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Our body is endowed with several endogenous anti-microbial compounds such as interferon, cytokines,
free radicals, etc. However, little attention has been paid to the possibility that lipids could function as
antimicrobial compounds. In this short review, the antimicrobial actions of various polyunsaturated fatty
acids (PUFAs, mainly free acids) and their putative mechanisms of action are described. In general, PUFAs
kill microbes by their direct action on microbial cell membranes, enhancing generation of free radicals,
augmenting the formation of lipid peroxides that are cytotoxic, and by increasing the formation of their
bioactive metabolites, such as prostaglandins, lipoxins, resolvins, protectins and maresins that enhance
the phagocytic action of leukocytes and macrophages. Higher intakes of a-linolenic and cis-linoleic acids
(ALA and LA respectively) and fish (a rich source of eicosapentaenoic acid and docosahexaenoic acid)
might reduce the risk pneumonia. Previously, it was suggested that polyunsaturated fatty acids
(PUFAs): linoleic, a-linolenic, c-linolenic (GLA), dihomo-GLA (DGLA), arachidonic (AA), eicosapentaenoic
(EPA), and docosahexaenoic acids (DHA) function as endogenous anti-bacterial, anti-fungal, anti-viral,
anti-parasitic, and immunomodulating agents. A variety of bacteria are sensitive to the growth inhibitory
actions of LA and ALA in vitro. Hydrolyzed linseed oil can kill methicillin-resistant Staphylococcus aureus.
Both LA and AA have the ability to inactivate herpes, influenza, Sendai, and Sindbis virus within minutes
of contact. AA, EPA, and DHA induce death of Plasmodium falciparum both in vitro and in vivo.
Prostaglandin E1 (PGE1) and prostaglandin A (PGA), derived from DGLA, AA, and EPA inhibit viral
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replication and show anti-viral activity. Oral mucosa, epidermal cells, lymphocytes and macrophages
contain and release significant amounts of PUFAs on stimulation. PUFAs stimulate NADPH-dependent
superoxide production by macrophages, neutrophils and lymphocytes to kill the invading microorgan-
isms. Cytokines induce the release of PUFAs from cell membrane lipid pool, a potential mechanism for
their antimicrobial action. AA, EPA, and DHA give rise to lipoxins (LXs), resolvins, protectins, and maresins
that limit and resolve inflammation and have antimicrobial actions. Thus, PUFAs and their metabolites
have broad antimicrobial actions.
� 2017 Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

It is evident that our body is constantly exposed to various
pathogenic organisms and so our tissues need to be endowed with
antimicrobial molecules to protect and ward off these exogenous
potentially hazardous organisms. Some of these endogenous anti-
microbial compounds include: interferon, cytokines, free radicals,
etc., that are also yet times have harmful actions on various tissues.
For instance, cytokines when produced in excess may cause tissue
damage and sepsis. But relatively little attention is paid to the
observation that certain lipids could have antimicrobial actions
and thus, may serve as endogenous antibiotic-like actions. The
importance of these antimicrobial lipids lies in the fact that they
are present in all tissues of the body.

It is known that Staphylococcus aureus and coagulase-negative
staphylococci, group A streptococci are present on normal human
skin but do not cause any infection that could be attributed to
the susceptibility of these bacteria to the action of skin surface
lipids, especially unsaturated fatty acids. This is supported by the
observation that group A streptococcus exposed to oleic acid (OA,
18:1n-9) showed decreased survival within 5 min of exposure
showing condensation of the nucleoid and distortion of the strep-
tococcal surface by numerous clumps and blebs indicating the abil-
ity of this fatty acid to alter the integrity of the cell membrane with
loss of ribonucleic acid but not DNA [1]. M protein, located on the
surface fimbriae of group A streptococci, is antiphagocytic in nat-
ure. Hence, the M� but not the M+ streptococci are not well phago-
cytized. On the other hand, oleic acid-killed and heat-killed
streptococci (both M+ and M�) were readily phagocytized, while
M+ streptococci killed by ultraviolet irradiation were inefficiently
phagocytized. An extract of M protein reduced the bactericidal
capacity of oleic acid, indicating that oleic acid may bind to and
alter the M protein of group A streptococci and thus, enhance
phagocytosis [2]. In addition, oleic acid enriched mouse peritoneal
macrophages showed 3–4-fold greater erythrophagocytic capacity
compared to palmitic acid-enriched macrophages [3].
Macrophage AA has antimicrobial actions

Our lungs are constantly exposed to various viruses, bacteria
and fungal elements through inhaled air. Hence, efficient mecha-
nisms are needed to protect lungs from various infections. For this
purpose, alveolar macrophages need to have efficient mechanism
of inducing antimicrobial action. It is known that Staphylococci
in the alveoli are killed predominantly by macrophages [4–7].
Paradoxically, alveolar macrophages have poor chemotactic and
phagocytic ability compared with peritoneal macrophages [8–10]
and have weak intracellular killing activity in vitro [11,12]. Studies
evaluating intraalveolar killing of staphylococci by use of a bron-
choalveolar lavage technique revealed that inhaled staphylococci
are killed mainly outside alveolar macrophages. Further studies
in search of these extracellular bactericidal factors for pneumo-
cocci revealed that the surfactant fraction (55,000-g pellet) of
leukocyte-free lavage of rats and other animal species contain heat
and trypsin resistant factors that are rapidly bactericidal and lytic
for pneumococci in vitro [12] and complete characterization of
these extracellular bactericidal activity was found to reside in the
surfactant lipids that can be stored at �70 �C in chloroform and
stable indefinitely. The most anti-pneumococcal activity was found
to reside in the most highly unsaturated acid namely arachidonic
acid (AA, 20:4n-6). Other unsaturated fatty acids: linoleic, oleic,
and palmitoleic also showed anti-bacterial activity but were less
potent compared to AA. AA was found to be active against gram-
positive and gram-negative bacteria [13–17], fungi [18,19], and
enveloped viruses, including influenza [20–22]. The ability of
unsaturated fatty acids including AA is further supported by the
observation that polyunsaturated free fatty acids and lysolecithin
in the small intestine of pigs can prevent proliferation of Clostrid-
ium welchii [23]. Human fecal lipids contain a mixture of long chain
free fatty acids such as C16:0, C I8:1, C18:2, and C 20 or more,
which are bactericidal for gonococci [24]. The mechanism of the
antimicrobial action of AA seems to be by inducing leakage and
even lysis of bacterial cell membranes [25,26] as well as various
cellular metabolic effects, including but not limited to inhibition
of respiratory activity, effects on transportation of amino acids,
and uncoupling of oxidative phosphorylation [27–30].

These results suggest that alveolar macrophages release AA and
other unsaturated fatty acids into the alveolar fluid that, in turn,
exert their antimicrobial action and thus, protect lungs from vari-
ous infective organisms. There is no reason to believe that this is
not so even with macrophages in other body cavities and organs.
Extending this argument further, it is reasonable to propose that
even leukocytes including macrophage-like cells in various organs,
T and B lymphocytes (in addition to their adaptive immune
response) under some well-defined conditions may release unsat-
urated fatty acids to bring about their antimicrobial actions to pro-
tect from various infections. This could be one of the fundamental
mechanisms employed by human body to protect itself from the
onslaught of various microbes. It is noteworthy that even HIV
could be inactivated by unsaturated fatty acids especially, AA [31].

Fatty acids can damage plasma membranes and thus, bring
about their lethal effects on phytoplankton: chlorophytes (Chlorella
vulgaris Beij andMonoraphidium contortum (Thur.) Kom.-Legn.) and
a cyanobacterium (Anabaena P-9). When these organisms were
treated with fatty acids, an elevation of extracellular potassium
(K+) was detected in the culture medium, indicating leakage of
intracellular K+ because of damage to the plasma membranes [32].
Phospholipase A(2) is an endogenous antibiotic

Type-IIA secreted phospholipase A(2) (sPLA(2)-IIA) releases AA
from the cell membrane phospholipids. This implies that sPLA
(2)-IIA could serve as a potent bactericidal protein. This enzyme
is present in animal and human biological fluids at concentrations
sufficient to kill bacteria. In fact, human recombinant sPLA(2)-IIA-
induced release of PUFAs can kill Gram-positive bacteria at concen-
trations as low as 1.1 ng/ml. This property is ascribed to the
preference of sPLA(2)-IIA for anionic phospholipids such as
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phosphatidylglycerol, one of the main phospholipid component of
bacterial membranes on which it acts. On the other hand, much
higher concentrations of sPLA(2)-IIA are required for its action on
host cell membranes and surfactant both of which are predomi-
nantly composed of phosphatidylcholine, a poor substrate for
sPLA(2)-IIA. This is supported by the observation that transgenic
mice over-expressing human sPLA(2)-IIA are resistant to infection
by Staphylococcus aureus, Escherichia coli, and Bacillus anthracis. It is
noteworthy that B. anthracis, E. coli and Bordetella pertussis inhibit
sPLA(2)-IIA expression by host cells, and thus, are capable of sub-
verting the host immune system. Intranasal administration of
recombinant sPLA(2)-IIA protects mice from mortality due to pul-
monary anthrax even with B. anthracis strains that have the ability
to down-regulate the expression of endogenous sPLA(2)-IIA. These
results imply that instilled sPLA(2)-IIA can successfully overcome
the subversive action of B. anthracis [33–36]. Based on these
results, it can be suggested that sPLA(2)-IIA functions as an effi-
cient endogenous antibiotic of the host and has a significant role
in host defense against pathogenic bacteria by releasing AA from
the host cell membrane and one mechanism by which majority
of the antibiotic-resistant bacteria function is by inactivating/-
downregulating the expression of sPLA(2)-IIA enzyme [34–37].

In this context, it is noteworthy that inhibition of cyclooxyge-
nase (COX)-derived prostaglandins (PGs) by nonsteroidal anti-
inflammatory drugs (NSAIDs) mediates leukocyte killing of bacteria
that may, in part, be ascribed to accumulation of PG precursors
namely PUFAs especially AA. COX1 is the predominant isoform
active in PG synthesis during infection and its prophylactic or ther-
apeutic inhibition primes leukocytes to kill bacteria by enhancing
phagocytic uptake and reactive oxygen intermediate-mediated
killing in a cyclic adenosine monophosphate (cAMP)-dependent
manner. NSAIDs enhance bacterial killing, exerting an additive
effect when used in combination with antibiotics. NSAIDs, through
the inhibition of COX, prime the innate immune system to mediate
bacterial clearance of penicillin-resistant Streptococcus pneumoniae
[38]. It is likely that COX1 activity leads to an increase in intracel-
lular concentration of AA and other unsaturated fatty acids and
thus, bring about their anti-bacterial action emphasizing the signif-
icant actions of lipid mediators in host defense against infections.

PGs, LXA4/resolvins/protectins/maresins, and LTs modulate
macrophage phenotype and function

Macrophages are important in defense against infectious
agents. Macrophages kill microbes, and clear pathogens, dead cells,
debris and play an important role in tissue repair. Macrophages
adopt initially an inflammatory phenotype, which enables them
to clear debris and bacteria. Subsequently, macrophages change
their phenotype and produce anti-inflammatory cytokines and
bioactive lipids to dampen inflammation [39]. In this process there
is a close interaction among cytokines, bioactive lipids and M1 and
M2 macrophages.

AA is acted upon by COX and LOX (lipoxygenase) enzymes to
form various prostaglandins (PGs), leukotrienes (LTs) and throm-
boxanes (TXs) that are considered predominantly as pro-
inflammatory molecules [40–43]. Since these metabolites of AA
have many actions, it is reasonable to propose that they could also
have a modulatory role in macrophage phagocytosis.

It was reported that bovine oviduct epithelial cells (BOECs) reg-
ulate phagocytic activity of PMNs (polymorphonuclear leukocytes)
for sperm and that this action is modulated by PGE2. The BOEC
supernatant showed significant suppressive action on sperm
phagocytosis by PMNs, and the (luteinizing hormone) LH-
stimulated BOEC supernatant further suppressed phagocytosis. It
was noted that LH stimulated the secretion of PGE2 that, in turn,
suppressed sperm phagocytosis by PMNs. These results support
that PGE2 suppress the phagocytic activity of PMNs [44]. It was
also reported that PGE2 alters the expression of scavenger receptor
and miR-155 expression to account for alterations in the phagocy-
tosis capacity of alveolar macrophages [45]. In addition, PGE2
inhibited H2O2 production and thus, inhibited bacterial killing by
alveolar macrophages [46]. These actions of PGE2 on phagocytic
capacity of PMNs and macrophages explains to a certain extent
its (PGE2) immunosuppressive actions. In contrast to this, the
anti-inflammatory metabolites of AA and EPA and DHA: lipoxins,
resolvins, protectins, and maresins enhance human macrophage
efferocytosis and bacterial phagocytosis, increased neutrophil bac-
terial phagocytosis and intracellular reactive oxygen species (ROS)
generation, and reduced human platelet-PMN aggregation. These
results imply that pro- and anti-inflammatory metabolites of AA/
EPA/DHA have opposite actions on PMNs and macrophage func-
tions and thus, modulate immunoresolvent actions in host defense,
host protection and antimicrobial defense [47–49]. In this context,
it is interesting to note that both IL-10 and PGE2 augment the pro-
duction of anti-inflammatory resolvins and possibly, lipoxin A4
(LXA4), protectins and maresins [50–58]. These results indicate
that there is a need for the presence of adequate amounts of
PGE2 to trigger the production of LXA4, resolvins, protectins, and
maresins to initiate and sustain resolution of inflammation. In
other words, it implies that inflammation should reach sufficient
degree of severity to trigger resolution process. Based on these evi-
dences, it is tempting to propose that though PGE2 has been
dubbed as a pro-inflammatory molecule, it has both pro- and
anti-inflammatory actions. Initially, PGE2 probably triggers inflam-
matory process and once the concentrations of PGE2 reach suffi-
cient degree and the inflammatory process is at its optimal
levels, it initiates the anti-inflammatory process by augmenting
the synthesis of anti-inflammatory bioactive lipids such as LXA4/
resolvins/protectins/maresins. In this process, IL-10 seems to have
a crucial role by itself triggering the synthesis of LXA4/resolvins/
protectins/maresins. This positive and negative freed-back control
between pro- and anti-inflammatory molecules and processes is
needed to maintain normal tissue homeostasis (see Fig. 1). Based
on these results [47–58], it is reasonable to assume that in criti-
cally ill patients such as those suffering from sepsis-recovery or
succumbing to disease depends on the ability of tissues to produce
adequate amounts of LXA4/resolvins/protectins/maresins at the
right time to resolve inflammation and initiate tissue repair. It is
also likely that inappropriate production of LXA4/resolvins/protec
tins/maresins at inappropriate time such as in the beginning of
sepsis process may suppress much needed inflammation and lead
to worsening of the illness [59–62]. Thus, production of adequate
amounts of PGE2/LTs and other pro-inflammatory molecules
including ILs, TNF-a and anti-inflammatory molecules (lipoxins/
resolvins/protectins/maresins/IL-4, IL-10/IL-13) at the most appro-
priate times of any illness are critical that ultimately determines
recovery or death. Studies have demonstrated that both PGD2
and PGJ2 have actions like PGE2 [63–67]. In this interaction
between cytokines and eicosanoids, there is a critical role for nitric
oxide (NO, produced by vascular endothelial cells, monocytes,
macrophages, and neutrophils and several other cells as well), car-
bon monoxide (CO, is an activator of guanylyl cyclase, is formed by
the action of the enzyme heme oxygenase that is present through-
out the brain and like NO is a physiologic regulator of cGMP and
may function as a neurotransmitter.) and hydrogen sulfide (H2S,
produced mainly by vascular endothelial cells, neurons and macro-
phages) as well [55,56,65–67] (see Fig. 1).

Leukotrienes (LTs) are released during inflammation and play a
role in innate immunity. Cys-LTs (Cysteinyl leukotrienes) enhance
FcgammaR-mediated phagocytosis by alveolar macrophages.



Fig. 1. Scheme showing possible relationship among M1 and M2 macrophages, cytokines, bioactive lipids, eicosanoids and ROS. Microbes = Bacteria, viruses, fungi, parasites
(such as malaria, schistosomiasis), etc. Black lines indicate normal physiological process. Red lines indicate inflammatory events or molecules involved in
inflammation or inflammation related events such as formation of lipid peroxides that have antimicrobial action. Green lines indicate anti-inflammatory events or
molecules. Indicates interaction among ROS and NO, CO and H2S. Blue lines indicate interaction among pro-inflammatory cytokines, ROS and M1 macrophages.
PGD2 is known to have both pro- and anti-inflammatory actions (though predominantly anti-inflammatory actions). Since both PGE2 and PGD2 are derived from the
precursor PGH2, suggesting that, perhaps, there is a balance maintained between PGE2 and PGD2. PGI2 (not shown in the figure) is also derived from PGH2 that also has anti-
inflammatory actions. When microorganisms invade the tissues, they are first encountered by PMNs and macrophages that leads to activation of PLA2 of the cell membrane.
Consequently, PUFAs, especially AA/EPA/DHA; are released that are utilized for the formation of PGs, LTs, TXs (that have pro-inflammatory actions) and lipoxins/resolvins/
protectins/maresins that have anti-inflammatory actions. In the initial stages, macrophages (M1 type) release IL-6 and TNF-a and PGE2 and LTs to initiate inflammation and
eliminate the invading organisms by a mechanism that is dependent on generation of reactive oxygen species (ROS). Once inflammation reaches an optimal level, PGE2/
PGD2/PGJ2 activate PLA2 for the release of second wave of AA/EPA/DHA that leads to the formation of anti-inflammatory lipoxins/resolvins/protectins/maresins and convert
M1 to M2 macrophages by the release of IL-4, IL-10, IL-12 and IL-13. Macrophages when ingest dead PMNs (efferocytosis) they are triggered to become M2 macrophages due
to the release of IL-4/IL-13 and exposure to Axl, C1q and Mertk and formation of lipoxins/resolvins/protectins/maresins that further enhances phagocytosis of M2
macrophages and kills ingested microorganisms and initiates resolution of inflammation and enhances wound healing. The exact initial source of these anti-inflammatory
cytokines and bioactive lipids is not clear but may include local tissues involved in inflammation, PMNs and macrophages. It is known that ROS generated by PMNs and
macrophages act on AA/EPA/DHA and lead to the formation of respective lipid peroxides that show antimicrobial action. These results also emphasize the close interaction
among PMNs, macrophages, T cells, local tissues/cells and invading organisms. This delicate balance between pro- vs anti-inflammatory cytokines and lipids and M1 vs M2
macrophages and ROS vs anti-oxidants is essential to maintain tissue homeostasis and restore physiology to normal. For more details see text.
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Studies showed that challenged alveolar macrophages have a
markedly increased phagocytic capacity and enhanced killing of
Klebsiella pneumoniae compared to controls [68,69]. There is evi-
dence to suggest that LTs and LXA4/resolvins/protectins/maresins
interact with each other and regulate inflammation, phagocytosis
and macrophage function [55–57]. For instance, LXA4 can suppress
the production of LTs and thus, antagonize its pro-inflammatory
action [70,71]. It is likely that resolvins, protectins and maresins
may have similar action on LTs [55–57]. This is supported by the
observation that human monocytes that can be induced to differ-
entiate toward M1 or M2 phenotype by granulocyte M/ colony-
stimulating factor (GM-CSF) or M/ colony-stimulating factor
(M-CSF) respectively produced under resting conditions (both M/
phenotypes) released PGE2, LXA4, and 18-hydroxyeicosapentaenoic
acid. However, GM-CSF and M-CSF M/s displayed different eicosa-
noids upon bacterial stimuli with M2 M/s producing predominantly
LTC4 [72]. In a similar fashion, rat alveolar macrophages treated with
GM-CSF for 24 h significantly increased the synthesis of immunore-
active LTB4 upon subsequent stimulation with calcium ionophore
accompanied by increased phospholipase A2 (PLA2) activity.
GM-CSF primed alveolar macrophages for enhanced generation of
LTB4, as well as the 5-lipoxygenase products LTC, and 5-HETE [73].
These results emphasize the possibility that the balance between
pro-inflammatory LTs and PGs and anti-inflammatory lipoxins/
resolvins/protectins/maresins [74–76] and this shift in eicosanoid
metabolism seems to influence NO/CO/H2S generation that aids in
the acceleration of resolution of inflammation, tissue regeneration
and reduction in pain [77–79].

Though it is not clear how exactly this shift in the balance
between M1 and M2 macrophages is triggered and what factors
influence this shift, there is evidence to suggest that when acti-
vated by IL-4/IL-13, macrophages produce collagen type 1, alpha
1 (Colta1), and resistin-like molecule alpha (RELMa/FIZZ), which
form the extracellular matrix and cross-link collagen with fibrils
respectively to provide strength or stiffness to the tissues. IL-4
macrophages also produce arginase-1, which metabolizes arginine
to urea and ornithine, a pathway that generates L-proline that is
needed for collagen synthesis, and polyamines, which enhance cel-
lular proliferation during wound healing [80]. Thus, IL-4/IL-13 sig-
naling through the type 1 receptor {IL-4 receptor alpha (IL-4Ra)
and IL-13Ra1 and/or common gamma chain} seem to represent a
commonmechanism by which macrophages balance inflammation
resolution and tissue repair. It is noteworthy that in instances such
as helminth infection IL-4/IL-13-stimulated macrophages cannot
initiate tissue-repair process unless they (macrophages) first sense
the presence of apoptotic neutrophils. The recognition and apopto-
sis of neutrophils by macrophages-a process called as
efferocytosis-triggers macrophages to produce anti-inflammatory
cytokines: IL-4/IL-13 and synthesis and release of lipoxins/resol
vins/protectins/maresins [74,75]. These efferocytosis receptors,
AXL receptor tyrosine kinase (Axl) and c-mer protooncogene tyro-
sine kinase (Mertk) promote IL-4/IL-13-triggered tissue repair.
Lung surfactant protein A (SP-A) can trigger efferocytosis and
C1q, a component of the complement pathway, showed a unique
ability to activate macrophages and increases the expression of
Mertk [39,81,82]. Based on these evidences, it is tempting to pro-
pose that Axl, C1q and Mertk can enhance synthesis, release and
actions of lipoxins/resolvins/protectins/maresins and thus, initiate
the conversion of M1 to M2 macrophages and enhance repair pro-
cess (see Fig. 1). This unique protein-lipid interaction is interesting
but needs further evaluation. Since lipoxins/resolvins/protectins/
maresins not only enhance M2 macrophage formation, macro-
phage phagocytosis, efferocytosis but also kill intracellular
pathogens [53], it is likely that these bioactive lipids function as
anti-microbial molecules.
Pufas have anti-bacterial action

The anti-bacterial activity of PUFAs against Staphylococci,
streptococci, Mycobacteria, Helicobacter, Bacilli, enveloped viruses
and fungi is well known [83,84]. Unsaturated fatty acids function
as the key ingredients of antimicrobial food additives which inhibit
the growth of unwanted microorganisms [85]. Both linoleic and
oleic acids form an important antibacterial component in the herbs
(Helichrysum pedunculatum and Schotia brachypetala) used for
dressing wounds in South Africa [86,87]. Even fatty acid derivatives
also showed potent antimicrobial activities that are found in
microorganisms, algae, or plants, which may mediate chemical
defense against microorganisms [88–92]. Thus, linolenic acid can
rapidly kill Staphylococcus aureus which implies that naturally
occurring free fatty acids may have a therapeutic role. McDonald
and colleagues [92] showed that hydrolysed linseed oil, which con-
tains 52% linolenic acid, and pure linolenic acid can inactivate
methicillin-resistant S. aureus. Accumulation of antimicrobial
stress metabolites in potato tubers due to mycelial extracts from
Phytophthora infestans contains EPA and AA. These fatty acids are
present in either free or esterified form in all the active fractions
of these mycelial extracts. The wound hormone traumatin found
in these plants is an oxidation product of linoleic or linolenic acid
[93,94]. These findings suggest that, in potato tubers, animals and
humans, fungitoxic compounds could be EPA and AA [83]. Kohn
and coworkers showed that LA and AA can inactivate animal her-
pes, influenza, Sendai and Sindbis viruses within minutes of con-
tact [95]. Human lymphocytes contain large amounts of
esterified AA (and possibly, EPA and DHA and other PUFAs) that
can be released with appropriate stimulation, one of which could
be cell membrane perturbation due to invading microorganisms.
These released PUFAs may be used in the body to inactivate viruses
and to stimulate PMNs, macrophages and T cells to produce other
antimicrobial substances such as lipid peroxides, PGs, LTs, lipoxins,
resolvins, protectins and maresins production (see Fig. 1). Thus, it
is likely that PUFAs such as LA, GLA, DGLA, AA, ALA, EPA, DHA
and their metabolites have antibacterial, antifungal, antiviral and
immunomodulatory actions [53,54,59,60,83,84,96,97].

In the year 1940, it was reported by Stok and Francis [98] that
an unsaturated fatty acid oleic acid, 18:1, n-9 can inactivate influ-
enza type A virions. Subsequently, it was shown that unsaturated
long-chain alcohols and monoglycerides exhibit high potent viruci-
dal effects against HSV, HCV and bacteriophages /p6 and PM2
[95,99–101,31,102]. In this context, it is interesting to note that
Schlager and associates demonstrated that mice peritoneal macro-
phages can be activated by linolenic acid (possibly, GLA) and that
linolenic-acid-enriched macrophages are highly tumoricidal
[103,104]. They also proved that lymphokine activation of macro-
phages is due to an increase in their linolenic acid content com-
pared to control values.
AA and other PUFAs are cytotoxic to malaria and
schistosomiasis parasites

PUFAs have been shown to have antimalarial effect. C18 fatty
acids, such as oleic, elaidic, linoleic, and linoleic acids inhibited
proliferation of malarial parasites in mice infected with Plasmod-
ium vinckei petteri or with Plasmodium yoelii nigeriensis. In vitro
studies revealed that C18 fatty acids can inhibit the growth of Plas-
modium falciparum. The cytotoxic effect of the fatty acids is rather
rapid and completely inhibited nucleic acids and protein syntheses
in less than 30 min. Treatment of malarial parasite with fatty acids
did not show any effect on the lipid peroxidation, ATP levels, trans-
port through the parasite-induced permeability pathways, or on
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the phagocytosis of the infected cells and do not act at the mito-
chondrial level of pyrimidine synthesis [105].

In another study, Taylor et al. [106] showed that n-3 fatty acids
(rich in EPA and DHA) but deficient in vitamin E when fed to mice
(nu/nu mice that do not develop anti-malarial antibody) developed
controlled parasitemia whereas those fed vitamin E containing
diets quickly died. These and other studies (including studies done
with scid/scid.bg/bg mice that lack B cells and ab and gd T cells and
have reduced NK cell activity) suggest that under pro-oxidant diet-
ary conditions mice and possibly, humans can control and even
survive malaria even in the absence of malaria-primed T cells
and anti-malarial antibody [107–114]. These studies [105–114]
indicate the importance of cellular oxidative processes against par-
asite infections. These results are supported by other studies which
showed that infections due to Leishmania, Trypanosoma and Schis-
tosoma parasites can be treated successfully with PUFAs including
AA both in experimental animals and humans [115–124]. AA seem
to have the ability to stimulate the parasite tegument-bound neu-
tral sphingomyelinase that renders hydrolysis of the apical lipid
bilayer sphingomyelin molecules, allowing access of specific anti-
body molecules, and eventual worm attrition [116]. This concept
can be extended to the tumoricidal action of AA and other PUFAs.

Neutral sphingomyelinase (SMase) is a hydrolase enzyme that
has an important role in sphingolipid metabolism reactions. SMase
is a member of the DNase I superfamily of enzymes and has the
Fig. 2. Scheme showing possible mechanisms of anti-microbial and anti-cancer actions o
pro-inflammatory events/molecules Indicate molecules involved in immune evasio
of phospholipase A2 (PLA2) can be acted upon by COX-2 to get converted into pro-inflam
also suppress immune response and aid in the growth of tumor cells. AA can induce gen
turn, act on AA to enhance formation of lipid peroxides that are toxic to microbes includ
carrier protein reductase (Fabl) and thus, produce its bactericidal action. AA can enhance
molecule. It is likely that decreased neutral sphingomyelinase activity drives immune
enhance SMase activity can induce significant enhancement of Th1-mediated and cytot
synthesis and action of TNF-a and other cytokines and COX-2 expression. In addition,
resolution molecule that can suppress COX-2 activity and inhibit production of pro-inflam
(NO), carbon monoxide (CO) and hydrogen sulfide (H2S) generation and thus, aid in the re
macrophage and PMNs phagocytic activity and thus, scavenge debris at the site of infl
sphingomyelinase activity. It is likely that activated macrophages release AA and corresp
details see the text.
ability to break sphingomyelin (SM) down into phosphocholine
and ceramide. The activation of SMase is a major route to control
ceramide in response to cellular stresses. Robinson et al. [125]
showed that AA stimulates SMase activity of leukocytes in a dose
dependent fashion. In addition, they also showed that other PUFAs
such as DHA, EPA, OA (oleic acid) and LA can also activate SMase.
However, methyl ester of AA, 15-HPETE and 15-HETE and satu-
rated fatty acids did not show any effect on SMase activity. By its
action on SMase, AA enhanced ceramide formation in cells, which
is known to have tumoricidal action [126,127]. In this context, it is
interesting to note that altered SMase activity drives immune eva-
sion and facilitates tumor growth and thus, PUFAs by virtue of their
ability to enhance SMase activity can induce significant enhance-
ment of Th1-mediated and cytotoxic T-cell-mediated antitumor
immunity, possibly by influencing synthesis and action of TNF-a
and other cytokines and COX-2 expression [128–131]. Similar
opinion was expressed by El-Ridi et al. [116] who showed that
AA-mediated attrition of Schistosoma organisms is associated with
high titers of serum antibodies to tegumental antigens and serum
antibodies from AA administered hamsters readily bound to the
surface membrane of AA-treated, but not untreated, adult worms
[119]. Thus, there is a close and complex relationship among the
anti-parasitic action of AA, neutral sphingomyelinase activity, cer-
amide formation, generation of pro-inflammatory cytokines, COX-
2 activity and cell and humoral immune responses against
f AA. Black lines indicate normal physiological events. Red lines indicate
n/immunosuppression AA released from the cell membrane lipid pool by the action
matory eicosanoids to produce inflammation seen in many microbial infections and
eration of ROS in immunocytes (leukocytes, macrophages and T and B cells) that, in
ing viruses and fungi and intracellular parasites. AA can inhibit bacterial Enoyl-acyl
neutral sphingomyelinase activity that enhances ceramide formation, a tumoricidal
evasion and facilitates tumor growth and thus, PUFAs by virtue of their ability to
oxic T-cell-mediated antitumor immunity, and by virtue of their ability to enhance
AA can be converted to lipoxin A4, a potent anti-inflammatory and inflammation
matory prostaglandins, thromboxanes and leukotrienes; ROS and alter nitric oxide

solution of inflammation and enhance wound healing. Furthermore, LXA4 augments
ammation. It is not yet clear whether LXA4 and lipid peroxides can alter neutral
onding lipid peroxides that, in turn may induce apoptosis of tumor cells. For further
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parasitic infections and cancer cells. Furthermore, PUFAs seem to
inhibit bacterial enoyl-acyl carrier protein reductase (FabI), an
essential component of bacterial fatty acid synthesis and thus,
bring about their antibacterial action [132]. Thus, there are multi-
ple mechanisms by which AA and other PUFAs bring about their
anti-microbial and tumoricidal actions.
Conclusions and future perspectives

It is evident from the preceding discussion that AA and other
PUFAs have significant anti-microbial actions on a variety of organ-
isms including bacteria, viruses, fungi, and a variety of parasites.
AA seems to possess the ability to enhance immune response (both
cellular and humoral), modulate macrophage function (from M1 to
M2), directly inhibit fatty acid synthesis that is critical for bacteria
to survive, inactivate enveloped viruses (including HIV and HCV),
and aid in inflammation resolution process by forming precursor
to LXA4, an anti-inflammatory and proresolution molecule. It is
also noteworthy that AA can activate macrophages and enhance
their ability to generate free radicals that are critical to their
anti-microbial or tumoricidal action [133–138]. It is possible that
macrophages, T cells and other immunocytes deliver AA and other
PUFAs to the target tissue to eliminate infections, disrupt cancer
cell growth and aid in the healing of wounds by suppressing
inflammation (see Fig. 2). Since AA can be given orally and has
no significant side effects, it remains to be seen whether AA can
be exploited as a potential therapeutic strategy in a variety of
infections, prevention of cancer and to suppress inflammation in
diseases such as lupus.

Despite the fact that AA and other unsaturated fatty acids pos-
sess antimicrobial action, it is not clear whether these effects are
selective and have any actions on commensal bacteria and their
supplementation with the diet may cause any deleterious shifts
in the composition of intestinal microflora. Previous studies sug-
gested that PUFAs in general are growth inhibitory to harmful bac-
teria but not to commensals [139–142]. These results emphasize
that PUFAs are able to selectively enhance the growth of useful
bacteria and, possibly, prevent the proliferation of harmful micro-
biota and imply that dietary supplementation of these fatty acids
does not cause any deleterious effect on gut microflora. In this con-
text, it is also important to note that certain short chain fatty acids
such as lauric acid (C 12:0) and sapienic acid (C16:1D6) derived
from sebaceous triglycerides have antimicrobial action and are
found on the human skin. Long-chain bases (sphingosine, dihy-
drosphingosine and 6-hydroxysphingosine) are also potent antimi-
crobials normally present at the skin surface andmay be part of the
innate immune system of the skin [143]. Similarly, oral mucosal
and salivary lipids (that are essentially sphingoid bases: sphin-
gosine, dihydrosphingosine and phytosphingosine, and fatty acids:
sapienic acid and lauric acid) exhibit potent antimicrobial activity
against a variety of Gram-positive and Gram-negative bacteria
[143–147]. Studies revealed that these oral and salivary com-
pounds to bring about their antimicrobial action need the lipid
structure and they produce ultrastructural damage to the bacterial
plasma membrane. Further studies revealed that sapienic acid
induces upregulation of a set of proteins unique to P. gingivalis
stress response, including proteins important in fatty acid biosyn-
thesis, metabolism and energy production, protein processing, cell
adhesion and virulence. Thus, a variety of endogenous lipids pre-
sent on mucosal surfaces function as mediators of innate immune
response during the first encounter of our body to environmental
microbes with skin and mucosal surfaces.

Based on the evidences presented above, it remains to be seen
whether AA and other PUFAs and their metabolites such as lipox
ins/resolvins/protectins/maresins and/or their stable synthetic
analogues could be exploited as potential anti-microbial agents.
It is possible that PUFAs and their metabolites may be used in com-
bination with currently available traditional antibiotics to prevent
and manage various infections. It is also likely that these bioactive
lipids could be used to reverse/overcome antibiotic resistance that
is assuming a major issue in fighting many infections. It is also pos-
sible that bioactive lipids may beneficial to overcome drug resis-
tance shown by malaria and other parasitic infections as well.
Such studies are the need of the hour.
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