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Objective: This study aimed to develop an artificial intelligence model for predicting the
pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) of
locally advanced rectal cancer (LARC) using digital pathological images.

Background: nCRT followed by total mesorectal excision (TME) is a standard treatment
strategy for patients with LARC. Predicting the PCR to nCRT of LARC remine difficulty.

Methods: 842 LARC patients treated with standard nCRT from three medical centers
were retrospectively recruited and subgrouped into the training, testing and external
validation sets. Treatment response was classified as pCR and non-pCR based on the
pathological diagnosis after surgery as the ground truth. The hematoxylin & eosin (H&E)-
stained biopsy slides were manually annotated and used to develop a deep pathological
complete response (DeepPCR) prediction model by deep learning.

Results: The proposed DeepPCR model achieved an AUC-ROC of 0.710 (95% CI:
0.595, 0.808) in the testing cohort. Similarly, in the external validation cohort, the
DeepPCR model achieved an AUC-ROC of 0.723 (95% CI: 0.591, 0.844). The
sensitivity and specificity of the DeepPCR model were 72.6% and 46.9% in the testing
set and 72.5% and 62.7% in the external validation cohort, respectively. Multivariate
logistic regression analysis showed that the DeepPCR model was an independent
predictive factor of nCRT (P=0.008 and P=0.004 for the testing set and external
validation set, respectively).

Conclusions: The DeepPCR model showed high accuracy in predicting pCR and served
as an independent predictive factor for pCR. The model can be used to assist in clinical
treatment decision making before surgery.

Keywords: rectal cancer, deep learning, neoadjuvant chemoradiotherapy, pathological complete response,
artificial intelligence
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INTRODUCTION

Colorectal cancer remains one of the leading causes of cancer death
(1). For patients with locally advanced rectal cancer (LARC),
neoadjuvant chemoradiotherapy (nCRT) followed by total
mesorectal excision (TME) is recommended as a standard
treatment strategy. nCRT can significantly reduce local recurrence
and treatment-associated toxicity and more importantly, make
tumors more amenable to resection. However, the treatment
response to nCRT varies greatly among patients. Approximately
15-38% of patients could obtain a pathological complete response
(pCR) and are recommended the watch and wait approach to avoid
the side effects of surgery (2), while 20% of patients have little to no
response to nCRT and might even suffer significant side effects and
miss their best opportunity for surgery (3–5). More importantly,
patients with pCR have better long-term outcomes, indicating a
favorableprognosis (6).However, how topredict treatment response,
especially to identify pCR candidates prior to nCRT, remains
challenging for LARC.

Previous studies have shown that tumor stage, serum tumor
markers beforeneoadjuvant therapy, and lymphocyte infiltration in
the tumormicroenvironment are associated with tumor regression
tonCRT(7).Recently,with thedevelopmentof artificial intelligence
algorithms, radiological imaging has been used to evaluate the
treatment response of LARC (8–14). The commonly adopted
imaging techniques include diffusion-weighted magnetic
resonance imaging (MRI) (11), diffusion kurtosis and T2-
weighted MRI (8), and a multiparametric MRI protocol with
dynamic-contrast-enhanced MRI (13). For instance, Zhang et al.
(10) developed a pCR predictionmodel based on diffusion kurtosis
and T2-weighted MRI, and the area under the curve (AUC) was
0.70 (95% confidence interval (CI): 0.59, 0.79). Histopathological
images prevail as the gold standard for patient diagnosis and
contain abundant biological information. Therefore, we anticipate
that more accurate predictions can be achieved by analyzing
pathological images than by analyzing radiological images.

Compared with conventional machine learning, deep learning
can automatically extract features from an image without the
necessity of feature predefinition and is suitable for mining the
most relevant feature representations. Multi-instance learning
(MIL), as a weakly supervised deep learning technique, has
achieved promising results on the topic of patient prognosis and
outcome prediction (15–18). MIL enables the network to learn
more holistic information from whole-slide images (WSIs). To the
best of our knowledge, there has been little investigation on the
prediction of pCR based on histopathological images prior to nCRT
with theMIL technique. The aim of this study was to develop a deep
pathological complete response (DeepPCR) prediction model for
the prediction of pCR directly from conventional hematoxylin &
eosin (H&E)-stained histopathological images.
MATERIALS AND METHODS

Study Cohort and Availability
Two different cohorts, i.e., the primary cohort and external
validation cohort, were adopted for training and internal and
Frontiers in Oncology | www.frontiersin.org 2
external validation and included retrospectively identified LARC
patients from January 1, 2010, to January 1, 2018, from three
hospitals in China (the Sixth Affiliated Hospital of Sun Yat-sen
University, Cancer Center of Sun Yat-sen University, and
Yunnan Cancer Hospital). A total of 842 patients were
recruited; among them, the primary cohort (783 patients from
the Sixth Affiliated Hospital of Sun Yat-sen University and
Cancer Center of Sun Yat-sen University) was randomly
subgrouped into the training set (666 patients, 85%) and
testing set (117 patients, 15%), and the external validation
cohort (from Yunnan Cancer Hospital) contained 102 patients.
The inclusion criteria were as follows: (1) patients had locally
advanced disease determined by pretreatment TNM stage (T3/
T4, and/or N+); (2) biopsy was performed, and the biopsy
specimen was pathologically diagnosed as adenocarcinoma;
and (3) patients underwent nCRT followed by rectal resection.
The exclusion criteria were as follows: (1) patients with familial
adenomatous polyposis, distant metastases, or Lynch syndrome;
and (2) patients with no information on tumor regression grade
(TRG) and no available H&E-stained slides.

All patients accepted a standard treatment strategy based on
the National Comprehensive Cancer Network (NCCN)
guidelines (version 3, 2017). The nCRT regimen was 50 Gy
pelvic radiation therapy with concurrent 5-fluorouracil-based
chemotherapy (FOLFIRI or FOLFOX regimens). TME was
performed by either anterior resection or abdominoperineal
resection after nCRT of 4-8 weeks. The TRG after nCRT was
used to divide patients into two groups based on H&E-stained
slides after surgery: pCR (with no remaining viable cancer cells)
and non-pCR (with small clusters of cancer cells or no response
with extensive residual cancer). The flow diagram of patient
enrollment into the two cohorts is shown in Figure 1.

Clinicopathological variables, such as age, sex, TNM stage,
histological grade, TRG after surgery, and blood testing
parameters, including lymphocytes, neutrophils, carcinoembryonic
antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and lactate
dehydrogenase (LDH) prior to nCRT treatment, were collected.
This study was approved by the Institutional Review Board of the
Sixth Affiliated Hospital of Sun Yat-sen University.

Data Preparation
Formalin-fixed paraffin-embedded (FFPE) biopsy tissue blocks
were cut into 4-µm sections for H&E staining. All slides were
checked by a pathologist who ascertained that they contained
tumor areas. WSIs were acquired at a magnification of 20× on an
Aperio scanner.

Tumor tissue regionswere hand-delineated by pathologists (Dr.
XYL and Dr. HLL) using Aperio Image Scope software and
subsequently cropped into patches with a size of 299×299 pixels
at amagnificationof 20×. The distributionof thenumberof patches
per slide followed a long-tail distribution,with themajority of slides
containing approximately 100 patches. For slides with more than
1000 patches, we randomly chose 1000 cropped patches.

pCR Candidate Classification
Four models were designed for classifying the input biopsy
histological images, with patients’ distinct TRG outcomes as
June 2022 | Volume 12 | Article 807264
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the ground truth. The first three models were trained on 102,728
patches and tested on 18475 patches in the primary cohort,
namely, the DeepPCR model, patch-based combined model, and
patch-based individual model. The DeepPCR model was built
upon the MIL strategy (Figure 2). Specifically, a pretrained
ResNet-18 model (19) was leveraged to extract the pathological
feature representations of each cropped patch, i.e., the patch-wise
phenotype representation (patchPR). Based on the patchPRs, the
unsupervised K-means algorithm was used to categorize these
features into six clusters (see Supplementary Figure 1). Each
cluster occupied a subspace of the features and comprised a
distinctive phenotype group. The patches in each cluster were
further processed by a multi-instance fully convolutional model
(MI-FCM) (20) to generate cluster-wise phenotype
representation (clusPR). Herein, the MI-FCM was comprised
of two pairs of Conv-ReLU layers, followed by a pooling layer.
Afterwards, WSI-wise phenotype representation (wsiPR) was
constructed by concatenating the clusPRs from the same WSI.
The wsiPR sufficiently exploited the intercluster feature
difference and intracluster feature dependence, constituting the
most informative phenotype representation. Based on wsiPR, a
two-layer fully connected network was leveraged to generate the
final prediction. The DeepPCR model built a hierarchical feature
structure from patch to WSI and explicitly modeled the mutual
dependence between different phenotype groups for patient
outcome prediction.

The patch-based combined model and patch-based individual
model used patch-based approaches in which the cropped patches
shared the same label with the original histopathological WSI and
the prediction of patch-based methods was made for each patch
rather than eachWSI. Similar to DeepPCR, the pretrained ResNet-
18 model was adopted to extract the phenotype representations of
Frontiers in Oncology | www.frontiersin.org 3
each cropped patch. According to the aggregation method of the
patch-level prediction, we implemented these patch-based models
in two ways. One was to predict each individual patch’s label, and
then combined them via majority voting, which was called the
patch-based individualmodel. The otherwas to aggregate the patch-
level predictions of each subject by removing the clustering step in
DeepPCR, called the patch-based combined model (remaining
modules are the same as DeepPCR). To validate the effectiveness
of pathological imaging data in pCR outcome prediction compared
with nonpathological data, the fourth model (hematology model),
based on clinical hematology data, including CEA, CA19-9, LDH,
lymphocytes, and neutrophils, was built. A two-layer multilayer
perceptron (MLP) model was adopted in the hematology model.

Phenotype Visualization
To visualize the representative phenotypes in each K-means
cluster, t-distributed Stochastic Neighbor Embedding (t-SNE)
(21) and the Raster Fairy method (22) were applied on the
patchPRs. t-SNE is a technique for dimensionality reduction that
is particularly well suited for the visualization of high-
dimensional data. The Raster Fairy method aims to transform
the two-dimensional clustering data derived from t-SNE into a
regular grid without destroying the neighborhood relations
emerging from the clustering. The GradCAM method (23) was
used to calculate the patch importance for target prediction.

Statistical Analysis
The predictive efficacy of themodelwas evaluated by the area under
the receiver operating characteristic curve (AUC-ROC), area under
the precision-recall curve (AUC-PR), sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV). Univariate and multivariate logistic regression analyses
FIGURE 1 | The flow diagram of patient enrollment. (A) Primary cohort, (B) External validation cohort.
June 2022 | Volume 12 | Article 807264
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were performed to investigate the predictive value for all
biomarkers. The statistical significance of the differences in the
clinicopathological characteristics of pCR and non-pCR patients
were calculated using the Mann-Whitney test (two-tailed) for
continuous variables and Fisher’s exact test (two-tailed) for
dichotomous variables. Comparisons of clinicopathological
factors in the primary and external validation cohorts were
performed using Student’s t test for continuous variables and
Fisher’s exact test (two-tailed) for dichotomous variables. A two-
sidedpvalueof less than0.05wasconsideredstatistically significant.
RESULTS

Patient Characteristics
The primary cohort included 783 patients: 295 patients from the
Sixth Affiliated Hospital of Sun Yat-sen University and 488
patients from the Cancer Center of Sun Yat-sen University. A
total of 201 and 582 patients were classified as pCR and non-
pCR, respectively. The external validation cohort from Yunnan
Cancer Hospital included 102 patients, of which 24 and 78
patients were classified as pCR and non-pCR, respectively. The
clinicopathological characteristics of the patients in the primary
and external validation cohorts are provided in Table 1. The
clinicopathological characteristics, including clinical T stage and
histological grade, were different between the primary and
external validation cohorts (P<0.001 and P<0.001, respectively)
(Supplementary Table 1).
Frontiers in Oncology | www.frontiersin.org 4
pCR Candidate Prediction
in the Primary Cohort
The DeepPCR model had a higher discriminative power, with an
AUC-ROC of 0.710 (95% CI: 0.595, 0.808) and an AUC-PR of
0.875 (95% CI: 0.795, 0.935) in the primary cohort (Figure 3A
and Table 2A). The sensitivity, specificity, PPV and NPV were
72.6%, 46.9%, 70.4%, and 54.0%, respectively (Table 2A). The
other three models showed inferior performance. Specifically, the
hematology model had an AUC-ROC of 0.403 (95% CI: 0.274,
0.534) and an AUC-PR of 0.698 (95% CI: 0.591, 0.805). The
patch-based individual model and patch-based combined model
achieved an AUC-ROC of 0.544 (95% CI: 0.432, 0.653) and an
AUC-PR of 0.805 (95% CI: 0.717, 0.885) and an AUC-ROC of
0.627 (95% CI: 0.516, 0.733) and an AUC-PR of 0.842 (95% CI:
0.762, 0.909), respectively (Figures 3A, C and Table 2A). As
shown in Figure 3E, the AUC-ROC of the DeepPCR model was
significantly higher than that of the hematology model (P < 0.001)
and patch-based individual model (P < 0 .05).

pCR Candidate Prediction in the
External Validation Cohort
To investigate the effectiveness and generalizability of the
DeepPCR model, it was validated in the external cohort. In the
external validation cohort, the DeepPCR model achieved a
similar AUC-ROC of 0.723 (95% CI: 0.591, 0.844) and an
AUC-PR of 0.887 (95% CI: 0.805, 0.949) (Figures 3B, D and
Table 2B). The sensitivity, specificity, PPV and NPV were 0.725
(95% CI: 0.637, 0.814), 0.627 (95% CI: 0.463, 0.773), 0.758 (95%
A B DC

FIGURE 2 | The proposed deep learning framework (DeepPCR) for pCR prediction. (A) WSIs with tumors annotated by expert pathologists. (B) All WSIs were
cropped into small patches with a size of 299×299 pixels at a magnification of 20×. (C) An in-house deep learning-based color normalization method was applied to
ensure the color consistency of the cropped patches. (D) Illustration of the proposed DeepPCR model for pCR candidate prediction. Three scales of phenotype
feature representations (i.e., patchPR, clusPR, and wsiPR) were integrated to derive the final prediction.
June 2022 | Volume 12 | Article 807264
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CI: 0.671, 0.847), and 0.536 (95% CI: 0.368, 0.688), respectively
(Table 2B). In external cohorts, the AUC-ROC of the DeepPCR
model was significantly higher than that of the hematology
model (P < 0.001) and patch-based individual model (P < 0
.05) (Figure 3F).

Univariate and Multivariate Analyses
In the primary cohort, the univariate logistic regression analysis
showed that CEA and DeepPCR model were significantly
correlated with pCR (P=0.033 and 0.0001, respectively)
(Table 3A). Multivariate logistic regression analysis showed
that only DeepPCR was an independent factor for predicting
pCR (95% CI: 1.646, 28.743; P=0.008) (Table 3B).

In the external validation cohort, age, CEA, neutrophil-to-
lymphocyte ratio (NLR), patch-based combined model and
DeepPCR model were significantly correlated with pCR
(P=0.042, 0.029, 0.04, 0.023, and 0.0001, respectively)
(Table 3A). Multivariate logistic regression analysis showed
that only DeepPCR was an independent factor for predicting
pCR (95% CI: 2.138, 51.186; P=0.004) (Table 3B).

Histological Patterns Associated With TRG
To find some important clinical insights based on the DeepPCR
model, we determined which types of histological patterns were
most relevant to patient TRG, and the pipeline of this process is
displayed in Figure 4. In Figure 4A, each grid represented an
individual patch, and the patchPRs obtained from all these patches
were categorized into six phenotype clusters (Figure 4B), which
were reduced into a two-dimensional feature space based on t-SNE
and the Raster Fairy method. Here, the phenotypes could be color,
edges, texture, curve and/or shape of cancer and normal tissues. To
conduct an investigation into which types of phenotypes contribute
Frontiers in Oncology | www.frontiersin.org 5
the most to pCR prediction, the GradCAM method (23) was
adopted to calculate the importance of patches. The importance
heatmap is shown in Figure 4C, and darker colors indicate that the
patches played a more important role in pCR prediction. We also
calculated the sum of the importance values of the patches in each
cluster (Figure 4D). It can be seen that different clusters had
different predictive powers for pCR prediction, and a larger value
indicated that the corresponding cluster contributed more to
DeepPCR. The size of bubbles represents the number of patches
in the corresponding cluster. We found that patches in clusters 0
and l played more important roles in pCR candidate prediction.
Specifically, the patch importance value of cluster 1 was significantly
larger than that of clusters 2, 3, 4, and 5 (P<0.001, P<0.05, P<0.01,
and P<0.001, respectively). There were no significant differences
between cluster 0 and cluster 1 in terms of the patch importance
value (Figure 4D). Figure 4E shows the representative patches of
cluster 1 and their distribution in a WSI, which also represented a
special histological pattern and spatial pattern highly associated with
pCR. Similarly, Figures 4F–J demonstrates the same patchPR
visualization process but for the non-pCR group. The patch
importance value of cluster 2 was significantly larger than that of
clusters 0, 1, 3, 4, and 5 (P<0.001, P<0.001, P<0.001, P<0.001, and
P<0.001, respectively) (Figure 4I) in non-pCR candidate prediction.
DISCUSSION

In the present study, we developed a novel model to predict pCR
in LARC using digital pathological images. We found that the
DeepPCR model could achieve a relatively high AUC-ROC score
of 0.710. Multivariate logistic analysis showed that the DeepPCR
model was indeed an independent factor for predicting pCR,
TABLE 1 | Clinicopathological characteristics of patients in the training, testing, and external validation cohorts.

Training set (n=666) Testing set (n=117) ExternalValidation set (n=102)

PCR (%)
(n=171)

Non-PCR (%)
(n=495)

P
value

PCR (%)
(n=30)

Non-PCR (%)
(n=87)

P
value

PCR (%)
(n=24)

Non-PCR (%)
(n=78)

P
value

Age, mean(SD), y 52.77 ± 12.02 54.71 ± 11.78 0.078 53.90 ± 11.71 55.38 ± 11.47 0.549 54.08 ± 11.01 57.17 ± 10.37 0.182
Sex, No. (%) 0.849 0.376 0.081
Female 55(32.2) 154(31.1) 8(26.7) 32(36.8) 12(50.0) 22(28.2)
Male 116(67.8) 341(68.9) 22(73.3) 55(63.2) 12(50.0) 56(71.8)

Clinical T stage
cT2 10(5.9) 16(3.2) 0.124 2(6.7) 2(2.3) 0.271 1(4.2) 0(0.0) 0.235
cT3 113(66.1) 323(65.3) 0.926 20(66.7) 55(63.2) 0.827 9(37.5) 24(30.8) 0.612
cT4 48(28.0) 156(31.5) 0.442 8(26.6) 30(34.5) 0.503 14(58.3) 54(69.2) 0.333

Clinical N stage
cN0 34(19.9) 76(15.4) 0.189 5(16.7) 13(14.9) 0.777 0(0.0) 18(23.1) 0.006
cN1 86(50.3) 249(50.3) 1 13(43.3) 40(46.0) 0.834 17(70.8) 43(55.1) 0.236
cN2 51(29.8) 170(34.3) 0.301 12(40.0) 34(39.1) 1 7(29.2) 17(21.8) 0.582

TNM stage
Stage II 35(20.5) 76(15.3) 0.167 5(16.6) 13(14.9) 0.777 0(0.0) 18(23.1) 0.006
Stage III 136(79.5) 419(84.7) 0.124 25(83.4) 74(85.1) 0.777 24(100.0) 60(76.9) 0.006

Histological grade
1 22(12.9) 55(11.1) 0.579 3(10.0) 16(18.4) 0.394 1(4.2) 0(0) 0.235
2 125(73.1) 382(77.2) 0.299 22(73.3) 65(74.7) 1 23(95.8) 71(91.0) 0.677
3 24(14.0) 58(11.7) 0.421 5(16.7) 6(6.9) 0.147 0(0) 7(9.0) 0.194

Patch No. 102,728 18475 46599
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indicating that the model could assist in treatment decision
making prior to surgery for LARC.

In recent years, there has been increasing interest in digital
pathology image analysis based on machine learning algorithms
to assist in pathological diagnosis (24, 25). With the development
Frontiers in Oncology | www.frontiersin.org 6
of deep learning, an increasing number of studies have focused
on clinical-grade detection and the prediction of outcomes. For
example, Cao et al. (24) developed a pathomics-based model for
microsatellite instability prediction from pathological images.
Ole-Johan Skrede et al. (25) developed a deep learning-based
A B

D

E F

C

FIGURE 3 | (A, B) AUC-ROC of the four comparative methods in the (A) primary and (B) external validation cohorts (top row). (C, D) AUC-PR of the four
comparative methods in the (C) primary and (D) external validation cohorts (middle row). (E, F) DeLong test for the four comparative methods in the (E) primary and
(F) external validation cohorts (bottom row). In this work, we used a probability threshold of 0.7 (that is, any patient with a pCR prediction probability greater than 0.7
was reported as a pCR candidate). No significant difference (ns): P > 0.05, *P < 0.05, ***P < 0.001.
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biomarker model for colorectal cancer outcome by analyzing
H&E-stained sections. The successful applications of artificial
intelligence in digital pathology indicate that digital pathology
images contain important information for the diagnosis and
prognosis of cancer. Due to the complexity of pathological
imaging, there have been few relevant studies on the prediction
of neoadjuvant efficacy based on preoperative pathological
biopsy with artificial intelligence. Some studies used MRI to
predict neoadjuvant efficacy. For instance, Petresc et al. (8)
utilized pretreatment T2-weighted radiomic features to predict
Frontiers in Oncology | www.frontiersin.org 7
LARC responders, and least absolute shrinkage and selection
operator (LASSO) regression analysis was applied to derive a
predicted AUC of 0.80 (95% CI: 0.58, 0.94). Although their
model’s performance was better than ours, they used a small
cohort of patients. In a retrospective study, Zhang et al. (10)
developed a deep learning-based model for pCR prediction based
on diffusion kurtosis and T2-weighted MRI, and the AUC was
0.70 (95% CI: 0.59, 0.79), which was similar to that of our
proposed model. The limitation of their model was that they did
not validate the model in independent external cohorts.
TABLE 2 | Results of DeepPCR and the comparative models in the (a) primary and (b) external validation cohorts.

(a) Model/Outcome AUC-ROC AUC-PR Sen (%) Spe (%) PPV (%) NPV (%)

Hematology model 0.403 (0.274, 0.534) 0.698 (0.591, 0.805) 72.6 (64.1, 80.3) 27.2 (18.8, 36.2) 61.7 (60.0, 71.1) 37.7 (30.8, 51.2)
Patch-based individual model 0.544 (0.432, 0.653) 0.805 (0.717, 0.885) 68.4 (59.8, 76.9) 25.8 (17.0, 34.7) 57.2 (45.2, 69.6) 27.0 (15.4, 46.8)
Patch-based combined model 0.627 (0.516, 0.733) 0.842 (0.762, 0.909) 69.2 (60.7, 77.8) 30.4 (20.7, 40.7) 61.6 (50.5, 73.1) 37.6 (18.0, 59.4)
DeepPCR model 0.710 (0.595, 0.808) 0.875 (0.795, 0.935) 72.6 (64.1, 80.3) 46.9 (32.6, 61.0) 70.4 (61, 79.9) 54.0 (35.8, 70.9)
(b) Model/Outcome AUC-ROC AUC-PR Sen (%) Spe (%) PPV (%) NPV (%)
Hematology model 0.420 (0.293, 0.548) 0.737 (0.623, 0.846) 70.6 (61.8, 79.4) 21. 7 (14.2, 30.0) 57.4 (48.5, 67.4) 17.6 (14.3, 20.4)
Patch-based individual model 0.527 (0.402, 0.657) 0.810 (0.712, 0.895) 73.5 (64.7, 81.4) 22.6 (15.3, 31.4) 57.9 (62.6, 72.4) 17.8 (17.4, 18.1)
Patch-based combined model 0.599 (0.474, 0.726) 0.832 (0.732, 0.919) 69.6 (60.8, 78.4) 27.2 (16.3, 38) 62.3 (49.9, 74.5) 31.7 (14.8, 54.1)
DeepPCR model 0.723 (0.591, 0.844) 0.887 (0.805, 0.949) 72.5 (63.7, 81.4) 62.7 (46.3, 77.3) 75.8 (67.1, 84.7) 53.6 (36.8, 68.8)
Jun
e 2022 | Volume 12
The CI value is inside the parentheses. Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value. In this work, we used a probability threshold of 0.7
(that is, any patient with a pCR prediction probability greater than 0.7 was reported as a pCR candidate).
TABLE 3 | Univariate and multivariate logistic regression analyses.

(a) Univariate logistic regression Testing Set External Validation Set

P value Exp (B) (95% CI) P value Exp (B) (95% CI)

Sex 0.316 1.6 (0.638, 4.011) 0.051 0.393 (0.153, 1.006)
Age 0.051 2.679 (0.995, 7.212) 0.042 2.768 (1.039, 7.376)
TNM stage 0.822 1.138 (0.369, 3.513) 0.998 0 (0, -)
CEA 0.033 2.796 (1.087, 7.197) 0.029 3.667 (1.145, 11.74)
CA-199 0.087 2.128 (0.896, 5.055) 0.054 2.505 (0.985, 6.37)
CRP 0.198 2.348 (0.639, 8.621) –

LDH 0.999 5.80e8 (0, -) 0.207 2.4 (0.617, 9.339)
Lymphocytes 0.24 2.186 (0.593, 8.062) 0.133 2.2 (0.788, 6.146)
Neutrophils 0.414 1.524 (0.555, 4.186) 0.097 2.508 (0.846, 7.436)
NLR 0.142 3.155 (0.681, 14.623) 0.04 3.045 (1.054, 8.804)
Patch-indi 0.06 2.248 (0.967, 5.224) 0.219 1.786 (0.709, 4.5)
Patch-comb 0.053 2.548 (0.989, 6.564) 0.023 3.143 (1.171, 8.437)
DeepPCR 0.0001 6.125 (2.462, 15.239) 0.0001 7 (2.575, 19.028)
(b) Multivariate logistic regression Test Cohort External Validation Cohort

Sig. Exp (B) (95% CI) Sig. Exp (B) (95% CI)

Sex 0.143 2.45 (0.739, 8.124) 0.011 0.122 (0.024, 0.621)
Age 0.489 1.576 (0.434, 5.72) 0.705 1.346 (0.289, 6.261)
TNM stage 0.965 1.034 (0.233, 4.582) 0.998 0 (0, -)
CEA 0.101 2.718 (0.823, 8.973) 0.189 3.211 (0.564, 18.284)
CA-199 0.124 2.413 (0.785, 7.415) 0.059 4.137 (0.945, 18.108)
CRP 0.104 4.607 (0.732, 29.003)
LDH 0.999 2.6e8 (0, -) 0.118 7.334 (0.604, 89.051)
Lymphocytes 0.128 3.412 (0.704, 16.539) 0.203 3.418 (0.514, 22.723)
Neutrophils 0.979 0.981 (0.239, 4.023) 0.874 0.846 (0.107, 6.699)
NLR 0.138 4.242 (0.628, 28.678) 0.05 8.854 (0.995, 78.749)
Patch-indi 0.346 1.657 (0.58, 4.732) 0.831 0.855 (0.204, 3.591)
Patch-comb 0.8 0.819 (0.175, 3.842) 0.642 1.453 (0.301, 7.023)
DeepPCR 0.008 6.879 (1.646, 28.743) 0.004 10.461 (2.138, 51.186)
(a) Univariate logistic regression analysis of the testing set and external validation set. (b) Multivariate logistic regression analysis of the testing set and external validation set. The covariates
were sex, age, TNM stage, CEA, CA19-9, CRP, LDH, lymphocytes, neutrophils, neutrophil-to-lymphocyte ratio (NLR), patch-based individual (patch-indi) model, patch-based combined
(patch-comb) model, and DeepPCR model.
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FIGURE 4 | Patch-level feature interpretation in the pCR group (A–E) and non-pCR group (F–J). Patches in the correctly predicted pCR group (A) and correctly
predicted non-pCR group (F). PatchPRs were categorized into six phenotype clusters based on t-SNE and the Raster Fairy method, and each grid represented
an individual patch (B, G). The importance distribution of the patches in the pCR group (C) and non-pCR group (H). Darker colors represent the patches that
played a more important role in pCR or non-pCR prediction. Demonstration of patch importance and the number of patches in each cluster; the size of the
bubble represents the number of patches in the corresponding cluster (D, I). Representative patches of cluster 1 (E) and cluster 2 (J) and the part of the WSI
from which they were selected.
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Radiological imaging has its own limitation in distinguishing
inflammatory lesions from neoplastic lesions. As the gold
standard of disease diagnosis, conventional preoperative
pathological biopsy is of great significance for the diagnosis
and prognosis of tumors.

The discriminative power of DeepPCR model was
significantly higher than that of the hematology model
(P<0.001) and the other two patch-based models (P<0.001 and
P<0.001, respectively). The number of patients in our study was
larger than other reported works (8–14). Moreover, the
DeepPCR model was evaluated in independent cohorts. The
external validation cohort came from another center with a
different sample handling procedure and using a different
scanner. Although the external validation cohort was different
from the primary cohort in terms of the clinicopathological
characteristics, such as clinical T stage and histological grade
(P<0.001 and P<0.001, respectively), the proposed model
achieved similar results as those in the primary cohort,
indicating its generalizability and robustness.

The proposed model leveraged an MIL-based deep learning
model and showed a superior performance compared to previous
patch-based learning methods. Existing patch-based approaches
can be categorized into two classes based on the level of the
employed annotations. For the first class, patch-wise annotations
are used to train deep learning models (26–30), and strong
supervision is typically performed, benefiting from the precise
labeling information. Nevertheless, these methods depend on
pixel-level annotations by expert pathologists, and it would be
labor intensive and hard to obtain sufficient high-quality
annotation data. For the second class of methods, the ground-
truth labels are provided for the whole images rather than the
patches (31, 32). When performing the learning process, the
global image-level label of each WSI is taken as the patch-level
label directly, and the final prediction is generated by combining
the patch-level outputs. Although this type of method is very
straightforward, there are two crucial problems. First, the
cropped patches of WSIs are processed independently, and the
spatial constraints of these patches are neglected. The second
problem is that the patches in the same image indiscriminately
share the same label and thus introduce a substantial disturbance
to model training. To address these problems, several MIL-based
approaches that aim to leverage the feature representations of all
image patches to collaboratively predict the patient outcome
have been developed (15–18, 33). Building upon these methods,
our proposed model can effectively mine the dependence of
feature representations at three different scales, i.e., patch-level,
cluster-level, and WSI-level phenotype representations. In this
patient outcome prediction task, the MIL-based learning method
outperformed the patch-based learning methods. Specifically, the
MIL-based methods were able to jointly consider intrapatch
dependence; thus, the spatial relationships between tumor
tissues (including cancer cells and surrounding stromal cells)
were exploited. These tissues form the tumor microenvironment
(34), and the characterization of the microenvironment plays an
important role in tumor progression and the response to
treatment. However, the patch-based learning methods only
Frontiers in Oncology | www.frontiersin.org 9
processed patches independently, and the spatial information
among patches was neglected; thus, these methods showed poor
performance. Our findings suggest that MIL-based learning
models can handle the spatial information inherent in the
tumor microenvironment.

Some deep learning-based studies visualized and interpreted
the learned feature representations (31, 35–38), which may
provide some important clinical insights. For instance, Courtiol
et al. (35) identified regions that contributed to patient outcome
prediction (mesothelioma classification) by visualizing various
scenarios predicted by the deep learning model. They found that
these regions are mostly located in the stroma and are associated
with inflammation, cellular diversity and vacuolization.
Campanella et al. (36) assessed the model by visualizing the
features reduced in a 2D space and found that a set of top-ranked
patches with probabilities close to 0.5 contained glands
suspicious of being malignant. In our study, patchPRs were
categorized into six phenotype clusters based on the DeepPCR
model. We determined that different clusters had different
predictive powers for pCR prediction. We calculated the sum
of the importance values of the patches in each cluster and found
that the patches in cluster 0 and cluster 1 played more important
roles in pCR candidate prediction. Although we did not analyze
each cluster in more detail, we proposed that some histological
patterns may be associated with the predicted TRG. The novel
histological pattern may be associated with the morphological
features and microenvironment of the tumor.

Previous studies showed that pretreatment serumCEA levels were
significantly correlated with pCR (39). In our study, the univariate
logistic regression analysis showed that CEA levels significantly
correlated with pCR in the primary cohort (P=0.033) and in the
external validation cohort (P=0.042). However, inmultivariate logistic
regression analysis, this association did not persist, and only the
DeepPCR model was an independent factor for predicting pCR
(95% CI: 1.646, 28.743; P=0.008). We also conducted pCR prediction
experiments based on clinical data, i.e., CEA, CA19-9, LDH,
lymphocytes, and neutrophils. In the experimental studies, an AUC-
ROC of 0.403 was achieved based on these nonpathological data,
showing that theymaynot be sufficient for prognostic pCRprediction.

Although promising results and relevant clinical insights were
found, there are some limitations in this study. First, this study was a
retrospective study. A multicenter prospective study is needed to
confirm the performance of the prediction model. Second, due to
the prevalence of tumor heterogeneity, the representativeness of
biopsy specimens was limited. Another limitation of this study was
that deep learning has the disadvantage of its black-box nature.
Although we determined some histological patterns relevant to
patient TRG, the morphological features and microenvironment of
each histological pattern should be further investigated.

In conclusion, our study was the first to investigate the nCRT
outcome prediction problem in LARC patients using presurgical
biopsy pathological images. A clinically useful prediction model
was developed using deep learning. The DeepPCR model was
evaluated in an independent cohort and achieved stable results.
This model has the potential to guide clinicians in making
nCRT choices.
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