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Abstract

The egg parasitoid Trichogramma evanescens Westwood is considered as an efficient bio-

logical control agent for managing several lepidopteran pests and it is widely distributed

throughout the world. Mass rearing protocols of parasitoids that are currently in use in bio-

control programs require a meticulous quality control plan, in order to optimize their efficacy,

but also their progeny production capacity. In this paper, the effect of different factors on the

quality control in mass rearing of T. evenescens, using Plodia interpunctella (Hübner) and

Galleria mellonella L. as host species, were investigated. The impact of egg agewas signifi-

cant in the rates of parasitism, for both host species tested. Significantly highest percent of

parasitoid emergence was noticed in two day-old eggs for both host species, while one day-

old eggs day exhibited the maximum emergence when both species were used togetherin

the same trials. Age-dependent storage egg preservation at either 4 or 9˚C significantly influ-

enced the parasitism percentages on both species. The highest parasitism percentage was

recorded in two day-old G. mellonella eggs that are kept for 15 days at 9˚C while the lower in

one day-old P. interpunctella eggs for 60 d storage. Moreover, the highest parasitoid mortal-

ity was recorded in T. evanescens reared either on P. interpunctella or G. mellonella at

20˚C. Rearing of the parasitoid on a mixture of eggs of both host species resulted in higher

parasitism, but not always in higher rates of parasitoid emergence. The results of the pres-

ent work provide useful information that can be further utilized in rearing protocols of T.

evanescens.

Introduction

The egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) have

been extensively used as efficient biocontrol agents in integrated pest management programs
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throughout the world [1–7]. Among the factors that determine the efficacy of Trichogramma
spp. is host egg age [8,9]. The parasitoids usually exhibit a significant preference for young

host eggs, while in some cases females do not parasitize old eggs at all [10,11]. For instance,

Abd El-Hafez [12] reported that Trichogramma evanescens Westwood and T. bactrae Nagaraja

females preferred to oviposit into young eggs of the pink bollworm, Pectinophora gossypiella
(Saunders) (Lepidoptera: Gelechiidae) and the spiny bollworm, Earias biplaga Walger (Lepi-

doptera: Nolidae), as compared to old eggs of these two species. The age of host eggs is mainly

utilized through two indicators in the production of Trichogramma spp. progeny: firstly, the

oviposition preference of the parasitoid females and secondly, the resource quality available

for the developing parasitoid larvae, in terms of physiological host-parasitoid interactions [13].

The continuous availability of host eggs is a key element in the mass production protocols

of Trichogramma spp. However, in these protocols timing is essential, as the parasitized eggs

may be overproduced and discarded when they are not needed to be used for field release.

Therefore, the development of effective “storage” methods for Trichogramma spp. are of

utmost importance for the successful implementation of these commercial biological control

agents, as well as for the efficiency in parasitoid mass production [14,15]. In this context, cold

storage techniques are being considered as a valuable tool in the rearing of parasitoids since

they provide a constant supply for research and enables flexibility in mass production [15,16].

Cold storage meets with certain advantages since it facilitates the upsurge of sufficient num-

bers of parasitoids for future releases [16], thereby minimizing the cost of maintaining colonies

when they are not required [17]. Therefore, the impact of cold storage on the performance and

population growth of parasitoids has received substantial interest [18–21]. Previous studies

clearly indicate that most parasitoids can be cold-stored for certain periods with minimal

reduction in their fitness. Cold storage has been studied in conjunction with other parameters,

such as survival, sex ratio, lifespan, reproductive potential, fitness cost and intergenerational

effects [22–24].

In Trichogramma spp., performance is defined by several key factors, including searching

behavior (habitat and host location), host preference (recognition, acceptance, suitability) and

tolerance to environmental conditions [25]. In addition, the parasitoid tolerance to extreme

temperatures is an important factor since it determines a species’ establishment and effective-

ness in augmentative biological control programs [26]. Many studies have demonstrated that

temperature plays a significant role in the success of effective rearing of Trichogramma spp.

[27,28]. Still, the interactions of temperature along with different cold storage periods, on rear-

ing of these egg parasitoid species, in conjunction with synchronization patters with the host

eggs, are poorly understood. In the current study, we used T. evenescens as a model species in

order to demonstrate its performance on eggs of different ages belonging to the Indian meal

moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) and the wax moth, Galleria mel-
lonella L. (Lepidoptera: Pyralidae), which are both common hosts of this species [29]. This was

carried out in conjunction with illustrating the influence of cold storage parameters in survival

and parasitism rates, towards the development of quality control attributes in parasitoid

rearing.

Material and methods

Ethics statement

This experiment did not involve any endangered or protected species.

Host rearing. Galleria mellonella culture was originally obtained from the Post-Harvest

Entomology Laboratory, Department of Zoology, Rajshahi University, and the rearing culture

was developed following procedures as described by Marston et al. [30]. Similarly, P.
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interpunctella individuals were also collected from the stock cultures maintained at the Post-

Harvest Entomology Laboratory since 2014, and they were reared on a diet of corn meal, chick

laying mash, chick starter mash, and glycerol at a volumetric ratio of 4:2:2:1, respectively [31].

Both cultures were maintained in an incubator set at 27˚C, 70% relative humidity (RH), with a

photoperiod of 16:8 (L: D) h.

Parasitoid origin and rearing

The parasitoid was originally received from the Bangladesh Agricultural Research Institute

(BARI), Gazipur, Bangladesh. The species was reared using eggs(<24 h old) of P. interpunc-
tella, following the method of Hegazi et al. [32]. The host eggs were stacked in a paper strip

(1.5×3 cm) with gum arabic glue and placed in a transparent glass vial (3.5 cm in diameter x 12

cm in length) exposed to parasitoids [33]. The glass vials were covered by cloth-wrapped cot-

ton. The egg strips were renewed daily to avoid super parasitism.

Experimental procedures

Host age-dependent parasitoid performance. To estimate the age-dependent perfor-

mance of T. evanescens, 1, 2 and 3d-old eggs of P. interpunctella and G. mellonella were used.

A total of 25 eggs of each age and species were stacked in a paper strip with gum arabic glue

and placed in a transparent glass vial, as noted above, containing one-day old male and female

pair of T. evanescens. The host eggs of both species were exposed to the parasitoid for 24 h. The

mouths of the vials were wrapped in a white filter paper with the help of rubber and then were

kept separately in an incubator set at 25˚C, 16:8 (L:D) photoperiod and 70% RH. Twelve host

eggs were taken for each age and individual species for carrying out the experiment of combi-

nation of host eggs. There were three replications for each age and species. The percent parasit-

ism (%) of T. evanescens was recorded based on eggs that turned into blackened colour. The

glass vials were checked every day until all the adult parasitoids were dead. During this period,

we recorded parasitism and emergence, as well as the female: male proportion. Parasitism,

emergence, adult longevity and developmental period of T. evanescens were recorded in the F1

individuals. After death, the adult body length was also measured using ocular micrometer

under the microscope.

Cold storage impact on the parasitoids. Two age groups, i.e. 1 and 2-old, of host eggs of

P. interpunctella and G. mellonella were selected for different exposure times to low tempera-

tures, i.e. 0 (control), 15, 30, 45 and 60 d at either 4or 9˚C [34]. Twenty-five eggs of each host

species and age were stacked in a paper strip with gum arabic glue and placed in a transparent

glass vial, as above. The mouths of the vials were wrapped in a white filter paper with the help

of rubber. After that, they were kept separately in incubators set at either 4 or 9˚C, with the

rest of the conditions were set at 16:8 (L:D) photoperiod and 70% for RH, for each of the differ-

ent storage periods. The glass vials were removed after the completion of each storage period.

Then a single pair of male and female T. evanescens was introduced separately into the vials

containing the cold stored host eggs for each host age, species and storage period for parasitism

and kept in an incubator set at 25˚C, 16:8 (L:D) photoperiod and 70% RH. A small cotton

absorbing 10% aqueous sucrose-glucose-fructose mixture (1:1:1) was supplied in the vial for

feeding the T. evanescens adults. After 2 days of parasitism, the host eggs were checked for the

percent of parasitism. The effects of cold storage in the percentage of adult emergence and sex

ratio in T. evanescens were recorded separately for each host species. The adult body length

was also measured using an eye piece-micrometer (New York Microscope Company, Hicks-

ville, NY, USA). There were three replicates for each cold temperature, host species, age group

and storage periods.
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Temperature-dependent fitness of parasitoids. To evaluate the temperature-dependent

fitness of T. evanescens,1 d-old host eggs of each species was exposed at different temperatures,

i.e. 15, 20, 25 and 30˚C. Twenty-five eggs of each species and age were stacked in a paper strip

with gum arabic glue and placed in a vial, as noted above. The mouths of the vials were

wrapped in a white filter paper with the help of rubber. After that, a single pair of male and

female T. evanescens was introduced separately into the vials containing host eggs for each spe-

cies and keptseparately in incubators set at the temperatures mentioned above, and at 16:8 (L:

D) photoperiod and 70% RH. Percentage of parasitism, adult emergence, sex-ratio, develop-

mental periods and adult body length were evaluated following the procedures described

above for cold storage experiments. There were three replicates for each cold temperature,

host species, age group and storage period.

Data analysis. The assumptions of normality and homogeneity of variance were deter-

mined using Levene’s test [35]. The percentages of parasitism, adult emergence and female

progeny of parasitoids for all the trials were transformed to arcsine square root for stabilizing

variances before being subjected to ANOVA, but the untransformed data are presented in the

results for clarity. For each of the different trials including the effects of host age, cold storage-

dependent and temperature, the data were subjected to analysis by multi-factorial ANOVA

with the “host egg age” and “host species” as factors using the PROC ANOVA [36]. A k-value-

was calculated for different temperatures that are primarily responsible for an increase or

decrease in the number of parasitoids in a given population. Means were compared by Tukey-

Kramer HSD test at the 5% level.

Results

Host age-dependent parasitoid performance

Parasitism rates varied significantly among the different egg age groups (F = 17.60; df = 2,24;

P<0.001). The highest parasitism rate was recorded in one day eggs for both host species

(Table 1). However, there were no significant variationsinthe species and their combination

for all age groups (F = 0.16; df = 3,24; P = 0.92). Moreover, the interaction age�species was not

significantly different in the percent of parasitism (F = 0.77; df = 6,24; P = 0.60). Adult emer-

gence inT. evanescens varied significantly in all egg age groups (F = 5.96; df = 2,24; P = 0.007)

(Table 1). The highest percentage of emergence was recorded in 2 d-old eggs for both species

while 1 d-old eggs showed the maximum emergence in the combination of species (Table 1).

In addition, the adult emergence did not vary significantly in the species and their combina-

tions (F = 0.75; df = 3,24; P = 0.53), but the interaction of age�species was significant (F = 2.61;

df = 6,24; P = 0.04). Percent female progeny of T. evanescens did not differ significantly among

treatments (F = 0.68; df = 11,24; P = 0.74) and the maximum (67.41) percent of female progeny

was recorded in the case of P. interpunctella eggs, resulting from the combination with P. inter-
punctella in the case of the 2d-old eggs (Table 1). There were no significant variations in the

percent female progeny among the different egg age group (F = 0.54; df = 2,24; P = 0.59) and

species including their combinations (F = 0.74; df = 3,24; P = 0.54). Adult longevity of T. eva-
nescens was significantly lengthened in 1 d-old eggs, compared to 2 and 3-dold eggs (F = 22.06;

df = 11,24; P<0.001) (Table 1). The longevity was found to be shorter in the case of the eggs of

P. interpunctella, especially in 2 and 3 d-old eggs. Also, parasitoid longevity was significantly

different among the egg age groups (F = 81.33; df = 2,24; P<0.001) and species combinations

(F = 10.67; df = 3,24; P<0.001). The interaction of age�species also varied significantly

(F = 8.00; df = 6,24; P<0.001) for adult longevity. The different egg age groups significantly

influenced the developmental periods in the case of both host species (F = 262.91; df = 11,24;

P<0.001) (Table 1). The highest (14 d) developmental period was recorded for the
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combination of G. mellonella at the 1 d-old eggs. The developmental periods of T. evanescens
also showed a significant variation among the egg age groups (F = 1324.00; df = 2,24; P<0.001)

and species combinations (F = 69.33; df = 3,24; P<0.001). There were also significant varia-

tions in the interaction of age�species for developmental period (F = 5.83; df = 6,24; P<0.001).

The adult body length of T. evanescens resulting from different egg age groups varied signifi-

cantly (F = 6.45; df = 11,128; P<0.001) (Table 1). The maximum body length was recorded in

T. evanescens resulting from G. mellonella in all age groups. The body length also varied signifi-

cantly among the age (F = 21.04; df = 2,128; P<0.001) and species combinations (F = 7.53;

df = 3,128; P<0.001). The interaction age�species was not significant for adult body length

(F = 1.04; df = 6,128; P = 0.40).

Cold storage impact on the parasitoids. Age-dependent cold storage preservation signif-

icantly influenced the parasitism in T. evanescens reared either on P. interpunctella or G. mello-
nella at 4 and 9˚C (F = 5.20; df = 1,100; P<0.025) (Figs 1 and 2). A significantly higher

parasitism percentage was recorded in 2 d-old egg of G. mellonella (F = 35.28; df = 1,16;

P<0.001) for 15 d storage period at 9˚C, and the (insignificantly) lowest in 1 d-old P. inter-
punctella eggs for 60 d storage (F = 0.10; df = 1,16; P = 0.75) (Fig 2). Moreover, temperature

(F = 18.74; df = 1,100; P<0.001), age (F = 5.20; df = 1,100; P<0.001) and species (F = 26.20;

df = 1,100; P<0.001) varied significantly in the percent of parasitism when the host eggs were

preserved at different periods of low temperatures. Adult emergence of T. evanescens differed

significantly among the egg groups stored at different temperature levels (F = 5.87; df = 1,100;

P = 0.02) (Table 2). In contrast, species (F = 0.64; df = 1,100; P = 0.42) and age (F = 0.75;

df = 1,100; P = 0.39) of host eggs did not vary significantly regarding adult emergence for all

Table 1. Age-dependent (mean±SE) biological traits in T. evanescens reared on eggs of P. interpunctella (IMM) and G. mellonella (WXM), placed either alone or

simultaneously.

Age of eggs

(d)

Species No. Eggs

used

% Parasitism % Adult

emergence

Female progeny

(%)

Longevity (d) Developmental periods

(d)

Body Length

(mm)

1 IMM 75 81.33 ± 4.81a 74.67 ± 7.43b 54.05 ± 4.60a 4.33 ± 0.29a 13.00 ± 0.00b 0.24 ± 0.02b

WXM 75 84.00 ± 4.62a 70.67 ± 4.81b 53.77 ± 6.98a 3.67 ± 0.58a 13.33 ± 0.33ab 0.27 ± 0.01a

Combined

IMM + 36 100.00±0.00a 87.50 ± 3.41ab 45.15 ± 8.67a 4.00 ± 0.00a 12.00 ± 0.00c 0.26 ± 0.02ab

WXM 36 80.83 ± 8.86a 91.67 ± 6.81a 52.72 ±3.66a 4.00 ± 0.00a 14.00 ± 0.00a 0.28 ± 0.03a

F(df3,8) 1.09
(P = 0.41)

5.76 (P<0.02) 0.45 (P = 0.72) 1.33(P = 0.33) 25.00(P<0.001) 4.35(P<0.009)

2 IMM 75 61.33 ±17.66a 96.52 ± 6.26a 58.43 ± 1.76a 2.67 ± 0.33b 11.66 ± 0.33b 0.25 ±0.02ab

WXM 75 72.00± 8.01a 93.75 ± 6.26a 46.05± 9.57a 3.00 ± 0.00b 13.00 ± 0.00a 0.26 ± 0.01a

Combined

IMM + 36 93.33 ± 3.34a 69.33 ± 13.91a 67.41 ± 7.07a 3.00 ± 0.00b 12.00 ± 0.00b 0.23 ± 0.02b

WXM 36 100.00± 0.00a 54.17 ± 10.21a 50.36±10.93a 4.00 ± 0.00a 13.00 ± 0.00a 0.26 ± 0.01ab

F(df 3,8) 0.42
(P = 0.74)

0.71 (P = 0.57) 1.35 (P = 0.33) 12.00
(P<0.002)

17.00(P<0.001) 3.58 (P<0.02)

3 IMM 75 54.67 ± 5.82a 84.23 ±4.62a 61.72 ± 1.06a 2.00 ± 0.00b 8.00 ± 0.00b 0.22 ± 0.01ab

WXM 75 54.67 ± 3.82a 90.79 ± 4.62a 54.49± 8.38a 3.00 ± 0.00a 9.00 ± 0.00a 0.23 ± 0.02a

Combined

IMM + 36 77.38 ±12.44a 44.44 ± 7.36a 62.78±14.81a 2.00 ± 0.00b 8.00 ± 0.00b 0.21 ± 0.02b

WXM 36 90.48 ± 4.77a 55.56 ± 2.78a 50.00 ± 9.63a 3.00 ± 0.00a 9.00 ± 0.00a 0.23 ± 0.02a

F(df 3,8) 1.03
(P = 0.43)

0.60 (P = 0.64) 0.39 (0.77) 27.34
(P<0.001)

29.43 (0.001) 2.78 (P<0.05)

Within a column for each age group, means with the same letter do not differ significantly; HSD test at 0.05.

https://doi.org/10.1371/journal.pone.0253287.t001
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the storage periods, but storage period (F = 31.64; df = 4,100; P<0.001) showed a significant

variation among treatments. In this context, 100% parasitoid emergence was recorded for both

species, at 1 and 2 d-old eggs stored at either 4 or 9˚C for 15 d (Table 2). Conversely, no adult

emergence was recorded from 1d-old egg stored for 60 d at 9˚C. The cold preservation of host

eggs did not significantly influence the female progeny of T. evanescens for both species

(F = 4.80; df 1,100; P = 0.03) (Table 2). The highest female progeny percent (64.21) was

recorded in 2 d-old G. mellonella eggs stored for 30 d at 4˚C. No significant effects in female

progeny were recorded in the different temperatures (F = 1.96; df = 1,100; P = 0.16) and ages

(F = 0.33; df = 1,100; P = 0.15), but storage periods were significant (F = 16.13; df = 4,100;

P<0.001). The body length of T. evanescens adults resulting from the cold stored eggs varied

significantly (F = 14.89; df = 4,260; P<0.001) for both temperature and species (Table 2).

Increased body length was observed in the individuals coming from G. mellonella eggs for

most storage periods. Temperature (F = 18.41; df = 1,260; P<0.001) and species (F = 13.34;

df = 1,260; P = 0.001) had a significant effect in body length of the emerged adults. Neverthe-

less, egg age group had no significant effect in the body length of T. evanescens (F = 1.41;

df = 1,260; P = 0.24).

Temperature-dependent fitness of parasitoids. Temperature insignificantly affected

parasitism percentage (F = 2.04; df = 7,16; P = 0.11) with the highest percentage of parasitism

Fig 1. Mean percentage (%±SE) of parasitism by T. evanescens in P. interpunctella and G. mellonella eggs of

different ages on exposed to 4˚C for different intervals (within each egg age and species, bars followed by the same

letters are not significantly different; HSD test at 0.05).

https://doi.org/10.1371/journal.pone.0253287.g001
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to be recorded for 25˚C in both species (Fig 3). For all temperatures, parasitism percentage

was significantly higher in G. mellonella (F = 7.90; df = 3,8; P<0.008), as compared with the

respective figures of P. interpunctella (F = 1.31; df = 3,8; P = 0.33). There were significant varia-

tions among temperatures (F = 4.52; df = 3, 16; P = 0.018), but not for species (F = 0.34;

df = 1,16; P = 0.09). Moreover, the interaction between species�temperature did not also show

any significant variations (F = 0.14; df = 3,16; P = 0.94). Temperature level insignificantly

affected adult emergence (F = 2.67; df = 3,16; P = 0.08) (Table 3). The maximum levels of adult

emergence were 94.9 and 100% for P. interpunctella and G. mellonella, respectively, at 25˚C.

Results also showed that there were no significant variations on emergence for species

(F = 1.91; df = 1,16; P = 0.19)as well as for the interaction species�temperature(F = 0.09;

df = 3,16; P = 0.96). Furthermore, temperature had no significant effect in the percent female

progeny of T. evanescens (F = 0.65; df = 3,16; P = 0.59) (Table 3). The highest percent of female

progeny (67.14) was recorded when T. evanescens was reared on eggs of P. interpunctella at

15˚C. However, there were no significant effects on the percentage of female progeny for spe-

cies (F = 1.19; df = 1, 16; P = 0.29), although the interaction species�temperature varied signifi-

cantly (F = 6.94; df = 3,16; P = 0.003). The developmental periods were significantly

lengthened in T. evanescens individuals reared either on P. interpunctella (F = 251.41; df = 3,8;

P<0.001) or G. mellonella at 15˚C, with the highest period (24.67d) being recorded in G.

Fig 2. Mean percentage (% ±SE) of parasitism by T. evanescens in P. interpunctella and G. mellonella eggs of

different ages on exposed to 9˚C for different intervals (within each egg age and species, bars followed by the same

letters are not significantly different; HSD test at 0.05).

https://doi.org/10.1371/journal.pone.0253287.g002
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mellonella (F = 531.93; df = 3,8; P<0.001) (Table 3). In this series of tests, we saw that develop-

mental periods of the parasitoid were insignificantly influenced by species (F = 1.79; df = 1,16;

P = 0.20) and interaction species�temperature (F = 1.21; df = 3,16; P = 0.33).Temperature had

a significant effect in T. evanescens adult body length (F = 327.86; df = 7,41; P = 0.001) for both

Table 2. Mean (±SE) effect of cold storage preservation on the biological traits of T. evanescens reared on eggs of P. interpunctella (IMM) and G. mellonella (WXM),

placed either alone or simultaneously that were maintained at either 4or 9˚C, at different intervals.

Temp. (˚C) Egg age Storage periods (d) Species % adult emergence Female progeny (%) Adult body Length(mm)

4 1 0 (control) IMM 76.33 ± 1.45c 35.75 ± 1.44bc 0.27 ± 0.01a

WXM 70.67± 4.81c 42.86 ±8.22abc 0.28 ± 0.02a

15 IMM 100 ± 0.00a 42.74 ± 3.16abc 0.21± 0.02c

WXM 100 ± 0.00a 43.85 ± 8.04abc 0.26 ± 0.03a

30 IMM 97.22 ± 2.78ab 48.48 ± 4.40abc 0.21 ± 0.01c

WXM 98.15 ± 1.85ab 56.98 + 6.20ab 0.24 ± 0.02b

45 IMM 85.00 ±2.52abc 49.84 ± 3.00abc 0.24 ± 0.01b

WXM 83.81 ± 1.91bc 61.11 ± 5.56a 0.21 ± 0.02c

60 IMM 93.33 ± 6.67ab 50.00 ± 00abc 0.21± 0.01c

WXM 51.67 ± 1.67d 28.16 ± 3.06c 0.23±0.02b

F(df = 9,20) 26.50 (P<0.001) 3.54 (P<0.008) 5.63(P<0.001)
2 0 (control) IMM 76.67 ± 2.61bc 39.63 ± 4.11ab 0.26 ±0.02ab

WXM 77.67 ± 1.77ab 45.13 ± 4.06ab 0.28 ± 0.01a

15 IMM 93.91 ± 3.45ab 43.89 ± 3.10ab 0.22 ± 0.01b

WXM 95.83 ± 4.17a 59.30 ± 1.74a 0.25 ± 0.02ab

30 IMM 88.21 ± 6.05bab 47.24 ± 7.87ab 0.22± 0.01b

WXM 95.82 ± 2.11a 64.21 ± 6.26a 0.23 ± 0.03ab

45 IMM 58.22 ± 4.82cd 37.05 ± 7.59ab 0.22 ±0.02ab

WXM 83.33 ± 4.17ab 39.68 ± 8.85ab 0.21 ± 0.02b

60 IMM 54.67 ±0.00d 26.63 ± 4.00b 0.24 ±0.01ab

WXM 95.26 ± 2.48ab 46.57 ± 5.20ab 0.25 ± 0.01ab

F (df = 9,20) 16.22 (P<0.001) 3.55(P<0.008) 3.88(P<0.001)

9 1 15 IMM 98.41 ± 1.59a 42.47 ± 9.22ab 0.22 ± 0.01b

WXM 98.04 ± 1.96a 62.26 ± 8.88a 0.25 ± 0.02a

30 IMM 86.54 ± 7.29ab 61.24 ± 3.56a 0.22 ± 0.03b

WXM 97.78 ± 2.22a 43.83 ± 2.06ab 0.23 ± 0.01b

45 IMM 79.00± 2.08b 40.94 ± 1.88ab 0.22 ± 0.03b

WXM 98.33 ± 1.67a 62.04 ± 3.21a 0.21 ± 0.02b

60 IMM - - -

WXM - - -

F (df = 5,14) 213.18(P<0.001) 6.21(P<0.001) 6.68(P<0.001)

2 15 IMM 100 ± 0.00a 62.26 ± 8.88a 0.23 ± 0.01b

WXM 100 ± 0.00a 60.39 ± 4.37a 0.26 ± 0.02a

30 IMM 96.49 ±3.51a 43.83 ± 2.06ab 0.23 ± 0.03b

WXM 95.65 ± 4.35ab 53.94 ± 5.26a 0.24 ± 0.01ab

45 IMM 99.33± 0.67a 45.74 ± 4.13ab 0.21± 0.02c

WXM 78.57 ± 6.00b 46.67 ± 3.3ab 0.20 ± 0.02c

60 IMM 33.33 ±5.21c 15.65 ± 2.49c 0.20 ± 0.03c

WXM 45.00 ± 2.89c 24.48 ± 1.46bc 0.20 ± 0.02c

F (df = 7,16) 56.45(P<0.001) 13.05(P<0.001) 11.71(P<0.001)

Within a column for each temperature and age, means followed by the same letter do not differ significantly; HSD test at 0.05.

https://doi.org/10.1371/journal.pone.0253287.t002
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species (Table 3). In most combinations, adult body length was higher in the individuals that

were developed from G. mellonella, as compared with the respective figures of P. interpunctella.

The body length varied significantly among temperatures (F = 171.68; df = 3,41; P = 0.001)

and between the species (F = 1752.03; df = 1,41; P = 0.001). There were also significant varia-

tions (F = 9.32; df = 3,41; P = 0.001)in the interaction of species�temperature for the adult

body length. Finally, the highest mortality levels were recorded in T. evanescens reared at 20˚C

for either host species, as indicated by the higher k-values (Table 3).

Discussion

Egg parasitoids have to be efficient in locating hosts as the life span of the egg stage is generally

short under normal conditions. Moreover, previous studies indicate that old eggs are less suit-

able as hosts as they adversely affect several parasitoid biological parameters, such as percent-

age of parasitism, developmental time [37], adult emergence [38], body size and sex ratio [39].

Fig 3. Mean percentage (% ±SE) of parasitism by T. evanescens in P. interpunctella and G. mellonella eggs on

different temperatures (within each species, bars followed by the same letters are not significantly different; HSD

test at 0.05; lowercase letters for P. interpunctella, uppercase letters for G. mellonella).

https://doi.org/10.1371/journal.pone.0253287.g003

Table 3. Effect of temperature (mean ±SE) on the biological traits of T. evanescens reared on eggs of P. interpunctella (IMM) and G. mellonella (WXM).

Species Temperature (˚C) Adult emergence (%) Female progeny (%) Developmental periods (d) Adult body length (mm) k- values

IMM 15 86.92 ± 4.95a 67.14 ± 10.81a 23.67 ± 0.88a 0.24 ± 0.01a 0.70 ± 0.29

20 80.22 ± 9.92a 65.56 ± 8.69a 19.33 ± 0.33b 0.25 ± 0.01a 1.49 ± 0.52

25 94.91 ± 2.89a 33.60 ± 11.52a 9.37 ± 0.19c 0.23 ± 0.0a 0.41 ± 0.08

30 92.59 ± 7.42a 42.47 ± 2.77a 7.33 ± 0.21c 0.23 ± 0.01a 0.70 ± 0.29

F (df = 3,8) 1.31(P = 0.34) 3.38 (P = 0.07) 251.41(P<0.001) 1.81(P = 0.16)
WXM 15 89.29 ± 1.64ab 20.51 ± 12.86b 24.67 ± 0.67a 0.27 ± 0.01a 0.61 ± 0.09

20 88.21 ± 6.05b 37.72 ± 13.95ab 20.33 ± 0.51b 0.25 ± 0.01a 1.08 ± 0.13

25 100 ± 0.00a 54.84 ± 11.10ab 9.00 ± 0.08c 0.26 ± 0.01a 0.33 ± 0.03

30 98.04 ± 1.96a 66.76 ± 5.56a 7.00 ± 0.08d 0.25 ± 0.01a 0.43 ± 0.05

F (df = 3,8) 7.90 (P<0.008) 4.14 (P<0.04) 531.93(P<0.001) 2.22 (P = 0.09)

Within a column for each species, means with the same letter do not differ significantly; where no letters exist, no. significant differences were noted; HSD test at 0.05.

https://doi.org/10.1371/journal.pone.0253287.t003
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These effects may be due to changes in the chemical composition as nutrients that are gradu-

ally consumed by the host embryo and change, or there are changes in the physical characteris-

tics of the chorion, which becomes more rigid as the egg ages [40,41]. In this context, it is well

established that preference for hosts towards a particular host age group may enhance the fit-

ness of egg parasitoids [42,43]. Thus, parasitoids might make use of the physical characteristics

and/or chemicals in and on the surface of eggs, which drastically change with age, as critical

cues indicating the suitability of hosts. Nevertheless, our results demonstrate that egg age may

not be of critical importance, at least in the case of the species range tested here, and can be

moderated by other factors, such as the host species and previous exposure to low tempera-

tures. In this context, the differences between the age groups utilized here were not very

diverse, in terms of rates of parasitism.

We have found an interesting interaction between egg age and storage period. As a general

principle, we saw that the percentage of parasitism was gradually decreased with the increase

of the cold storage period. However, this decrease exhibited similar trends for both parasitoids

only in the case of 1d-old eggs. In contrast, for the 2 d-old eggs G. mellonella performed better

as a host at 4˚C, providing a considerable percentage of parasitized eggs, even at the longer

storage period (60 d). It is generally considered that G. mellonella eggs take longer to hatch, as

compared with those of P. interpunctella [44,45], although comparative studies are not avail-

able towards this direction. Hence, the difference between the two egg age groups for G. mello-
nella can be narrower as compared with the respective figures of P. interpunctella, which

indicates that G. mellonella can be more suitable as a host for T. evanescens, in terms of more

gradual egg “maturation”. In an earlier comparison of these two species as hosts of the larval

ectoparasitoid Harbobracon hebetor (Say) (Hymenoptera: Braconidae), Hasan et al. [29] con-

sidered G. mellonella as a superior host, due to certain larval characteristics, such as size and

longevity. Paradoxically, our data illustrate that 2 d-old eggs of this host species maintain a

good level of suitability for parasitism by T. evanescens, for a long period of time, which means

that 2 d-old eggs are less affected by storage periods as compared with those of P. interpunc-
tella. Nevertheless, morphological variations may drastically contribute to egg suitability for

parasitism. For instance, the egg parasitoid Telenomus remus Nixon (Hymenoptera: Scelioni-

dae) is able to parasitize the eggs in the basal layers of Spodopteraspp. (Lepidoptera: Noctuidae)

egg masses, even when they are covered by moth scales, much more effectively than Tricho-
gramma spp. [46], suggesting that the latter is more “selective” regarding egg preference.

In contrast with storage at 4˚C, storage at 9˚C differentiated the parasitism rates in a more

uniform way for both host species. However, even in this temperature, parasitism rates were

higher at G. mellonella eggs, as compared with P. interpunctella eggs. Storage of G. mellonella
at this temperature provided very high percentages of parasitism up to 30 d; in fact, storage for

15 and 30 d provided even higher percentages than untreated eggs (0 d). For the larval endo-

parasitoid Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae), Eliopoulos

et al. [47] noted that there was a critical egg maturation stage, which was directly related with

viability and progeny production capacity. For the same species, Andreadis et al. [48] found

that cold tolerance was negatively correlated with parasitoid age. We are unaware if egg expo-

sure to low temperatures increases their suitability for parasitism, in the same way that larval

irradiation positively affects parasitism in moth larvae by H. hebetor [49], but this hypothesis

needs additional investigation. Considering the overall data for this series of bioassays, we

assume that older eggs were more susceptible to low temperatures as compared to young eggs.

The combined use of both host species generally provided higher parasitism rates, which,

paradoxically, did not always yield in higher parasitoid emergence rates. Adult parasitoid

emergence in the combined use of both host species, was reduced in eggs that were 2 and 3 d-

old, as compared with the use of one single host species. Spatial segregation of hosts may result
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in different parasitism rates, resulting in host preference patterns and parasitoid aggregation

in specific host groups [50]. Adaptation and counter-adaptation of a parasitoid in different

hosts that can coexist locally is directly related with host rate advantage [51]. Practically, the

simultaneous utilization of more than one host species may offer specific benefits to the overall

parasitoid rearing technique, as parasitism may be shifted to an alternative host, if there is a

breakdown in the case of the superior host species, e.g. change of egg suitability.

In contrast with egg age and previous exposure to cold, parasitism rates were similar on

both host species, regardless of the temperature level for the rearing of the parasitoids, at least

at the range of temperatures examined here. Moreover, despite the fact that we observed a

reduction in parasitism at 20˚C, the increase of temperature beyond that level further

increased the parasitism. In a similar series of tests with Trichogramma turkestanica Meyer,

reared of eggs of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyra-

lidae), Hansen and Jensen [52] found similar temperature-dependent parasitism trends. Still,

different species of Trichogramma exhibit dissimilar developmental and parasitism rates in

relation with temperature, but there are species of this genus for which population growth is

benefited by the increase of temperature [53]. Consequently, our data demonstrate that maxi-

mum parasitism can be achieved at temperatures that are higher than 20˚C, which should be

taken into account in T. evanescens rearing protocols, or enhancement of the parasitoid prog-

eny production when using eggs that have been previously exposed to low temperatures.

Paradoxically, exposure of eggs to low temperatures changed the female ratio, in a different

way for each of the host species. In some of the combinations tested, the female ratio was

higher in untreated (not exposed to cold) eggs, which partially explains the higher parasitism

rates that were recorded in these combinations, despite the fact that the highest female ratio

was not always correlated with higher rates. Moreover, for 1 d-eggs that had been exposed to

either 4 or 9˚C, we observed a gradual increase of the female ratio, while the reverse was noted

for 2 d-old eggs. It has been well established that the female ratio of some species of Tricho-
gramma can be significantly altered at different temperatures, resulting in different parasitism

and longevity rates [53]. In contrast with the female ratio, adult body length was decreased

with the increase of the exposure interval in low temperatures. “Better eggs”, in terms of size

and nutrients, are known to provide larger parasitoids, but the size of parasitoids may not nec-

essarily result in a better parasitism performance [54].

Conclusions

Our work demonstrated that storage of eggs for a certain internal can be used with success for

rearing protocols of T. evanescens. Between the two hosts used here, G. melonella was more

suitable for parasitoid rearing, mainly due to the fact that this species provides eggs that are

more suitable for parasitism when exposed at low temperatures. Maintaining moth eggs at low

temperatures has been proposed as a means to control parasitoid rearing, and to provide large

numbers of parasitoids whenever it is needed, utilizing both moth species. Having alternative

host species in egg parasitoid rearings can prevent unexpected turnovers when there are prob-

lems with the rearing of the basic host. In this effort, 2 d-old eggs can be more suitable than 1

d-old eggs, and this age could be proposed for selection to increase parasitoid performance,

especially when maintained at 9˚C.
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