species 
under changing climate scenario in Spain. Enschede, the Netherlands: 
University of Twente Faculty of Geo‐Information and Earth 
Observation (ITC).

Pauls, S. U., Nowak, C., Bálint, M., & Pfenninger, M. (2013). The impact of 
global climate change on genetic diversity within populations and species. 
Molecular Ecology, 22(4), 925–946. https ://doi.org/10.1111/mec.12152 

Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping 
errors: Causes, consequences and solutions. Nature Reviews Genetics, 
6(11), 847. https ://doi.org/10.1038/nrg1707

Rousset, F. (2008). Genepop'007: A complete re‐implementation of the ge‐
nepop software for Windows and Linux. Molecular Eecology Resources, 
8(1), 103–106. https ://doi.org/10.1111/j.1471‐8286.2007.01931.x

Santos, X., & Fernández Cardenete, J. R. (2015). Culebra viperina – Natrix 
maura (Linnaeus, 1758).

Santos, X., & Llorente, G. A. (2009). Decline of a common reptile: Case 
study of the viperine snake Natrix maura in a Mediterranean wetland. 
Acta Herpetologica, 4(2), 161–169.

Schuelke, M. (2000). An economic method for the fluorescent label‐
ing of PCR fragments. Nature Biotechnology, 18(2), 233. https ://doi.
org/10.1038/72708 

Segelbacher, G., Cushman, S. A., Epperson, B. K., Fortin, M.‐J., 
Francois, O., Hardy, O. J., … Manel, S. (2010). Applications of 

https://doi.org/10.5061/dryad.0vd1fj3
https://doi.org/10.5061/dryad.0vd1fj3
https://orcid.org/0000-0002-3695-6819
https://orcid.org/0000-0002-3695-6819
https://doi.org/10.1242/jeb.035931
https://doi.org/10.1242/jeb.035931
https://doi.org/10.1007/s10592-007-9464-2
https://doi.org/10.1007/s10592-007-9464-2
https://doi.org/10.1098/rspb.2012.1890
https://doi.org/10.1098/rspb.2012.1890
https://doi.org/10.1073/pnas.0709472105
https://doi.org/10.1073/pnas.0709472105
https://doi.org/10.1038/s41598-017-17323-z
https://doi.org/10.1038/s41598-017-17323-z
https://doi.org/10.1086/701793
https://doi.org/10.1086/701793
https://doi.org/10.1093/bioinformatics/btm091
https://doi.org/10.1111/mec.12152
https://doi.org/10.1038/nrg1707
https://doi.org/10.1111/j.1471-8286.2007.01931.x
https://doi.org/10.1038/72708
https://doi.org/10.1038/72708


     |  11231LE CHEVALIER Et AL.

landscape genetics in conservation biology: Concepts and challenges. 
Conservation Genetics, 11(2), 375–385. https ://doi.org/10.1007/
s10592‐009‐0044‐5

Sinervo, B., Mendez‐De‐La‐Cruz, F., Miles, D. B., Heulin, B., Bastiaans, 
E., Villagrán‐Santa Cruz, M., … Gadsden, H. (2010). Erosion of liz‐
ard diversity by climate change and altered thermal niches. Science, 
328(5980), 894–899.

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., 
Collingham, Y. C., … Williams, S. E. (2004). Extinction risk from cli‐
mate change. Nature, 427(6970), 145. https ://doi.org/10.1038/natur 
e02121

Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., 
Remm, M., & Rozen, S. G. (2012). Primer3–new capabilities and inter‐
faces. Nucleic Acids Research, 40(15), e115. https ://doi.org/10.1093/
nar/gks596

Walther, G.‐R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, 
T. J. C., … Bairlein, F. (2002). Ecological responses to recent climate 
change. Nature, 416(6879), 389. https ://doi.org/10.1038/416389a

Wen, Y., Uchiyama, K., Han, W., Ueno, S., Xie, W., Xu, G., & Tsumura, 
Y. (2013). Null alleles in microsatellite markers. Biodiversity Science, 
21(1), 117–126.

How to cite this article: Le Chevalier H, Marí‐Mena N, Carro B, 
et al. Isolation and characterization of fourteen polymorphic 
microsatellite markers in the viperine snake Natrix maura. Ecol 
Evol. 2019;9:11227–11231. https ://doi.org/10.1002/ece3.5623

https://doi.org/10.1007/s10592-009-0044-5
https://doi.org/10.1007/s10592-009-0044-5
https://doi.org/10.1038/nature02121
https://doi.org/10.1038/nature02121
https://doi.org/10.1093/nar/gks596
https://doi.org/10.1093/nar/gks596
https://doi.org/10.1038/416389a
https://doi.org/10.1002/ece3.5623

