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Abstract: In this study, the atomistic-scale mechanisms affecting the interfacial stability of a thermo-
plastic polymer/graphene oxide interface are investigated using molecular dynamics simulations.
Different combinations of thermoplastic polymers (polyethersulfone (PES) and polyetherimide (PEI))
and graphene oxides modified with –O–, –OH, and –COOH are prepared. PES is found to be more
strongly stabilized with modified/functionalized graphene oxide in the order of –COOH, –OH,
–O–, which is opposite to the stability order of PEI. Our results suggest that these orders of stability
are governed by a balance between the following two factors resulting from electrostatic interac-
tions: (1) atoms with a strong charge bias attract each other, thereby stabilizing the interface; (2) the
excluded-volume effect of the functional groups on graphene oxide destabilizes the interface by
preventing π-π stacking of aromatic rings.

Keywords: interfacial energy; molecular dynamics; thermoplastic resin; carbon fiber; composite

1. Introduction

Recently, carbon fiber-reinforced thermoplastic polymer composites (CFRTPs) have
attracted significant attention for application as structural materials in automobiles [1–9].
A CFRTP generally exhibits superior toughness, productivity, and recyclability; however,
it demonstrates inferior specific rigidity and strength relative to carbon-fiber-reinforced
plastic composites (CFRPs), which are usually employed in large transport. These differ-
ences between the properties of CFRTP and CFRP originate from differences in their matrix
polymers. A CFRTP consists of mutually entangled thermoplastic polymers that can be
molded at a temperature above the glass transition temperature. However, the matrix part
of a CFRP constitutes thermosetting polymers that form covalently crosslinked network
structures, which induce higher specific rigidity and strength but poor recyclability. With
increasing demands to reduce the environmental impact, the development of CFRTPs with
superior thermomechanical properties has become increasingly important.

The performance of CFRTPs not only depends on the properties of reinforcing fibers
and matrix polymers but also on their interfacial properties [10–14]. The force applied to
the composite material is transmitted through the interface between the fiber reinforcement
and polymers, and the composite material easily breaks when the interfacial adhesive-
ness is weak [6,15,16]. Various studies have been conducted to improve the interfacial
strength [17,18]. These studies can be roughly classified into two groups depending on the
approach adopted to improve the interfacial adhesiveness [19]. One approach is to modify
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the surface of the carbon fiber by functionalization via oxidation treatment or electroplating.
The other is to add another type of carbon-based material, such as carbon nanotubes, to the
matrix [20]. In this study, we focused on the former approach; that is, we investigated the
influence of carbon fiber functionalization on the interfacial energy at the atomistic scale
using full atomistic molecular dynamics (MD) simulations.

Various simulation studies have been conducted to clarify the thermomechanical
properties of polymers [21–24], reinforcements [25,26], and composites [27–44] using MD
simulations. For composites of thermosetting polymers and carbon-nanotubes (CNT),
Alien et al. and Park et al. conducted pullout tests to investigate the effect of the atomistic-
scale mechanism on the interfacial shear modulus [27,28]. For thermosetting polymer and
graphene systems, Mahmud et al. simulated the effects of force fields and the formation
of polymer cross-links on the interface energy between the polymer and graphene [29].
Sun et al. investigated the influence of graphene on the diffusion coefficient, density of
epoxy, and glass transition temperature [30]. Salahshoor and Rahbar analyzed the nanoscale
interfacial fracture toughness between graphene and epoxy by accurately modeling the
atomistic behavior during the curing process [31]. Oya et al. simulated a laminated
graphene oxide; wherein intergraphene layers were connected through thermosetting
polymers. They revealed that both covalent and hydrogen bonding have an effect on
Young’s modulus and strength [32]. For a system consisting of thermoplastic polymers
and CNTs, Shen et al. reproduced polymer-grafted nanotubes to determine the viscoelastic
behavior using a coarse-grained MD model [33]. Yang et al. investigated the correlation
between polymer conformations around a CNT and the interfacial energy [34]. Eslami and
Behronz investigated the effect of surface curvature on the structure and dynamic behavior
of thermoplastic polymers [35]. For a thermosetting polymer and graphene system, which is
similar to the system used in this study, Lee et al. investigated the orientation of polystyrene
around the interface [36]. Lee et al. simulated a pullout test of graphene from a polymer
matrix and reproduced the stress-strain behavior [37]. Equilibrium (structural and energic)
and dynamic properties were systematically investigated by Alian et al. [38]. Recently, there
have been studies focusing on electrostatic interactions at the polymer-carbon fiber interface,
including the following studies. Duan et al. investigated the interface cohesive energy
between CNT/epoxy nanocomposites using coarse-grained (CG) MD simulation [39]. They
found that CGMD can reproduce the interfacial properties by adjusting the parameter
of Lennard–Jones potential and the degree of course-graining. Moghimikherabadi et al.
showed the electrostatic interaction improves the stiffness and toughness of ionic polymer
nanocomposites using CGMD [40]. Karatasos and Kritikos performed a full-atomic MD
simulation for the graphene oxide/poly(acrylic acid)nanocomposite [41]. They found that
the dispersion of the GO flakes is characterized by the formation of oligomeric clusters.
They also found that hydrogen bonding affects the dynamics of the polymers. Zhang et al.
studied nanoscale toughening of ultrathin graphene oxide-polymer composite, and their
results indicated that both hydrogen bonding and van der Waals interactions significantly
affect the toughness by preventing the graphene-bound polymers from fracturing [42].

As indicated by the aforementioned studies, the MD simulation used in this study
has certain advantages over the finite element method (FEM), which is usually used
to investigate the mechanical properties of a composite. MD simulations calculate the
thermodynamic properties based on atomic motion, whereas FEM requires the constitutive
law of a material expressed as a continuum body. Therefore, MD simulations enable us
to investigate the dependence of the interfacial strength on the material species at the
atomistic scale [43]. The purpose of this study was to determine the atomistic factors that
aid in selecting an appropriate composite with excellent interfacial strength by using MD
simulations. For this purpose, we selected polyethersulfone (PES) and polyetherimide
(PEI) as matrix polymers [44,45] and graphene sheets with and without functionalization
as reinforcements. Furthermore, for the functionalized graphene, we selected –O–, –COOH,
and –OH as functional groups bonded to the carbon atoms on the graphene sheet. The
interfacial strength is strongly correlated to the interfacial stability; that is, the strength
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appears to be higher when the interfacial energy is lower. Therefore, an MD simulation was
adopted to obtain the interfacial energies of eight species of the composite model, which
constituted combinations of two types of matrix polymers and four types of graphene.

The remainder of this paper is organized as follows. The next section outlines the
procedures used to construct the composite model and its equilibrium structures using
MD simulations. In the third section, the simulation results and corresponding discus-
sions are presented. Finally, concluding statements are provided in the fourth section of
this manuscript.

2. Method
2.1. Creating Composite Models

MD simulations were employed to calculate the energy at the interface between the
graphene sheets and polymers. For this purpose, the layered structure of the graphene
sheets and polymers was constructed using the following procedures.

First, four types of graphene sheets and two types of matrix polymers were fabricated
separately. Atomistic models of a pure graphene sheet and three types of functionalized
graphene sheets modified with –OH, –O–, and –COOH were prepared using Graphene
Builder in PolyPerGen [46,47]. Each functional group was bonded to a randomly selected
carbon atom on one side of the graphene sheet. The number ratio of functional groups to
carbon atoms was set to 0.1. All graphene sheets were 60 Å × 61 Å in the same area. The
MD models of the pure and functionalized graphene sheets are presented in Figure 1. For
matrix polymers, models of PES ((C12H8O3S)n, degree of polymerization n = 10) and PEI
((C37H24O6N2)n, degree of polymerization n = 4) were constructed using Marvin Sketch [48]
and PolyPerGen. The atomistic models of PES and PEI after structural optimization are
presented in Figure 2. In our simulation, the all-atom optimized potentials for liquid
simulation (OPLS-AA) force field was employed to reproduce the molecular structure [49],
and the particle mech Ewald method (PME) was used for computing Coulomb interactions.
Cutoffs of Lennard–Jones (LJ) and Coulomb interactions are both 1.0 nm. All simulations
were performed using the software GROMACS [50]. The electrostatic potential charge
obtained by density functional calculations using B3LYP/6-31G (Hamiltonian/basis set)
was set for each atom to reproduce the electrostatic field around each molecule [51,52].

Next, three graphene layers were placed at the center of the simulation cell with
interlayer distances of 0.335 nm. Only pure graphene was used as the second layer, whereas
pure or functionalized graphene sheets were used as the first and third layers, wherein the
side containing functional groups faced outward. For the matrix portion of the composite,
PESs or PEIs were randomly arranged above and below the graphene layers such that
the density of atoms in the simulation cell was about 0.3 g/cc. It indicates the system is
stretched in the z-direction compared to the equilibrium state; here, the z-axis direction is
defined as the direction perpendicular to the graphene plane. The total number of atoms in
the simulation cell was approximately 30,000.

2.2. Relaxation Calculation

The relaxation calculation procedure used to obtain the equilibrium structure of the
composite models is described below.

First, structural optimization was performed to minimize the internal energy of the
system while maintaining the volume of the system at a constant value.

Next, the equilibrium structure at 600 K was obtained by stepwise relaxations under
NVT and NPT ensembles for 200 ps and 1 ns, respectively, where N denotes the total
number of atoms, V denotes the system volume, P denotes the pressure, and T denotes the
temperature. In the relaxation under an NPT ensemble, a pressure of 1 bar was applied in
the XY-plane directions, and a pressure of 10 bar was applied along the z-axis direction to
bring a lower density system closer to a system with appropriate density.

Finally, the equilibrium structure at room temperature (T = 300 K) was obtained by
stepwise relaxation as follows: In the first step, the temperature of the system was decreased
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from 600 K to 300 K at a cooling rate of 6.0 × 109 K/s under an NVT ensemble. Note that
this cooling rate is much greater than that in the usual experiment (tens K/hour). The effect
of the different conditions on the structure eventually disappears with sufficiently long
relaxation calculations. Next, a relaxation calculation was performed for 200 ps under an
NVT ensemble at T = 300 K. The equilibrium structure was obtained by relaxation for 10 ns
under an NPT ensemble at T = 300 K and P = 1 bar along with the xyz-axis directions. The
equilibrium structures of the composite model composed of PEI and graphene with -OH
are illustrated in Figure 3. Using the equilibrium composite model, the interfacial energy
per unit area, Einterface, was calculated using the following equation:

Einterface =
Etotal −

(
Epolymer + Egraphene

)
2A

(1)

where Etotal represents the internal energy of the entire composite system, Epolymer denotes
the internal energy of the polymers, Egraphene indicates the internal energy of the graphene
sheets, and A denotes the interfacial area between the graphene sheets and polymers.
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3. Results and Discussion

Calculation results of the interfacial energy are presented in Table 1. The interfacial
energies are all negative, indicating that the interaction between the polymer and graphene
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stabilizes the system better compared with the polymer and graphene alone. Compared
with PEI, PES better stabilizes the interface with functionalized graphene. The stability of
the interface between PES and functionalized graphene decreases in the order of –COOH,
–OH, and –O, which is in direct contrast to the stabilization order for PEI. One of the primary
factors influencing interfacial stability is the electrostatic interaction between the polymer
and graphene. We investigated the basis for the change in interfacial energy by considering
the charge distribution in each polymer chain as follows.

Table 1. Calculation results of the interfacial energy
(
J/m2). The upper and lower rows represent the

mean value and the error, respectively.

Functional Groups on Graphene

None –OH –COOH –O–

PEI −0.194
(±1.72 × 10−3)

−0.197
(±2.85 × 10−3)

−0.182
(±1.99 × 10−3)

−0.201
(±1.68 × 10−3)

PES −0.186
(±3.83 × 10−3)

−0.226
(±0.51 × 10−3)

−0.228
(±0.76 × 10−3)

−0.202
(±0.11 × 10−3)

The primary differences between these polymer structures are their constituent atoms,
where SO2 and N are connected to the unsaturated ring structures in PES and PEI, respec-
tively. The charge distribution around these atoms affects the electrostatic interactions at
the interface. Figures 4 and 5 illustrate charge distributions in the monomers for PEI and
PES, respectively. In these figures, it can be observed that the N atom of PEI carries a charge
of −0.754e and the S atom of PES carries a charge of +1.374e, which represents the largest
charge bias in each monomer. The charge bias of each atom is known to be influenced
by the electronegativity (χ) of its neighboring atoms. Electrons of the S atom (χ = 2.5) of
PES are attracted to the O atoms (χ = 3.5) inducing a positive charge bias of the S atom
and a negative charge bias of the O atom. In contrast, the N atom (χ = 3.0) of PEI attracts
electrons from neighboring C atoms (χ = 2.5) resulting in a negative charge bias of the N
atom. These atoms of PES exhibit a greater charge bias than those of PEI because the charge
bias is essentially proportional to the electronegativity between neighboring atoms.
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Figure 6 illustrates the charge distributions in a repeating unit of pure graphene and
in a region around the functional group of functionalized graphene. In these figures, the
charge bias of functionalized graphene is greater than those of pure graphene. For example,
the O atom demonstrates the largest charge bias for all functional groups, resulting in
a value of −0.556e for –COOH, −0.550e for –OH, and −0.281e for –O. In the following
discussion, pure graphene and functionalized graphene will be referred to as “GR” and
“FGR”, respectively. Furthermore, functionalized graphene modified with –O–, –COOH,
and –OH will be referred to as “FGR–O,” “FGR–COOH,” and “FGR–OH”, respectively.
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group of functionalized graphene.

To investigate the influence of the charge bias on the atomistic structure around
the interface, the radial distribution functions (RDFs) between the functional groups in
functional graphene and each atom component in the polymer are presented in Figure 7.
Each curve in the RDF is selected for a combination of atoms with positive and negative
charge biases that are electrostatically attracted to each other, namely H atom in FGR and
O atom in PEI or PES (red curve), O atom in FGR and H atom in PEI or PES (blue curve), O
atom in FGR and S atom in PES (yellow curve), and H atom in FGR–O and N atom in PEI
(green curve). In these figures, the horizontal axis represents the distance from the O or H
atom in FGR. Figure 7a,b depict the RDFs for FGR–OH and FGR–COOH, respectively, and
the upper and lower figures provide the corresponding data for PEI and PES, respectively.
Both RDFs for PEI and PES commonly exhibit two peaks: O atom at 0.20 nm and H atom
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at 0.25 nm. Furthermore, the N atoms in PEI and S atoms in PES demonstrate peaks at
the same distance of 0.40 nm. These peaks indicate the electrostatic attractive interactions
between the polymer and FGR. In particular, the blue curves, indicating RDFs between
the O atom in the polymers and H atom in FGR–OH or FGR–COOH, exhibit a stronger
peak near the interface, which indicates the existence of hydrogen bonds. PES is more
affected by electrostatic interactions than PEI because PES has a sharper RDF peak owing
to its stronger charge bias. Therefore, the interface of PES with FGR is expected to be more
stable than that of PEI, as indicated in Table 1. In particular, for PES, the magnitude of the
interfacial energy is governed by electrostatic interactions with the functional groups of
FGR. For example, the combination of PES and FGR–COOH consists of atoms with the
strongest charge biases, resulting in the lowest interfacial energy.
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In the case of PEI, the trend of charge observed in the magnitude of interfacial energy
is opposite to that observed for the PES. For example, the interfacial energy is the highest
with FGR–COOH (i.e., unstable interface), although the corresponding RDFs demonstrate
sharp peaks owing to electrostatic interactions between the functional groups, as mentioned
above. For PEI, the interfacial energy is the lowest with FGR–O despite the absence of
noticeable peaks in the RDF compared to other combinations, as shown in Figure 7c. Thus,
the stability of the PEI interface cannot only be explained based on attractive interactions
with the functional groups of FGR. Previous studies have suggested that aromatic rings
between graphene and a polymer stack parallel to each other [53,54]. This is referred to
as π-π stacking via electrostatic interactions caused by un-localized electrons around the
ring. Figure 8 presents the density profile of the atoms in PEI and PES with respect to the
position of the z-axis, where z = 0 represents the position of the second graphene layer.
Sharp peaks are observed around z = 0.7 and −0.7 for pure graphene. These peaks indicate
the existence of π-π stacking. The amplitude of the PEI peak is larger than that of the PES
peak, and PEI forms a more stable interface with pure graphene via π-π stacking. Figure 8
also indicates that the amplitude of these peaks formed due to π-π stacking decreases when
the functional groups are bonded to the graphene. Therefore, π-π stacking is prevented by
the functional groups in FGR, inducing a higher energy at the interface. In particular, in the
case of –COOH, the polymer density slightly changes around the interface. The –COOH
group on FGR exhibits a large excluded volume, which prevents the aromatic ring of PEI
from approaching graphene. However, –O– on FGR cannot rotate, and its excluded volume
is smaller, which does not strongly inhibit π-π stacking.
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The interfacial stabilities of the different composite models are presented in Figure 9.
The stability is quantitatively defined as the absolute value of the contribution of energy
to the interfacial energy. This stability can be divided into two types of contributions:
the Coulomb potential and the Lennard–Jones (LJ) potential. The stability based on the
Coulomb potential is related to the attractive interaction between atoms resulting from
a large charge bias, whereas the stability based on the LJ potential is attributed to π-π
stacking between the aromatic rings. These figures demonstrate the existence of a trade-off
relationship between attractive interactions and π-π stacking; this trade-off relationship
emerges owing to the fact that their magnitudes are inversely related. These figures also
support the arguments described thus far. By comparing Figure 9a,b, it can be concluded
that both PEI and PES stabilize the interface with pure graphene due to π-π stacking.
However, in the case of FGR–COOH and FGR–OH, the interface is stabilized by local
attractive interactions as opposed to π-π stacking, resulting in the most stable interface
from the combination of PES and FGR–COOH. PEI forms a stable interface with FGR–O
because both effects are balanced.

Polymers 2022, 14, 2579 10 of 13 
 

 

 
Figure 8. Density profiles of atoms in (a) PEI and (b) PES for composite models with different gra-
phene oxides. The horizontal axis represents the position of the z-axis, which is perpendicular to the 
graphene interface. 

 
Figure 9. Interfacial stability is based on the (a) Coulomb potential and (b) Lennard–Jones potential 
for different composite models. The stability is defined by the absolute values of potential energies. 

4. Conclusions 
Atomistic-scale mechanisms that determine the interfacial stability between thermo-

plastic polymers and graphene oxides are important for the development of CFRTPs with 
excellent mechanical properties. In this study, the interfacial energy was evaluated using 
full atomistic MD simulations. We prepared eight species of layered structures of CFRTPs 
by combining two types of thermoplastic polymers, namely PES and PEI, and four types 
of graphene sheets modified with and without different functional groups, including –O–
, –OH, and –COOH. Based on the MD simulation results, the stability of the interface be-
tween PES and functionalized graphene decreased in the order of –COOH, –OH, and –O. 
This is in contrast to the interface stability with PEI, which decreased in the order of –O–, 
–OH, and –COOH. RDF analysis suggested that electrostatic interactions between atoms 
with a stronger charge bias around the interface play an important role in determining the 
order of the interfacial stability of PES. The interface between PES and graphene-modified 
with –COOH was found to be the most stable among the various species investigated. 
This is attributed to the attractive forces between the atomic combinations of S and H at-
oms in PES and O atoms in FGR–COOH, which have positive and negative charge biases, 

Figure 9. Interfacial stability is based on the (a) Coulomb potential and (b) Lennard–Jones potential
for different composite models. The stability is defined by the absolute values of potential energies.



Polymers 2022, 14, 2579 10 of 12

In conclusion, there exist two mechanisms via which the functional groups introduced
into graphene sheets contribute to interfacial stability. First, a functional group with a
larger charge bias attracts the atoms in the polymer, which stabilizes the interface. Second,
a functional group with a large excluded volume prevents the formation of π-π stacking
structures, destabilizing the interface. Therefore, it is crucial to select an appropriate
combination of functional groups on FGR and polymers by considering the aforementioned
trade-off relationship.

4. Conclusions

Atomistic-scale mechanisms that determine the interfacial stability between thermo-
plastic polymers and graphene oxides are important for the development of CFRTPs with
excellent mechanical properties. In this study, the interfacial energy was evaluated using
full atomistic MD simulations. We prepared eight species of layered structures of CFRTPs
by combining two types of thermoplastic polymers, namely PES and PEI, and four types of
graphene sheets modified with and without different functional groups, including –O–,
–OH, and –COOH. Based on the MD simulation results, the stability of the interface between
PES and functionalized graphene decreased in the order of –COOH, –OH, and –O. This is
in contrast to the interface stability with PEI, which decreased in the order of –O–, –OH,
and –COOH. RDF analysis suggested that electrostatic interactions between atoms with a
stronger charge bias around the interface play an important role in determining the order
of the interfacial stability of PES. The interface between PES and graphene-modified with
–COOH was found to be the most stable among the various species investigated. This is
attributed to the attractive forces between the atomic combinations of S and H atoms in PES
and O atoms in FGR–COOH, which have positive and negative charge biases, respectively.
Furthermore, our results also suggest that the functional groups of FGR prevent π-π stack-
ing of aromatic rings between FGR and the polymer via excluded-volume effects. Therefore,
the functional groups on graphene sheets play an important role in stabilizing and destabi-
lizing the interface. Our findings may be beneficial for the selection of appropriate materials
in the development of CFRTPs with superior thermomechanical properties.
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