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A major predicament for Intensive Care Unit (ICU) patients is inconsistent and ineffective communication means. Patients rated
most communication sessions as difficult and unsuccessful. This, in turn, can cause distress, unrecognized pain, anxiety, and fear.
As such, we designed a portable BCI system for ICU communications (BCI4ICU) optimized to operate effectively in an ICU
environment. The system utilizes a wearable EEG cap coupled with an Android app designed on a mobile device that serves as
visual stimuli and data processing module. Furthermore, to overcome the challenges that BCI systems face today in real-world
scenarios, we propose a novel subject-specific Gaussian Mixture Model- (GMM-) based training and adaptation algorithm. First,
we incorporate subject-specific information in the training phase of the SSVEP identification model using GMM-based training
and adaptation. We evaluate subject-specific models against other subjects. Subsequently, from the GMM discriminative scores,
we generate the transformed vectors, which are passed to our predictive model. Finally, the adapted mixture mean scores of the
subject-specific GMMs are utilized to generate the high-dimensional supervectors. Our experimental results demonstrate that the
proposed system achieved 98.7% average identification accuracy, which is promising in order to provide effective and consistent
communication for patients in the intensive care.

1. Introduction

A major problem for mechanically ventilated patients in the
Intensive CareUnit (ICU) is their inability to consistently and
effectively communicate their most fundamental physical
needs. Patients rate about 40% of communication sessions as
difficult andmore than a third of communications about pain
as unsuccessful [1, 2]. Nurses initiate about 86% of all com-
munication exchanges as it is typically very difficult for a
voiceless patient in the intensive care to initiate communi-
cation. Patients in the ICU therefore commonly suffer unrec-
ognized pain and discomfort and feelings of loss of control
and insecurity, depersonalization, anxiety, sleep disturbances,
fear, and frustration [1, 3]. Caregivers also frequently report
feeling anxious and frustrated in not being able to adequately
assess the needs of their patients [4]. This inability to
communicate effectively can lead to the inappropriate use of

sedatives and prolongation of time spent on the ventilator
[5], which may then lead to increased ICU length of stay
and costs [3]. Furthermore, the inability to communicatewith
caregivers hampers the ability of critically ill patients to be
active participants in their treatment and in decision-making,
including decisions to withdraw or withhold life-sustaining
treatment.

Mechanically ventilated patients in the intensive care are
voiceless and unable to communicate their needs verbally [6]
and their inability to communicate adequately can lead to
fear, panic, and insecurity [7]. The primary means of com-
munication for these patients is the use of nonvocal tech-
niques, such as lip reading and gestures [8, 9], which are often
inadequate for effective communication with family and ICU
staff [10–12]. The use of picture boards with icons represent-
ing common patient needs and complaints (pain, fear,
hot/cold, thirst, bedpan, etc.) has been shown to improve
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nurse-patient communication for patients in the postop-
erative period on the ventilator [13]. These picture boards
are widely available in most ICUs and are the closest
approach to a current standard for communication with
voiceless mechanically ventilated patient, for the purposes
of addressing fundamental physical and emotional needs.
Recent pilot studies have described the use of computer-
assisted communication using touch sensitive screens, eye
blink detectors, and gaze trackers to enable communication
in the ICU department [14, 15]. The majority of patients and
hospital staff surveyed in these studies indicated that the
use of a computer-assisted communication device improved
their ability to respond to patient needs and address patient
comfort. However, touch sensitive screens may not be suit-
able for the majority of patients in the intensive care with
weakness and restriction in motor ability. About 25% of
patients requiring mechanical ventilation in ICUs may have
significant weakness from critical illness, Neuropathy and
Myopathy, limiting their ability to use their hands to select the
appropriate icon on a picture board or touch screen pad [16].
There are several patient populations, however, for whom the
use of a picture board or touch screen is impossible, including
patients with high spinal cord injury, advanced ALS, and
brainstem stroke, who are voiceless, but also typically have
no useful motor function of their limbs. These patients are
locked-in, to varying degrees, awake, and alert but with
no control of bodily functions or ability to articulate and
communicate using standard forms of communication [17].
Eye blink detectors and gaze trackers that are based on eye
movement activities and muscle movements might or might
not be feasible for the aforementioned patient population.
Furthermore, those technologies have privacy issues, due
to patient video streaming requirement, are sensitive to
illumination and viewing angle, and require the eyes to be
wide open [18]. The use of Brain-Computer Interface (BCI)
devices to facilitate communication for voiceless patients
has recently generated an interest. A BCI translates delib-
erate, involuntary modulation of cerebral electrical activity,
typically recorded by electroencephalography (EEG) into
computer commands. BCI technology can directly interpret
and relate the brain patterns into the control commands and
can bypass all other body functions to communicate the
intent of a patient. BCI devices in the ICU are mostly used
for continuous patient monitoring [19–22]. A variety of BCI
devices have been used to permit patients with advanced
Amyotrophic Lateral Sclerosis (ALS), high spinal cord injury,
and brainstem strokewith the locked-in-syndrome, who have
no voluntary use of their limbs, to communicate to varying
degrees [23–27]. These devices have typically been evaluated
in the rehabilitation setting, following the period of an acute
medical illness, or at home. No study has evaluated the use
of a BCI device to assist with communication of the typical
physical and emotional needs/complaints of the critically ill.
This is significant, not only for patients with spinal cord
injury and stroke, most of whom are initially admitted to an
ICU, but to the potentially large number of patients in the
intensive care who cannot use a picture board or other finger
contact systems because of a critical Neuropathy/Myopathy
illness or an acute brain injury that causes weakness. Our

objective is to create an end-to-end steady-state visual evoked
potential- (SSVEP-) based wireless BCI system to facilitate
communication with intubated patients in the intensive
care [28–30]. The portable BCI device of interest in this
study functions through visual attention to illustrative icons
displayed on an Android tablet screen. The icon, which
depicts a common need of a patient in the intensive care, such
as the need for repositioning, common patient complaint,
or pain, is displayed as a symbol flickering at a specific
frequency, which then drives a corresponding frequency of
an electrical EEG signal, permitting the BCI device to identify
the specific item that the patient is focusing on [31, 32]. The
patient can, thereby, communicate by looking at a specific
item depicting their need or complaint. This wearable device
is entirely noninvasive andwithout significant risk to patients,
functioning only to record and translate EEG signals. The
device communicates wirelessly with the user interface (UI)
on a tablet that is present in every patient room. The
proposed prototype provides a user interface that includes
basic functions that are typically used in communication
between nurses and patients in the ICU, with the capability
of being customized for each patient.

Generally, ICU needs are often required to be commu-
nicated quickly and easily, rather than through spelling of
words and sentences. Therefore, we propose a system of
rapid and reliable communication of typical ICU needs. The
proposed BCI4ICU system utilizes a wireless EEG cap. The
system is designed and optimized to perform in real-world
scenarios involving patients in the intensive care. It includes
three major modules: (1) our custom designed Android-
based wireless data acquisition and processing platform app,(2) the Android-based openGL paradigm stimuli generation
module on the mobile device, and (3) the novel GMM-based
signal processing and SSVEP identification algorithm to fit
the requirements of the ICU application.

Several efforts investigated improving current BCI sys-
tems by overcoming their well-known drawbacks, such as
lack of reliability, user accessibility, and low information
transfer rates utilizing hybrid BCI systems. Hybrid BCIs
entail combining two different systems either sequentially
or simultaneously [33]. In simultaneous hybrid BCIs, both
systems operate concurrently and in parallel, whereas, in
sequential hybrid BCIs, the output of one systems is employed
as an input for the other system [33]. One such effort
was conducted by Hong and Khan, where they investigated
designing a noninvasive hybrid BCI utilizing EEG signals in
conjunction with other brain/nonbrain modalities, such as
functional near infrared spectroscopy (fNIRS), electroocu-
lography (EOG), and electromyography (EMG) [34].The aim
of the study was to reduce the signal detection time, increase
the number of control commands by combining SSVEP with
P300, and finally enhance the classification accuracy by com-
bining cognitive tasks with motor imagination/movement
tasks.

Numerous other studies probed into enhancing cur-
rent BCI systems by employing Gaussian Mixture Models
(GMMs) for EEG signal analysis. Prabhakar and Rajaguru
investigated utilizing approximate entropy as a feature extrac-
tion method followed by Sparse Representation Classifier
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(SRC) and GMMs to classify epilepsy risk levels from the
patients EEG signals [35]. Wang et al. suggested a signal
detection approach for BCI technologies [36]. In their anal-
ysis, signal detection was implemented by training GMMs
on the resting brain activity so as to detect any imagined
and/or real movement. As such, their experimental results
demonstrate the feasibility of this approach. Zhang et al.
examined the improvement of the classical Common Spatial
Pattern (CSP) coupled with support vector machine (SVM).
Their proposed method entails establishing a number of
mixture models in the CSP feature subspaces utilizing a
GMM-based feature learning algorithm in conjunction with
a probabilistic model in order to depict the EEG distribution
features of stroke patients and finally classify their EEG
signals [37].

In this paper, we propose a novel signal processing
solution that encompasses extracting the discriminative and
complementary information of Canonical Correlation Anal-
ysis (CCA) and Power Spectral Density Analysis (PSDA)
and combining the extracted information at the score level
to generate discriminative fusion spaces. Subsequently, we
derive the subject-specific GMMs from the generated fusion
spaces and then perform our discriminative analysis.

2. Specific Technical Challenges

(I) Calibration: to acquire subject-specific information,
BCI systems generally require a calibration step at the
beginning of each recording session. Such necessity
can be cumbersome for patients in the intensive care.
As such, our proposed system design begins responding
to patient’s communications using a baseline model
while it captures and integrates the subject-specific
information during the feature extraction and model
training phases to improve the correct response rate.

(II) SSVEP paradigm generation accuracy: SSVEP tech-
nology relies largely on a set of target objects,
which serve as the visual stimuli, flickering on a
screen with fixed frequencies. The precision of the
SSVEP paradigm generation is determined by the
hardware specifications of the machine generating
it. To accommodate portability of the system, the
paradigm is operated on an Android tablet with an
insufficient screen refresh rate. Furthermore, due to
the intermittent operating system interruptions, the
visual stimuli might suffer from significant impreci-
sion in the flickering frequency of the target objects
in fractions of a second. Thus, we employ a feature
extraction framework in order to mitigate the effect
of the imprecise SSVEP paradigm generation and to
take the introduced uncertainty into account in our
decision-making process.

(III) Asynchronous communication in the ICU: commu-
nication paucity can cause distress to doctors/nurses
and patients. The ideal situation is that the commu-
nication is initiated by the patient on demand and
completed while the nurse is reaching out. Therefore,
our system provides effective communication to the

patients based on their needs/complaints utilizing the
divide-and-conquer approach comprised of a two-stage
system design. First, the system detects when the patient
needs to initiate communication. Second, find out the
specific patient needs to communicate effectively.

(IV) Number of target stimuli limitation: in addition to the
insufficient screen refresh rate, another challenge for
BCI systems in the ICU is the convenient number
of target objects rendered on the visual stimuli to
avoid interference with the patients visual perception.
Therefore, based on our feedback from the NICU
doctors and nurses, we designed an optimized andmore
sophisticated stimuli flow that will communicate the
patients’ needs effectively utilizing the target frequencies
that the patient is most responsive to.

(V) EEG nonstationarity: EEG signals demonstrate sig-
nificant variation between sessions and between sub-
jects. This is primarily due to changes in the bio-
logical conditions of subjects, such as fatigue and
emotional/mental state. Furthermore, electrode-scalp
locations and the quality of the acquired signals are
also causing factors. As such, we capture the variation
between different subjects and employ it to generate
an improved subject-specific identification model using
GMM training and adaptation.

3. BCI4ICU System Architecture

The proposed BCI4ICU system is designed to operate in an
ICU environment to allow patients to communicate their
needs effectively. The system architecture is comprised of 3
modules:

(1) JNI-Android wireless data acquisition and processing
platform: the systems architecture that controls real-
time SSVEP paradigm generation, EEG data acqui-
sition, signal processing and modeling modules is
depicted in Figure 2.

(2) Android-based OpenGL stimuli paradigm generation
module: our end-to-end closed-loop platform utilizes
SSVEP-based BCI, which requires visual stimulation.
The visual stimulation is provided on an Android
tablet that displays a call the nurses screen and then
renders 4 different icons, each of which indicates a
specific message. After focusing on a specific icon,
the patient is presented with a submenu from which
he/she can select a command to communicate with
the medical staff (see Figure 1).

(3) The novel GMM-based signal processing and SSVEP
identification module: in order to fit the technical
requirements of the ICU application, we propose
a subject-specific GMM-based SSVEP identification
solution.We present the details of the proposed signal
processing module in Section 4.
Figure 2 illustrates the overall process flow of the
BCI4ICU system. The SSVEP paradigm generation
module runs concurrently with the data acquisition
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Figure 2: JNI-Android wireless data acquisition and processing platform.

module to acquire the EEG data. Subsequently, the
signal processing module runs every 10 seconds to
process the EEG data and feeds it to the predictive
model to obtain the SSVEP identification accuracies.

4. Proposed Signal Processing Methodology

4.1. Data Collection and Signal Processing. Ten healthy sub-
jects participated in our experiment. Moreover, the data
collection process in this work was approved by University

of Michigan Institutional Review Board under the study ID:
HUM00100788.The experiment was conducted in a lab envi-
ronment where subjects were seated on a comfortable chair
20 inches from a 10.2-inch Liquid Crystal Display (LCD)
Android tablet screen with a 2560 × 1800 screen resolution.

The Cognionics EEG device was used to collect EEG data
from 8 channels with a sampling rate of 250Hz. Electrodes
were placed on the occipital and parietal regions of the brain
since it has been demonstrated that these areas contribute sig-
nificantly to SSVEP identification [38]. Figure 3 illustrates the
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setup and electrode placements. Once the data is imported
into MATLAB, we apply a 60Hz notch filter and a 5th-order
Butterworth bandpass filter. The filtered data is then passed
to CCA to calculate the CCA coefficients and to PSDA to
generate the signal’s power scores. Unlike CCA, the challenge
with PSDAwas that because the EEG data was collected from
8 channels, PSDA generated an 8-dimensional power scores
matrix. Therefore, we heuristically (1st-max-2nd-max) find
out which channel responded the best for each subject to
select for partitioning.

4.2. Task and SSVEP Paradigm Generation. Four different
icons were rendered on each corner of the Android tablet
screen. Each icon was 600 pixels in size and flickered with
a specific target frequency. Target frequencies were 10Hz,
12Hz, 15Hz, and 8.5Hz, respectively. Figure 4 demonstrates
the experimental paradigm of the data collection session.
First, subjects focus on the call nurse icon to transition
to the main menu screen, where the 4 target frequencies
are rendered. Subsequently, subjects gaze at the first target
frequency icon (i.e., the 10Hz target frequency represented
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Figure 5: The effect of imprecise SSVEP paradigm generation.

by the Toilet/Bathroom icon). If they transition to the corre-
sponding 10Hz target frequency screen, we consider that a
successful call with the label (1); otherwise, we consider it an
unsuccessful call with a label of (0). As such, we proceed to
record more data until we obtain 10 successful calls per each
target frequency.Most subjects requiredmore than 10 trials to
record the 10 successful calls for each target frequency (∼70
trails per subject) generating a sufficient dataset size to eval-
uate the generalization capabilities of the proposed method.

4.3. Score Space Partitioning. Despite the feasibility and
portability of the BCI4ICU system, one major challenge is
the inaccurate SSVEP paradigm generation. This is mainly
due to the insufficient screen refresh rate of the tablet and the
recurrent interruptions by theAndroid operating system (See
Figure 5 and Table 1). Table 1 illustrates the required time to
display the target object on the screen during 4 subsequent
epochs of a 10-second segment. The second column shows
the desired timing for each of the target frequencies. In some
epochs, the divergence is considerable and, as such, subject
SSVEP responses are affected accordingly.

In common BCI investigations, target frequency iden-
tification from SSVEP responses involved focusing only on

target frequencies. It is not particularly an issue because
the CRT monitors in most labs are high precision stimuli
generators that do not introduce imprecise SSVEP paradigm
generation. From Figure 5, we can observe that the peaks
might not occur precisely on the intended target frequencies.
This is because in various fractions of a second the frequency
of the flickering stimuli is deviating from its original and
desired value. Furthermore, we hypothesize that there is
subject-specific information in the SSVEP responses over the
whole frequency spectrum. Figure 6 shows the variation in
the output score space of CCA for two subjects across all 4
target frequencies.

As such, to mitigate the effect of the insufficient refresh
rate and alleviate the ramifications of subject variation, we
leverage the discriminative and complementary information
of CCA and PSDA by partitioning their score spaces into
9 nonoverlapping partitions spanning the whole frequency
range from 7Hz as the minimum frequency to 17Hz as the
maximum frequency (See Figure 7).

The underlying concept behind the design of the par-
titioning scheme is to ensure that each target frequency is
contained within a partition to capture the subject-specific
information on and/or near the target frequencies and to
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Figure 6: CCA responses of two different subjects.
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evaluate the discriminative capabilities of the extracted mea-
sures from each partition to generate a discriminative score
space that enhances the subsequent subject-specific models
in the SSVEP identification task.

4.4. Partition-Based Feature Extraction. Feature extraction
is a process from which informative measures are derived
with the aim of facilitating the subsequent generalization
steps. As such, we extracted 4 features from CCA’s score
space, namely, power, mean, standard deviation, and entropy.
On the other hand, we extracted only two features from
PSDA’s score space, mean and standard deviation. Power was
not extracted as a feature since PSDA inherently generates
power scores of the signal. Additionally, extracting entropy
was hampered by the insubstantiality of PSDA’s power scores
and was therefore omitted. Subsequently, we concatenated
the extracted features to generate a 54-dimensional fusion

space (4 features × 9 partitions from CCA and 2 features ×
9 partitions from PSDA).

4.5. GMM-Based Modeling and Classification. As we men-
tioned in Section 2, BCI systems require a calibration stage
before use. This is primarily due to the fact that patients
respond to the generated SSVEP paradigms subjectively.
Moreover, predictive models and/or subject-independent
classifiers have no prior knowledge about the subject who is
generating the SSVEP responses. To further elucidate, from
Figure 6, we observe how subjective the CCA responses of
2 different subjects are in terms of the amplitude and the
location of the peaks across the various target frequencies.
Additionally, we also note the subjective responses of the
nontarget frequencies which we hypothesize are the result of
internal subjective responses to specific frequencies and/or
external factors, for instance, the effect of visual interference
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Table 1: Frequencies conversion values from Hertz to milliseconds versus our systems performance over 4 epochs.

Target frequencies Hz to ms 1st epoch 2nd epoch 3rd epoch 4th epoch Average
8.5Hz 117.647 115.7391 116.913 116.6957 113.2083 115.639
10Hz 100 98.92308 100.1923 100.1154 100.1538 99.84615
12Hz 83.3333 82.125 83.5 83.40625 83.40625 83.10938
15Hz 66.6666 65.71795 66.79487 66.69231 65.95 66.28878

due to multiple target stimuli. Therefore, to overcome this
challenge, we suggest a GMM-based discriminative transfor-
mation and classification approach to capture and incorpo-
rate the discriminative subject-specific information.

(1) Modeling Utilizing GMMs. A Gaussian Mixture Model
comprises a limitedmixture ofmultivariate Gaussian compo-
nents. Given a feature vector x, a GMM, denoted by 𝜆, models
a distribution as follows:

𝑝 (x | 𝜆) = 𝑀∑
𝑚=1

𝜉𝑚𝑔𝑚 (x) , (1)

where 𝜉𝑚 indicates the weight of the 𝑚th component and𝑔𝑚(x) represents the 𝑑-variate Gaussian function with its
mean vector, 𝜇𝑚, and covariance matrix, Σ𝑚,𝑔𝑚 (x) = 𝑁 (x | 𝜇𝑚, Σ𝑚)

= 1(2𝜋)𝑑/2 Σ𝑚1/2 exp[−
12 (x − 𝜇𝑚)𝑡

−1∑
𝑚

(x − 𝜇𝑚)] , (2)

where 𝑑 represents the dimension of the input feature vector,
while the covariance matrices Σ𝑚 are usually diagonal due to
the fact that estimating the full-covariance GMM parameters
requires more training samples and its computational cost is
more significant, whereas the GMM density is multimodal
and consists of a linear combination of Gaussian basis func-
tion, 𝑔𝑚(x), capable of approximating random and continu-
ous density functions [39]. A GaussianMixtureModel can be
viewed as an amalgamation of a simple Bayesian discriminant
that utilizes 1 Gaussian density and a vector quantization
codebook, which can model arbitrary probability densities
[39].

GMM training involves the estimation of the GMM
parameters represented by the weights, 𝜉𝑚, the mean vectors,𝜇𝑚, and the covariancematrices,Σ𝑚, of each individual Gaus-
sian density 𝑔𝑚(⋅) employing part of the available training
data, while determining the GMM parameters is achieved by
estimating the maximum likelihood, which is calculated by
the iterative expectation-maximization (EM) algorithm.

(2) GMM-Based Subject-Dependent SSVEP Identification.
SSVEP identification indicates automatically distinguishing
a target object flickering with a specific target frequency that
a subject is focusing on utilizing the information embedded
within the SSVEP response. Figure 8 depicts training a
GMM-based SSVEP identification system. The feature vec-
tors that carry subject-specific information are extracted by
the front-end module. Additionally, the statistical redun-
dancies are alleviated by a partition-based CCA and PSDA

feature extraction. First, a collection of background SSVEPs
of various subjects is employed to train a universal back-
ground model (UBM). Subsequently, to generate subject-
specific GMM models, each GMM model is adapted from
the background model instead of training from scratch. This
is accomplished by using a collection of the corresponding
SSVEP segments of each subject. Hence, effective estimation
of the GMM parameters can be achieved even with a small
number of data samples per each subject. On the other hand,
subject adaptation can be accomplished by adapting all the
parameters from the background model, or some of them
utilizing maximum a posteriori (MAP).

Assume the enrollment segment for subject 𝜙, X𝜙 ={x1, x2, . . . , x𝑇𝜙}, where 𝑇𝜙 represents the segments number
in the SSVEP segment and 𝜇𝑖 represents the 𝑖th mean vector
of the UBM, and 𝜇𝜙𝑖 is the 𝑖th mean vector of the adapted
model for subject 𝜙, determined by utilizing the maximum
a posteriori (MAP) as the weighted sum of subject 𝜙’s data,
while the UBMmeans

𝜇𝜙𝑖 = 𝛼𝑖x𝜙𝑖 + (1 − 𝛼𝑖) 𝜇𝑖, (3)

where

𝛼𝑖 = 𝑙𝑖𝑙𝑖 + 𝜂 ,
x𝜙𝑖 = 1𝑙𝑖

𝑇𝜙∑
𝑡=1

𝑝 (𝑖 | x𝑡) x𝑡.
𝑙𝑖 = 𝑇𝜙∑
𝑡=1

𝑝 (𝑖 | x𝑡) ,
𝑝 (𝑖 | x𝑡) = 𝜉𝑖𝑁(x𝑡 | 𝜇𝑖, Σ𝑖)Σ𝑀𝑚=1𝜉𝑚𝑁(x𝑡 | 𝜇𝑚, Σ𝑚)

(4)

MAP adaptation is employed in order to obtain subject-
specific GMMs from the UBM. The effect of the target
subject data X𝜙 on the GMM model is controlled by the𝜂 parameter. In the identification stage, an SSVEP segment
Xtest = {x1, x2, . . . , x𝑇test} is utilized to identify the subject,
whereas, for a group of S subjects, who are represented by
the subject models, {𝜆1, 𝜆2, . . . , 𝜆𝑆}, the aim is to obtain the
subject model with the maximum log-likelihood, given the
sequence of the input SSVEP segment, Xtest. Assuming that
observations are independent from each other, the decision
rule is

𝑠 = arg max
1≤𝑠≤𝑆

𝑇test∑
𝑡=1

log𝑝 (x𝑡 | 𝜆𝑠) . (5)
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A subject is identified as 𝑠, which corresponds to the model
that increases the sum of the log-likelihood scores over the
complete SSVEP segment. We consider the described GMM-
based system as the baseline system in this study.

4.6. GMM Likelihood Vectors and Supervectors. In order to
better capture the subject-specific information obtained by
the GMM-based model training and adaptation, we combine
the generative GMM-based modeling with a support vector
machine- (SVM-) based discriminative analysis as illustrated
in Figure 9. After performing GMM training and adaptation,
the subject-specific GMMs (i.e., MAP-adapted GMMs using
target subject SSVEP segments) can generate scores for the
input data. Hence, we can consider the set of subject-specific
GMMs as a discriminative feature space transformation. In
this way, the GMM likelihood scores were converted into
log-likelihood ratios (LLRs) [40]. Then GMM-LLR scores
were concatenated into a transformed vector and were fed
to a predictive model for training and validation. However,
to capture a higher resolution of the GMM information
in the discriminative transformation, subject-specific GMM
supervectors were also generated by extracting, stacking,
and concatenating the MAP-adapted mean values of the
Gaussian mixtures from each of the subject-adapted GMMs.
The supervector transformation potentially generated a high-
dimensional space. Finally, support vector machine (SVM)
discriminativemodel training, which is a discriminative clas-
sifier that is robust to high dimensionality, was employed for
classification. SVM complexity is dependent on the number
of support vectors rather than the number of the input space
dimensions.

4.7. Support Vector Machine (SVM). To perform predictive
modeling and validation, SVM was employed as a classifier
in this study. SVM has been investigated in numerous and
various applications and is well known for its ability to
provide an efficient classification strategy to divide the input
vectors into a 2-class problem. Additionally, SVM’s ability to
maximize the margin is attributed to a soft margin objective
function that penalizes misclassified and within the margin
samples as follows:

min 12 ‖𝑊‖2 + 𝐶∑
𝑖

𝜉𝑖

𝑦𝑖 (𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, ∀𝑥𝑖
𝜉𝑖 ≥ 0

(6)

as 2/‖𝑊‖ represents the between classes margin and 𝜉𝑖
denotes the degree to which a sample, 𝑥𝑖, is within themargin
so as to be penalized, whereas the soft margin algorithm
seeks to maximize the margin while maintaining 𝜉𝑖 at 0.
However, it is worth mentioning that the algorithm does
not decrease the number of misclassified samples, rather it
minimizes the sum of the distances from the hyperplanes
of the margin. Furthermore, the trade-off margin width and
misclassification are controlled by the 𝐶 coefficient.

SVM aims to project the input vector 𝑥 into a scalar value𝑓(𝑥) to be the output score:
𝑓 (𝑥) = 𝑁∑

𝑖=1

𝛼𝑖𝑦𝑖𝑘 (𝑥𝑖, 𝑥) + 𝑏, (7)

where the support vectors are {𝑥𝑖 | 𝑖 = 1, . . . , 𝑁}, the number
of support vectors is 𝑁, the adjustable weights are 𝛼𝑖 > 0,𝑦𝑖 = {−1, +1}, the bias term is 𝑏, and the kernel function is𝐾(𝑥𝑖, 𝑥) = 𝜙(𝑥𝑖)𝑡𝜙(𝑥), where 𝜙(⋅) represents the mapping
of the input space to a high-dimensional space. Moreover,
the sign of 𝑓(𝑥) determines the class decision for the 2-class
classification problem. As such, we observe that sums of the
kernel function construct the classifier as follows:

𝐾(𝑥𝑖, 𝑥) = 𝜙 (𝑥𝑖)𝑡 𝜙 (𝑥) , (8)

where 𝜙(𝑥) represents a mapping of the input space to
a potentially infinite-dimensional space. The kernel of the
radial basis function (RBF kernel), also known as a Gaussian
kernel, is formulated as radial basis function (i.e., Gaussian
function):

𝑘RBF (𝑥, 𝑥) = exp(−𝑥 − 𝑥22𝜎2 ) , (9)

where𝑥 and𝑥 denote 2 samples that represent feature vectors
in a certain input space. The squared Euclidean distance
between both feature vectors is denoted by ‖𝑥 − 𝑥‖2, while𝜎 represents a free parameter.
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5. Experimental Results

Data collection from 10 subjects was accomplished based on
the procedure described in Section 4.1. Despite the inherent
inaccuracies in the SSVEP stimulation, the data collection
using the portable BCI4ICU system was accomplished with
no loss of subject data.

In order to evaluate the SSVEP identification perfor-
mance of the predictive model, 10-fold Cross-Validation
(10 CV) was used. This entails partitioning the labeled train-
ing data into 10 equal-size subsets. Subsequently, 9 subsets
are used to train the predictive model while the remaining
subset is kept for validation to test the model’s generalization
capabilities on unseen data. This process runs 10 times while
ensuring each subset is employed once as the validation
subset. As such, the model’s generalization capability is
estimated by averaging the validation results. Then, SVM
parameters are optimized utilizing simple grid optimization.

In this section, GMM parameter tuning, GMM-based
subject identification, GMM-based SSVEP identification,
and the information transfer rate will be discussed.

5.1. GMM Parameter Tuning. The number of mixtures is
a very important parameter that requires close inspection
and tuning. Different numbers of mixtures were selected for
further observation. Figure 10 depicts fitting a GMMemploy-
ing 4, 8, 16, and 32 mixtures. From Figure 10, we note that
GMM’s population of samples is supported by 4, 8, and 16
mixtures. Conversely, estimated mean and variance of the
training data did not support fitting a GMMwith 32mixtures
due to the paucity of data samples. As such, only the first 3
numbers of mixtures (i.e., 4, 8, and 16) were employed for
this investigation.Moreover, to obtain the optimal number of
mixtures suited for our task and data, 10-CV SSVEP identifi-
cation is conducted and the comparison is drawn accordingly.

5.2. GMM-Based Subject-Identification Results. To integrate
the subject-specific information in the training phase of
the SSVEP identification model, GMM training and adap-
tation are employed. In order to discover the level of
subject-specific information present in the SSVEP data, we
first conducted a subject-identification investigation using
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Figure 10: GMMs with different number of mixture components.

Table 2: GMM-based 10-CV subject identification accuracies.

4 mixtures 8 mixtures 16 mixtures
GMM-MAX 80.3 78.5 72.8
GMM-MAP-MAX 82.6 87.3 85.2

ARGMAX operator on GMM scores. We then generated 10-
CV subject-identification accuracies of the subject-specific
GMMs. Table 2 reports the results employing (1) training
GMMs from scratch on each subject’s SSVEP data and (2)
MAP-adapted GMMs, where a UBM was fitted to back-
ground data of all subjects and subsequently generated the
subject-specific GMMs to adapt to each individual subject
utilizing their SSVEP data.

From Table 2 we observe that the accuracy of identifying
subjects using their SSVEP data with different numbers
of mixtures was higher for the GMM-MAP approach as
opposed to training GMMs from scratch. As such, the
calibration time can be significantly minimized using GMM-
MAP adaptation. Furthermore, GMM-MAP achieved an
87.3% accuracy when utilizing 8 mixtures. However, we
observe that the identification performance of the GMMs
trained from scratch exacerbates due to the lack of the data

samples required to estimate the higher number of GMM
parameters from scratch.

5.3. GMM-Based SSVEP Identification Results. Following the
generation of the subject-specific scores for theMAP-adapted
GMMs, we performed the GMM-based discriminative trans-
formation of CCA-PSDA fusion features and conducted a 10-
CV identification evaluation of the trained SVM predictive
model (i.e., the procedure illustrated in Figure 9). The
GMM scores were concatenated to generate a 10-dimensional
transformed vector and then passed to the SVM predictive
model (i.e., GMM-MAP-SVM). Also, the adapted mean
scores of each of the subject-adapted GMMs were stacked
and concatenated to generate the GMMmean super vectors.
Given the 3 number of mixtures employed (i.e., 4, 8, and 16),
the supervectors were 40-dimensional, 80-dimensional, and
160-dimensional vector spaces (i.e., GMM-MAP-SSVM).The
10-CV SSVEP identification results using GMM-MAP-SVM
and GMM-MAP-SSVM utilizing the 3 numbers of mixtures
are reported in Table 3.

From Table 3, we note that GMM mean supervectors
of all mixture means achieved considerable improvement
compared to GMM-LLR score vectors. GMM-MAP-SSVM
achieved a 98.7% average identification accuracy using 8
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Table 3: Our system’s performance versus GMM-MAP-SVM and GMM-MAP-SSVM identification accuracies using 3 different numbers of
mixtures.

Subjects CCA PSDA GMM-MAP-SVM GMM-MAP-SSVM
4 mixtures 8 mixtures 16 mixtures 4 mixtures 8 mixtures 16 mixtures

Subject 1 83% 67% 92.00% 95.30% 94.40% 98.30% 100.00% 100.00%
Subject 2 77% 83% 93.60% 96.70% 92.10% 96.50% 98.70% 93.20%
Subject 3 40% 26% 91.70% 93.60% 90.60% 90.80% 98.40% 94.90%
Subject 4 59% 19% 89.40% 90.20% 89.70% 87.20% 97.70% 94.20%
Subject 5 67% 41% 92.30% 93.90% 93.80% 93.70% 98.80% 97.60%
Subject 6 55% 35% 90.00% 91.50% 92.50% 92.00% 96.90% 96.60%
Subject 7 62% 29% 90.20% 90.60% 93.80% 96.60% 100.00% 99.70%
Subject 8 71% 39% 86.50% 89.50% 88.70% 87.80% 98.50% 96.50%
Subject 9 47% 17% 89.80% 92.00% 89.30% 92.70% 99.20% 95.80%
Subject 10 61% 17% 87.70% 95.80% 91.90% 95.40% 98.80% 96.30%
Average 62% 37% 90.32% 92.91% 91.60% 93.10% 98.70% 96.40%

Table 4: Information transfer rates of our system and the 8-mixture model for both GMM-MAP SVM and GMM-MAP-SSVM.

Subjects Baseline GMM-MAP-SVM GMM-MAP-SSVM
Subject 1 23.30% 26.58% 27.83%
Subject 2 21.69% 26.95% 27.49%
Subject 3 11.76% 26.13% 27.41%
Subject 4 16.87% 25.22% 27.22%
Subject 5 19.02% 26.21% 27.51%
Subject 6 15.80% 25.56% 27%
Subject 7 17.68% 25.32% 27.83%
Subject 8 20.09% 25.03% 27.43%
Subject 9 13.65% 25.70% 27.62%
Subject 10 17.41% 26.71% 27.51%
Average 17.73% 25.94% 27.49%

mixtures compared to GMM-MAP-SVM which achieved a
92.91% average accuracy with the same number of mixtures.
That entails greater than 5% relative improvement. As such,
the experimental results demonstrate that our proposed
closed-loop and portable BCI4ICU system is robust and can
be utilized for effective communication for patients in the
intensive care.

5.4. Information Transfer Rate (ITR). All the results in this
paper stem from offline data analysis. As such, we follow
Meinicke et al. [41] and compute the information transfer rate
as follows:𝐵𝑡
= 𝑡60 (log2𝑀+ 𝑃log2𝑃 + (1 − 𝑃) log2 ((1 − 𝑃) / (𝑀 − 1))) , (10)

where 𝐵𝑡 represents the ITR in bits/min, 𝑡 indicates the
required time for each trial, 𝑀 represents the number of
target frequencies displayed on the visual stimuli, and𝑃 refers
to the probability that the desired icon will be selected (i.e.,
accuracy).

Table 4 reports the information transfer rates of our
portable BCI system across all 10 subjects. The baseline
column represents our system’s performance, which demon-
strates an average ITR of 17.73% bit/min, whereas GMM-
MAP-SVM improved the ITR to 25.94%. Finally, GMM-
MAP-SSVM further enhanced the average overall ITR across
all 10 subjects to 27.49% and GMM-MAP SSVM demon-
strated the information transfer rates achieved by our pro-
posed method.

Several efforts investigated the information transfer rates
of BCI systems. Reagor et al. examined maximizing the ITR
of SSVEP-based BCIs utilizing a tablet interface design [42].
Their experimental results on 5 subjects demonstrate that
their overall accuracy and ITR without giving user feedback
were 94.75% and 32.66 bit/min, respectively. However, when
providing user feedback their overall accuracy and ITR
were 96.34% and 27.56 bit/min. Furthermore, the majority of
such efforts utilize cathode ray tube (CRT) and/or computer
monitors with relatively high screen refresh rates. Yuan et al.
investigated estimating the ITR of various EEG amplifiers uti-
lizing 3 different paradigms, P300, motion, and SSVEP [43].
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Their findings illustrate that the highest SSVEP accuracy and
ITR achieved were 80.49% and 24.5 bit/min, respectively.

6. Conclusion

In this work, we attempted to address the needs of patients
in the intensive care by developing a rapid and effective
communication system that utilizes an SSVEP-based BCI, a
wearable EEG cap, and anAndroid tablet to serve as the visual
stimuli. We proposed a novel subject-specific GMM-based
training and adaptation where we integrated the subject-
specific information into the training of the SSVEP identifica-
tion model, obtained subject-identification accuracies from
the subject-specific GMMs, and finally generated the trans-
formed vectorswhich are then passed to the predictivemodel.
Our experimental results demonstrated that theGMM-MAP-
SVM achieved 92.91% with 8 mixtures, while the GMM-
MAP-SSVM was more robust achieving 98.7% identification
accuracy also with 8 mixtures. Hence, the proposed system
can be employed for effective and consistent communication
in an ICU environment.

After this successful validation on our population of 10
subjects, we intend to perform a bench-to-bedside pilot study
on mechanically ventilated patients in the ICU, with a user
interface designed with input from intensive care physicians,
critical care nurses, and speech/language pathologists.
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