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Purpose: Atrophic nonunion is one of the most difficult complications of fracture. The cellular factors that
contribute to atrophic nonunion are poorly understood, and mesenchymal stem cells (MSCs) are
recognized as the key contributor to bone formation. This study aimed to characterize the MSCs isolated
from the fibrotic tissue of atrophic nonunion (AN-MSCs) from the perspective of proliferation, differ-
entiation potential, senescence, and paracrine function.
Methods: Human atrophic fibrotic tissue was obtained from four donors aged 29e37 for isolating AN-
MSCs, and donor-matched bone marrow acquired from the iliac crest for isolating MSCs (IC-MSCs) as
control. The AN-MSCs or IC-MSCs in passage 3 were applied for the following evaluations. The surface
markers expressed on the two cells were evaluated using flow cytometry. The proliferation of the two
cells for up to 11 days was comparatively investigated. After osteogenic, chondrogenic, or adipogenic
induction, multi-lineage differentiation of AN-MSCs or IC-MSCs was comparatively evaluated using
lineage-specific stains and lineage-specific gene expression. Enzyme-linked immunosorbent assay
(ELISA) assessment was applied to evaluate the paracrine function of AN-MSCs or IC-MSCs. Cellular
senescence of AN-MSCs or IC-MSCs was evaluated using senescence-associated b-galactosidase (SA-b-
gal) staining.
Results: AN-MSCs or IC-MSCs from the four donors showed morphologic and immunophenotypic
characteristics of MSCs, with the expression of MSCs markers and negative expression of hematopoietic
markers. In general, AN-MSCs showed similar proliferation and adipogenic capacity with IC-MSCs. In
contrast, IC-MSCs showed significantly higher osteogenic and chondrogenic capacity compared to AN-
MSCs. Moreover, the culture medium of IC-MSCs contains significantly higher levels of VEGF, TGF-b1,
PDGF-BB, and IGF-1 than the culture medium of AN-MSCs. Lastly, the AN-MSCs are more prone to
cellular senescence than the IC-MSCs.
Conclusions: In-vitro, AN-MSCs were similar to IC-MSCs in proliferation and adipogenic capacity, but
inferior to IC-MSCs in osteogenic and chondrogenic capacity, paracrine function, and anti-senescence.
© 2023, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Fracture nonunion occurs in approximately 5e10% of long bone
fractures [1], which is one of the most difficult complications of
fracture, and decreased the function and life quality of the patient
[2,3]. To effectively treat fracture nonunion, the surgeon and sci-
entists classified it into either hypertrophic or atrophic according to
characteristic radiological features [4]. The hypertrophic nonunion
is mainly caused by inadequate mechanical fixation, as character-
ized by lots of hypertrophic callus forming at the fracture site with
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Table 1
Characteristics of the recruited patients.

Patient ID Age (Years) Gender Fracture
duration
(Months)

Site

1 1,775,581 29 Male 16 Left tibia
2 1,430,310 34 Male 36 Right femur
3 1,723,638 37 Male 18 Right radius
4 1,752,945 35 Male 12 Right femur
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ubiquitous blood, oxygen and nutrient supply [5]. Thus, the treat-
ment of hypertrophic nonunion is directed toward stabilization of
the fracture. In the case of atrophic nonunion, no callus is formed at
the fracture site [2,5], and the contributing factor and pathophys-
iology of developing atrophic nonunion remain poorly understood.

According to literatures, the contributing factors leading to
atrophic nonunion can be classified into patient-specific factors or
injury severities and operations. Among them, patient-specific
factors, such as age, gender, smoking, diabetes, hormone disor-
ders, and genetic factors, are widely accepted to influence atrophic
nonunion [6,7]. In addition, injury severities and operation,
including the bone loss at the fracture site, extensive periosteum
damage, infection, and open fractures, are closely related to the
quality and speed of bone formation at the fracture site [6,7].
Regarding these risk factors associated with developing atrophic
nonunion, no reliable measure was available for predicting them.
Thus, surgeons paid more attention to elucidating the underlying
pathophysiology of developing atrophic nonunion.

Previously, poor vascularization was considered a cause of
atrophic nonunion, which was supported by a study that arterial
occlusion in the ipsilateral extremity was associated with a higher
rate of delayed union or nonunion in tibia fractures [8]. However,
this conception has been challenged by several literatures that
found significant vascularity in the fibrotic tissue of atrophic
nonunion [9,10]. Currently, the conception that the atrophic tissue
is avascular has been proven to be incorrect. Another conception
pointed out that the development of atrophic nonunion mainly
resulted from the lack of regenerative cells in the fibrotic tissue.
This was supported by several studies [11,12], in which the percu-
taneous injection of culture-expanded bone marrow-derived
mesenchymal stem cells (BM-MSCs) could enhance fracture heal-
ing in nonunion. However, some studies confirmed that mesen-
chymal stem cells (MSCs) are located at the fibrotic tissue of
atrophic nonunion and show similar quantities to the MSCs in the
iliac crest, but they presented in a state of reduced osteogenic po-
tential and increased cell senescence [13,14]. This conception was
supported by M Orth et al.’ study, in which they delivered BMP-2
into the site of atrophic nonunion to stimulate the osteogenic dif-
ferentiation of stem cells, and then promoted the healing of murine
atrophic nonunion [15].
Fig. 1. Schematic diagram showing the study design, MSCs were isolated from the fibrotic ti
then comparative evaluation of their proliferation, multipotentiality, senescence, and parac
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Whether the MSCs showing reduced biological activities at the
site of atrophic nonunion is the primary cause of developing atro-
phic nonunion remains an unsolved controversy and warrants
further study. In this study, we comparatively evaluated the pro-
liferation, multipotentiality, senescence, and paracrine function of
MSCs isolated from the fibrotic tissue of atrophic nonunion (AN-
MSCs) or the bone marrow of iliac crest (IC-MSCs) (Fig. 1).

2. Materials and methods

2.1. Ethical approval

Ethical approval was attained from the Medical Ethics Com-
mittee of Xiangya Hospital (No. 20211207-5) for the harvesting of
fibrotic tissue from the atrophic nonunion site or bone marrow
from the iliac crest. The recruited patients gave informed consent
and research was performed in compliance with the Helsinki
Declaration.

2.2. Patient recruitment and tissue collection

The participants were recruited at the Xiangya Hospital, Central
South University, Changsha, Hunan, China, who were patients
admitted for treatment of atrophic nonunion in either the upper or
lower extremity. In total, four patients suffering from atrophic
nonunion were recruited, who were addressed with excision of
atrophic fibrotic tissue, compression plating or nailing exchange,
then autogenous iliac bone autograft. The characteristics of the four
patients are listed in Table 1. During the operation, the atrophic
ssue of atrophic nonunion (AN-MSCs) or the bone marrow of iliac crest (IC-MSCs), and
rine function.



Table 2
Primer sequences utilized for qRT-PCR gene expression analysis.

Gene Primer sequence Species

RUNX2 Forward primer
Reverse primer

50- CGCCTCACAAACAACCACAG -30

50- GGTAGTGACCTGCGGAGATT -30
human

BGLAP Forward primer CACTCCTCGCCCTATTGGC human
Reverse primer CCCTCCTGCTTGGACACAAAG

SOX9 Forward primer
Reverse primer

50-TGGGCAAGCTCTGGAGACTTC-30

50-ATCCGGGTGGTCCTTCTTGTG-30
human

ACAN Forward primer 50-GCCTATCAGGACAAGGTCTCAC-30 human
Reverse primer 50-ATGGCTCTGTAATGGAACACGA-30

PPARg Forward primer 50-CCGTGGCCGCAGATTTGA-30 human
Reverse primer 50-AGATCCACGGAGCTGATCCC-30

LPL Forward primer 50-ACGGCATGTGAATTCTGTGA-30 human
Reverse primer 50-GGATGTGCTATTTGGCCACT-30

GAPDH Forward primer
Reverse primer

50- GGAGTCAACGGATTTGGTCGT -30

50- GCTTCCCGTTCTCAGCCTTGA -30
human

RUNX2: runt-related transcription factor 2; BGLAP: bone g-carboxyglutamate pro-
tein; SOX9: sex-determining region Y-box 9; ACAN: Aggrecan; PPARg: peroxisome
proliferator-activated receptor g; LPL: lipoprotein lipase; GAPDH glyceraldehyde-3-
phosphate dehydrogenase.
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fibrotic tissue and the bone marrow from the iliac crest were
collected for the following cell isolation.

2.3. Cells isolation

After atrophic fibrotic tissue was harvested from the center of
the bone defect area, tissue was extensively washed with phos-
phate-buffered saline (PBS) and then minced aseptically using
sterilized surgical scissors, followed by digestion with type I
collagenase solution (0.1 mg/mL, Gibco, USA) for 2 h in a 37 �C
water bath shaker. After filtration and centrifugation, the cells were
washed with PBS and resuspended in a culture medium (BMHX-
G101, Haixing Biosciences), and incubated at 37 �C, 5% CO2. In
addition, bone marrow from the iliac crest was directly seeded into
a cell culture plate and cultured in a culture medium (BMHX-G101,
Haixing Biosciences) to isolate MSCs, as previously described [16].
When reached 70e80% confluence, cells were passaged.
Fig. 2. (A) Morphology of MSCs isolated from the fibrotic tissue of atrophic nonunion (AN-M
AN-MSCs and IC-MSCs from four patients was determined by CCK-8 assay. Four samples we
four patients.
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2.4. Cell proliferation

Cell Counting Kit-8 (CCK-8) assay was used to evaluate the pro-
liferation ability of AN-MSCs or IC-MSCs. Briefly, the two kinds of
isolated cells at passage 3 were plated in a 96-well plate at
2.0� 103 cells perwell (n¼ 4) and incubated at 37 �Cwith 5% CO2. At
time points of 1, 3, 5, 7, and 9 days, the cells in each well were incu-
batedwith 10 mL of CCK-8 reagent and 100 mL serum-freemedium for
2 h. The absorbance at 450 nm of the cell culture medium was
recorded using a microplate reader (Varioskan LUX, Thermo, USA).

2.5. Flow cytometry

Flow cytometry analysis was used to evaluate the surface
markers of the isolated AN-MSCs or IC-MSCs. Briefly, a total of
1 � 106 AN-MSCs or IC-MSCs at passage 3 from the four patients
were, respectively, suspended in 100 mL phosphate-buffered saline
(PBS) containing 10 mg/mL antibodies for MSC surface markers
(CD73, CD90, and CD105) and hematopoietic surface markers
(CD34 and CD45), and then incubated at 4 �C for 30min. After being
washed with PBS, these cells were resuspended in 500 mL of PBS for
flow cytometry using a DxP Athena™ flow cytometry system
(Cytek) and analyzed with FlowJo 10 software (Tree Star, USA).

2.6. In-vitro osteogenesis, chondrogenesis, and adipogenesis

AN-MSCs or IC-MSCs at passage 3 from four patients were
cultured in culture medium (BMHX-G101, Haixing Biosciences) at
5000 cells/cm2 in 6-well plates. When the cultured cells reached
about 60% confluence, they were cultured with osteogenic induc-
tion medium (BMHX-D101, Haixing Biosciences), chondrogenic
induction medium (BMHX-D203, Haixing Biosciences), or adipo-
genic induction medium (BMHX-D102, Haixing Biosciences). The
culture medium was changed every 3 days. After 7-day culture,
qRT-PCRwas performed for evaluating the expression of osteogenic
genes (RUNX2, BGLAP), chondrogenic genes (SOX9, ACAN), and
adipogenic genes (PPARg, LPL) in the cells. The primer sequences
SCs) or the bone marrow of iliac crest (IC-MSCs). Bar ¼ 100 mm. (B) The proliferation of
re measured for each time point. The experiment was performed independently on the



Fig. 3. (A) Representative histograms demonstrating positive and negative staining of AN-MSCs or IC-MSCs from a single patient. (B) Expression of surface markers in the AN-MSCs
or the IC-MSCs isolated from the four patients.
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were also listed in Table 2. In addition, immunofluorescence assay
was performed for observing the RUNX2, SOX9, or PPARg expres-
sion in the cells. After a 21-day culture, Alizarin Red, Alcian blue,
and Oil red O staining assay was used for assessing the osteogenic
differentiation, chondrogenic differentiation, and adipogenic dif-
ferentiation of isolated cells.
401
2.7. In-vitro paracrine function

Previous literature indicated that the cytokines, such as VEGF,
TGF-b1, PDGF-BB, and IGF-1, have been proven to regulate angio-
genesis, cell migration, proliferation, and osteoblast differentiation
[17]. Thus, ELISA assessment was applied to detect the conce-



Fig. 4. Osteogenic differentiation of the AN-MSCs and the IC-MSCs in-vitro. (A) Osteogenic gene (Runx2, Bglap) expression compared between the AN-MSCs and the IC-MSCs.
**P < 0.01. (B) Runx2 protein expression of the AN-MSCs or the IC-MSCs after 7 days of osteogenic induction. Bar ¼ 15 mm. (C) Alizarin Red staining of the AN-MSCs or the IC-
MSCs after culturing in an osteogenic medium for 21 days. Bar ¼ 15 mm.
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ntration of these cytokines in the culture medium of AN-MSCs (AN-
MSCs-CM) or IC-MSCs (IC-MSCs-CM) at passage 3 to evaluate the
paracrine function of AN-MSCs or IC-MSCs. In brief, 1.5 mL of AN-
MSCs-CM or IC-MSCs-CM was combined with 100 mL of protease
inhibitor, and thenmeasured the above-mentioned cytokines using
human enzyme-linked immunosorbent assay (ELISA) kits (Cusabio,
China).

2.8. Cellular senescence

Cellular senescence of AN-MSCs or IC-MSCs was evaluated using
senescence-associated b-galactosidase (SA-b-gal) staining kit
(Beyotime, Shanghai, China). AN-MSCs or IC-MSCs at passage 3
were seeded in a 6-well plate at 2.0 � 106 cells per well. When cells
reached 90% confluence, the medium was discarded, and the cells
were rinsed with PBS. After these cells were fixed with 4% (w/v)
paraformaldehyde for 15 min, they were rinsed with PBS for a
further three times. After 1 mL of working solution was added to
the cells incubated at 37 �C overnight away from light, the senes-
cent cells in each group (n ¼ 4) were captured and mounted under
an optical microscope.

2.9. Statistical analysis

SPSS version 25 (IBM, USA) was used for statistical analysis, and
P < 0.05 was considered significant, while GraphPad Prism version
9.00 (GraphPad Software Inc., La Jolla, CA, USA) was used to
generate all graphs. All quantitative data are presented as
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mean ± standard deviation. The comparison between the two
groups was analyzed using a paired Student's t-test.
3. Results

3.1. Morphology and proliferation of AN-MSCs or IC-MSCs

After the primary culture of 3 days, some cells adhered to the
culture plate and formed several colonies with spindle-shaped or
round-shaped colonies (Fig. 2A). After the primary culture of 7 days,
the colonies of AN-MSCs or IC-MSCs were gradually enlarged and
presented a similar diameter (Fig. 2A). At passage 3, both AN-MSCs
and IC-MSCs showed a homogeneous spindle-shaped morphology
(Fig. 2A). As shown in Fig. 2B, the CCK-8 assay showed that the AN-
MSCs or the IC-MSCs from the four patients at passage 3 prolifer-
ated similarly without significant difference.
3.2. Surface marker of AN-MSCs or IC-MSCs

According to the criteria for defining MSCs proposed by the
International Society for Cellular Therapy (ISCT) [18], the positive
surface markers (CD73, CD90, and CD105) and negative surface
markers (CD34 and CD45) were selected to analyze the isolated AN-
MSCs or IC-MSCs by flow cytometric analysis. As shown in Fig. 3,
the isolated AN-MSCs or IC-MSCs at passage 3 were positive for
MSC-special markers (CD73, CD90, and CD105), and negative he-
matopoietic markers (CD34 and CD45).



Fig. 5. Chondrogenic differentiation of the AN-MSCs and the IC-MSCs in-vitro. (A) Chondrogenic gene (Sox9, Acan) expression was compared between the AN-MSCs and the IC-
MSCs. *P < 0.05, **P < 0.01. (B) Sox9 protein expression of the AN-MSCs or the IC-MSCs after 7 days of chondrogenic induction. Bar ¼ 15 mm. (C) Alcian blue staining of the AN-MSCs
or the IC-MSCs after culturing in a chondrogenic medium. Bar ¼ 15 mm.
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3.3. Multi-lineage differentiation

After culturing in an osteogenic medium for 7 days, the AN-
MSCs expressed significantly lower expression of RUNX2 and
BGLAP genes compared with the IC-MSCs (P < 0.05 for all) (Fig. 4A).
In addition, under osteogenic induction, significantlymore IC-MSCs
are positive for RUNX2 protein expression (P < 0.05) (Fig. 4B). At 21
days of osteogenic induction, Alizarin red stained images showed
the calcium nodules in the IC-MSCs were significantly more when
compared with the AN-MSCs (Fig. 4C).

Similarly, after culturing the AN-MSCs in a chondrogenic me-
dium for 7 days, they expressed significantly lower expression of
SOX9 and ACAN genes compared with the IC-MSCs (P < 0.05 for all)
(Fig. 5A). Additionally, under chondrogenic induction, the SOX9
protein in the IC-MSCs expressed significantly more when
compared with AN-MSCs (P < 0.05) (Fig. 5B). After 21 days of
chondrogenic induction, there was more glycosaminoglycan
deposition found around the IC-MSCs compared with the AN-MSCs
under Alcian blue staining (Fig. 5C).

As for adipogenic differentiation, the AN-MSCs and the IC-MSCs
cultured within adipogenic induced medium expressed a similar
level of PPARg and LPL (Fig. 6A). In addition, immunofluorescence
staining showed that the expression of PPARg protein was similar
in the AN-MSCs and the IC-MSCs (Fig. 6B). After 21 days of adipo-
genic induction, Oil red O staining showed that the presence of
intracytoplasmic lipid droplets was similar in the AN-MSCs and the
IC-MSCs (Fig. 6C).
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3.4. Concentration of VEGF, TGF-b1, PDGF-BB and IGF-1 in the
culture medium

The concentration of the VEGF, TGF-b1, PDGF-BB, and IGF-1,
released by the AN-MSCs or the IC-MSCs into a culture medium,
was quantified using ELISA analysis. AN-MSCs-CM and IC-MSCs-CM
contained VEGF, at a concentration of 68.41 ± 30.51 pg/mL and
213.90 ± 63.18 pg/mL, respectively (P < 0.05) (Table 3). TGF-b1,
PDGF-BB, and IGF-1 were not identified in the AN-MSCs-CM, while
the concentrations of TGF-b1, PDGF-BB, and IGF-1 in the IC-MSCs-
CM were 5.75 ± 1.13 ng/mL, 33.98 ± 15.91 pg/mL,
21.27 ± 4.69 ng/mL, respectively (Table 3).

3.5. Phenotypic character of cellular senescence

We investigated the phenotypic character of cellular senescence
by measuring the activation of SA-b-gal. We observed that nearly
71.26% of the AN-MSCs were stained positive for SA-b-gal (blue-
green) (Fig. 7A), whereas only about 32.11% of IC-MSCs were
stained positive (Fig. 7B). These findings suggest that the AN-MSCs
are more prone to cellular senescence than the IC-MSCs.

4. Discussion

Atrophic nonunion was an urgent public health problem with
detrimental socioeconomic costs and productivity losses. The pro-
gression of atrophic nonunion was influenced by multiple



Fig. 6. Adipogenic differentiation of the AN-MSCs and the IC-MSCs in-vitro. (A) adipogenic gene (PPARg and LPL) expression compared between the AN-MSCs and the IC-MSCs. “ns”
means no significance. (B) PPARg protein expression of the AN-MSCs and the IC-MSCs after 7 days of adipogenic induction. Bar ¼ 15 mm. (C) Oil Red O staining of the AN-MSCs or the
IC-MSCs after culturing in adipogenic medium. Intracytoplasmic lipid droplets were seen in the adipogenic-induced medium. Bar ¼ 15 mm.
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pathophysiological factors, including patient state, injury severities,
and operation time, thus the treatment of fracture nonunion re-
mains a challenge [19]. With the improved understanding of its
pathophysiology, the treatment strategies of fracture nonunion
have been evaluated from prolonged immobilization in the 1950s
to the modern techniques of biological therapy [20,21].

As for the understanding of atrophic nonunion, the macroscopic
appearance of atrophic nonunion was firstly described, as charac-
terized by bony sclerosis of fracture ends, complete obliteration of
medullary canal, and lots of fibrotic tissue interposition between
fracture ends [8,19]. Elucidating the macroscopic appearances
could serve as a powerful visual marker, guiding surgeons with
fibrotic tissue removal and fracture end freshening. Right after,
researchers and surgeons found that the fibrotic tissues of atrophic
nonunion are histologically a mixture of fibrous, cartilaginous, and
connective tissues, low cellular density, and full of whilst fibroblast-
like cells [22,23,13]. More seriously, the fibrotic tissues of atrophic
nonunion were lack of viable osteocytes and osteoclasts [13].
Interestingly, the fibrotic tissue was found to contain regenerative
cells positive for MSCs-related markers and negative for hemato-
poietic markers. Moreover, these regenerative cells were capable of
Table 3
The levels of cytokines present in the AN-MSCs-CM or the IC-MSCs-CM.

Cytokines AN-MSCs-CM IC-MSCs-CM

VEGF 68.41 ± 30.51 pg/mL 213.90 ± 63.18 pg/mL
TGF-b1 No detection 5.75 ± 1.13 ng/mL
PDGF-BB No detection 33.98 ± 15.91 pg/mL
IGF-1 No detection 21.27 ± 4.69 ng/mL
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differentiating into osteoblastic, chondrogenic, and adipogenic
lineages [13,24,14]. Injected platelet-rich plasma or external low-
intensity pulsed ultrasound stimulation may directly regulate the
biological activities of these regenerative cells, thus enhancing the
repair of atrophic nonunion [25,26].

Toward these regenerative cells in the atrophic nonunion tissue,
only a few studies evaluated and characterized its biological ac-
tivities [14,27]. As for the proliferative capacity of MSCs isolated
from nonunion tissue, there exists a dispute. Cuthbert et al. and
Vallim et al. found the proliferative capacity of MSCs isolated from
nonunion tissue to be comparable to that of BM-MSCs [27,24].
While Takahara S et al. found that the proliferative capacity of MSCs
from nonunion tissue was found to have minimal decline following
multiple passages [28]. Our results indicated that the AN-MSCs
show similar proliferation to IC-MSCs. As for the multipotentiality
of AN-MSCs, R J Cuthbert et al. only determined that the AN-MSCs
were capable of differentiating into osteoblastic, chondrogenic, and
adipogenic lineages [27]. While the multipotentiality difference
between AN-MSCs and IC-MSCs has never been evaluated. Our in-
vitro results indicated that the AN-MSCs at passage 3 showed lower
ability to differentiate into osteoblastic and chondrogenic lineages
than the IC-MSCs. In addition, the AN-MSCs showed a similar
property of differentiating into adipogenic lineages with IC-MSCs.

Cell senescence has been found to impair the regenerative po-
tential of MSCs [29]. Currently, no consensus has been reached on
whether the rate of cell senescence was higher in the nonunion
tissues than in the normal bone marrow. In Vallum et al.‘s study,
there is no difference in senescence rate between MSCs from
nonunion tissue and BM-MSCs [24]. Whereas, Bajada et al. reported



Fig. 7. (A) the IC-MSCs or the AN-MSCs at passage 3 were stained for SA-b-gal. Bar ¼ 10 mm. (B) Comparison of the rate of SA-b-gal positive cells in the IC-MSCs or the AN-MSCs at
passage 3 from the four patients.
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an increased proportion of MSCs senescence in nonunion tissue
when compared with BM-MSC [13]. In our study, senescence-
associated b-galactosidase staining showed that more AN-MSCs
(Passage 3) showed a state of senescence when compared with the
IC-MSCs (Passage 3) from the same patient. The results suggest that
the occurrence of fracture nonunion may be associated with the
MSCs in the atrophic nonunion showing a tendency of cell
senescence.

Finally, ELISA assay was performed to understand AN-MSCs or
IC-MSCs secreted cytokines associated with angiogenesis, cell
migration, proliferation, and osteoblast differentiation in the cul-
ture medium. In a published literature [27], the culture medium of
AN-MSCs had a negligible effect on in-vitro stimulating the human
umbilical vein endothelial cells (HUVECs) forming tubes. Mean-
while, our in-vitro results determined that the content of VEGF (a
cytokine closely associated with angiogenesis) in the culture me-
dium of AN-MSCs was significantly lower than that of the IC-MSCs.
Thus, we speculate that the MSCs in the atrophic nonunion tissue
show a lower capability of secreting VEGF, thus influencing the
angiogenesis at atrophic nonunion tissue. Similarly, the content of
TGF-b1, PDGF-BB, and IGF-1 in the culturemedium of AN-MSCswas
significantly lower than that of the IC-MSCs. According to literature,
TGF-b1, PDGF-BB, and IGF-1 are polyfunctional regulatory growth
factors that function on MSC migration, osteoblastic and chondro-
genic differentiation, and extracellular matrix (ECM) accumulation
during bone formation [30e34]. This result is consistent with the
limited cell proliferation and osteogenesis observed at the atrophic
nonunion tissue [13].

This study exists several limitations. Firstly, only the VEGF, TGF-
b1, PDGF-BB, and IGF-1weremeasuredusing ELISA assay to evaluate
the paracrine function of isolatedMSCs. Strictly speaking, proteome
profiler human cytokine array should be performed to assess the
differences in cytokines content between AN-MSCs-CM and IC-
MSCs-CM [35]. Secondly, the number of MSCs in the atrophic
nonunion tissue was not measured. Next step, we should use a flow
cytometry-based method with special markers to measure the
countof stemcells in the atrophic nonunion tissue [36]. Thus,wecan
give a definite answer about whether there are fewer MSCs located
in the atrophic nonunion tissue. Thirdly, the multipotent-iality of
AN-MSCs or IC-MSCs was evaluated in a cell culture plate. Recent
literature indicated that three-dimensional culture systems have
proven to be closer to in-vivo natural systems, thus proving to be a
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useful tool for comparatively assessing the biological characteristics
of different cell types [37]. In future studies, the multipotentiality
between AN-MSCs and IC-MSCs should be evaluated in these three-
dimensional culture systems. Fourthly, our results indicated that
AN-MSCs exhibited similarities to IC-MSCs in terms of proliferation
and adipogenicity, and showed inferior performance compared to
IC-MSCs in osteogenic and chondrogenic capacity, paracrine func-
tion, and anti-senescence. Next step, RNA sequencing technique
should be applied to further insight the mechanisms underlying
these different properties between AN-MSCs and IC-MSCs. Despite
these limitations, this study indicated that AN-MSCs showed lower
multi-lineage differentiation, easier to cell senescence, and worse
paracrine function than the IC-MSCs in-vitro.

5. Conclusions

In conclusion, our results showed the existence of MSCs in the
fibrotic tissue of atrophic nonunion, at a similar proliferation ca-
pacity to MSCs isolated from the iliac crest, but showing a lower
multipotentiality, easier to cell senescence, and worse paracrine
function. The study may help us further understand the patho-
physiology of developing atrophic nonunion.
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