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Abstract

Genomic rearrangements in cancer cells can create gene fusions where the juxtaposition

of two different genes leads to the production of chimeric proteins or altered gene

expression through promoter-swapping. We have previously shown that fusion tran-

scripts involving microRNA (miRNA) host genes contribute to deregulation of miRNA

expression regardless of the protein-coding potential of these transcripts. Many

different genes can also be used as 50 partners by a miRNA host gene in what we

named recurrent miRNA-convergent fusions. Here, we have explored the prop-

erties of 50 partners in fusion transcripts that involve miRNA hosts in breast

tumours from The Cancer Genome Atlas (TCGA). We hypothesised that firstly, 50

partner genes should belong to pathways and transcriptional programmes that

reflect the tumour phenotype and secondly, there should be a selection for

fusion events that shape miRNA expression to benefit the tumour cell through

the known hallmarks of cancer. We found that the set of 50 partners in miRNA

host fusions is non-random, with overrepresentation of highly expressed genes

in pathways active in cancer including epithelial-to-mesenchymal transition,

translational regulation and oestrogen signalling. Furthermore, many miRNAs

were upregulated in samples with host gene fusions, including established onco-

genic miRNAs such as mir-21 and the mir-106b~mir-93~mir-25 cluster. To the list

of mechanisms for deregulation of miRNA expression, we have added fusion

transcripts that change the promoter region. We propose that this adds material

for genetic selection and tumour evolution in cancer cells and that miRNA host

fusions can act as tumour ‘drivers’.
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What's new?

Fusion transcripts have been identified in many tumour types, but it remains unclear how many

of them represent functional tumour drivers versus passenger events. Among several mecha-

nisms causing deregulation of miRNA expression in cancer, genomic rearrangements can create

microRNA host gene fusions that alter microRNA expression regardless of the protein-coding

potential of the fusion transcript. The authors show that the 50 partners of host fusions are

highly-expressed genes in subtype-specific pathways active in breast cancer. Host fusions can

thereby provide material for genetic selection and tumour evolution in cancer cells, with miRNA

host fusions potentially acting as tumour drivers.

1 | INTRODUCTION

The genomes of cancer cells can contain an extensive number of

genetic alterations, ranging from point mutations affecting a single

base pair to structural variants including copy-number changes and

translocations of chromosome segments. Epigenetic changes in DNA

methylation and histone modifications can change chromatin states

and further contribute to the deregulation of the genome.1 The rela-

tive insensitivity to the control systems and safeguards of normal

cells leads to a remarkable flexibility in moulding the cancer genome

to ultimately increase cell survival and proliferation. Genomic

rearrangements can lead to juxtaposition of sequences from two dif-

ferent genes to create a fusion gene, sometimes resulting in a chimeric

protein with altered properties, or in promoter-swapping where the

expression of one gene is placed under the control of the regulatory

elements of the other gene.2 There are many well-established exam-

ples of oncogenic gene fusions, some of which have been successfully

exploited as targets for therapy.3,4 Modern sequencing technology

has greatly facilitated the detection of gene fusions and fusion tran-

scripts have been identified in many tumour types.5 It is, however, still

an open question how many of the detected fusion transcripts repre-

sent functional tumour drivers vs passenger events.

We have previously shown that the host genes of intronically

encoded small noncoding RNAs including both microRNA (miRNA) and

small nucleolar RNA (snoRNA) are overrepresented in fusion transcripts

in breast cancer.6 Analyses of fusion transcripts have mainly focused

on the production of chimeric proteins, but the co-transcriptional

processing of miRNAs from primary transcripts7 implies that the coding

potential of the transcript is irrelevant from the perspective of miRNA

expression. We coined the term miRNA-convergent fusions to describe

a class of fusion transcripts where the exact identity and function of

the 50 partner gene is unimportant, and in which multiple and different

50 partners can drive the expression of a given miRNA.6 For these

fusion transcripts, recurrence is therefore only defined as multiple

occurrences of fusions involving the same miRNA host gene as a

fusion partner.

The role of miRNAs and their associated Argonaute proteins in

regulation of gene expression is well established, and primarily occurs

through base-pairing of the miRNA to partially complementary target

sites in the mRNAs of target genes, leading to mRNA destabilisation

or translational inhibition.8 A considerable number of miRNAs have

been reported to act as tumour suppressors or oncogenes9 and sev-

eral different mechanisms have been described for deregulation of

miRNA expression in cancer.10 Examples include genomic copy num-

ber alterations, epigenetic factors such as promoter methylation sta-

tus, post-transcriptional regulation of miRNA processing—and gene

fusions involving miRNA host genes have now also been added to this

list. Our earlier work demonstrated that the 50 partners of fusion tran-

scripts involving a miRNA host gene as 30 partner had higher expres-

sion than the 50 partners of non-host genes, and that specific miRNAs

were upregulated in samples with host gene fusions.6

Here we have explored the properties of miRNA host gene

fusions in breast tumours from the TCGA11 and SCAN-B12 cohorts

with the hypotheses that (a) the 50 partner genes should belong to

pathways and transcriptional programmes that reflect the tumour

phenotype and (b) that there should be a selection for fusion events

that shape miRNA expression to benefit the tumour cell through

known hallmarks of cancer such as increased survival, proliferation,

angiogenesis, or migration. We find that the 50 partners of miRNA

host genes are associated with higher expression and lower promoter

methylation. They are regulated by key transcription factors in cancer

cells and act in pathways related to the malignant phenotype. Finally,

we identify fusion transcripts as mechanisms for upregulation of

oncogenic miRNAs including mir-21 and the mir-106b~mir-93~mir-25

cluster in breast cancer.

2 | MATERIALS AND METHODS

2.1 | Fusion transcript prediction

FusionCatcher13 version 1.00 was used to extract fusion events from all

available RNA-sequencing (RNA-Seq) data in the TCGA-BRCA project.

Fusions with the following flags were filtered from the analysis due to

their high likelihood of being false positives: 1000genomes, 1K<gap<10K,

adjacent, ambiguous, duplicates, ensembl_partially_overlapping, gap<1K,

gencode_fully_overlapping, gencode_partially_overlapping, gencode_

same_strand_overlapping, healthy, m0, multi, non_cancer_tissues,

non_tumor_cells, refseq_partially_overlapping, tcga-normal, ucsc_partially_

overlapping, banned, bodymap2, cacg, conjoing, cta_gene, ctb_gene,
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ctc_gene, ctd_gene, distance1000bp, ensembl_fully_overlapping,

ensembl_same_strand_overlapping, gtex, hpa, mt, pair_pseudo_

genes, paralogs, readthrough, refseq_fully_overlapping, refseq_same_

strand_overlapping, rp_gene, rp11_gene, rrna, similar_reads,

similar_symbols, ucsc_fully_overlapping, ucsc_same_strand_overlapping.

Coordinates from miRBase14 release 22 were used to map intronic

miRNAs to host genes and fusions based on GENCODE release 27 gene

identifiers.

2.2 | Classification of samples

To reduce the number of TCGA samples with missing data, tumour ER

and HER2 status were defined by the RNA expression of ESR1 and

ERBB2, respectively. For each receptor, the distribution of expression

values in fragments per kilobase of exon model and million reads

(FPKM) were compared for each immunohistochemically determined

(IHC) status and defined an expression threshold value between posi-

tive and negative (Figure S1). The threshold for ER-positive samples

was ESR1 FPKM = 5.7 and for HER2-positive samples ERBB2

FPKM = 73.5. IHC receptor status was available for all SCAN-B sam-

ples and therefore used instead of an FPKM threshold. PAM50 molec-

ular subtypes in the SCAN-B cohort were obtained as previously

described.15

2.3 | Expression and promoter methylation
analysis

Methylation and gene expression matrices were obtained from

TCGA. For expression analysis, we calculated the average expres-

sion of each 50 fusion partner for each category of 30 partner gene

(30 host including/excluding miRNA and 30 not host), as well as

average expression in samples where the 50 partner was not

involved in fusion events. The equivalent analysis was performed

for 30 partner genes. For the promoter methylation analysis, we cal-

culated the average methylation levels of CpG islands located

within �1000 to +200 bases of the transcription start site for each

gene. Student's t-test was used to test for differences in log2-

transformed methylation beta values and expression levels

between different groups of 50 fusion partner genes.

2.4 | Enrichment analyses

Gene sets were obtained from the Molecular Signatures Database

version 7.216 (MSigDB) using the MSigDBR package. The

clusterProfiler17 R package was used to detect overrepresented GO,

HALLMARK, KEGG and REACTOME gene sets in the 50 fusion part-

ners. The UniBind18 robust set of TF-DNA interactions was used to

detect any overrepresented targets of transcription factors acting on

the promoter region of 50 fusion partners. Promoter regions were

defined as �1000 to +200 bases from the transcription start site. For

each tumour subtype, three random sets of unique 50 fusion partners

of non-hosts were selected to match the number of 50 partners of

miRNA hosts to compare gene lists of equal lengths, as the num-

ber of non-host fusions was substantially larger than the number

of miRNA host fusions. The average enrichment value for the

random sets was calculated to represent gene set overrepresen-

tation for the non-host 50 fusion partners. All 50 partners of

canonical snoRNAs hosts (scaRNAs, C/D and H/ACA box

snoRNAs) were excluded from the analysis. The universe used for

the gene set overrepresentation analysis contained all expressed

genes in the TCGA-BRCA cohort, defined as genes with 95th

percentile FPKM >1 across the entire cohort. The P-values for

overrepresented gene sets were calculated using the hyper-

geometric distribution. The equivalent analysis was performed for

30 partner genes.

2.5 | Differential miRNA expression analysis

Total expression per mature miRNA in miRBase release 2214 was cal-

culated with a custom Perl script from the TCGA miRNA isoform

quantification files using converted genomic coordinates. Differential

expression analysis was performed using the exactTest implemented

in edgeR.19

2.6 | Analysis of whole genome sequencing data

GRCh37-lite reference alignments for whole genome sequencing

(WGS) data were downloaded from the GDC Legacy Archive (https://

portal.gdc.cancer.gov/legacy-archive). WGS and RNA-Seq file identi-

fiers were connected to TCGA barcodes using the Bioconductor pack-

age TCGAbiolinks version 2.16.020 and R version 4.0.2. GRCh37 gene

coordinates for the 50 partners of VMP1 fusion transcripts were

obtained from GENCODE release 27.21 Reads aligning to the 50 part-

ners and VMP1 were extracted from the WGS BAM files and discor-

dant read pairs where one read aligned in each of the fusion partner

genes were extracted. We considered the presence of at least one

such read pair to confirm a fusion event at the DNA level. This analy-

sis was done in Python version 2.7.15 using the module pysam ver-

sion 0.15.3.22

2.7 | Analysis of miRNA target genes

Expression values in counts per million reads (CPM) for miRNAs that

were differentially expressed between tumours with host gene

fusions and tumours without host fusions were used together with

the FPKM values of all targets of those miRNAs as predicted by

TargetScan23 for correlation tests using Pearson's product moment

correlation coefficient. Correlation tests were also performed for

miRNA expression against protein levels obtained from TCGA reverse

phase protein array data (RPPA).
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2.8 | Experimental validation of fusion transcripts

Fusion transcripts for validation were selected among SCAN-B

tumours with available RNA and small RNA sequencing data. Tran-

scripts where the fusion junction overlapped repetitive elements

annotated by RepeatMasker were excluded to allow design of specific

primers. Total RNA was treated with DNase I (ThermoFisher Scien-

tific) and 200 ng was used for cDNA synthesis with random hexamers

in 10 μL reactions using RevertAid H Minus reverse transcriptase

(ThermoFisher Scientific) according to the manufacturer's instruc-

tions. The cDNA was diluted 1:3 with H2O and 2 μL were used in

15 μL reactions for real-time quantitative RT-PCR with iTaq Univer-

sal SYBR Green Supermix (Bio-Rad) according to the manufacturer's

instructions. For miRNAs, cDNA synthesis from 100 ng DNase-

treated total RNA was performed as described.24 Dilution of cDNA

and PCR was done as before. Primer sequences are available in

Table S1.

2.9 | Statistical analyses

All statistical analyses were performed in R version 3.6.3-4.0.5. The

Benjamini-Hochberg procedure was used to adjust P-values in multi-

ple testing to control the false discovery rate for all statistical tests.

3 | RESULTS

3.1 | Fusion transcripts in the TCGA breast cancer
cohort

To explore 50 partners and regulatory networks in miRNA host gene

fusions, we have based our analyses on RNA-Seq data for 1092 breast

tumours from TCGA (TCGA-BRCA cohort). For some analyses we

have also included data for the 1540 breast tumours in our previous

study (SCAN-B cohort).6 There are many software tools available to

detect fusion transcripts from RNA-Seq data. We chose to use

FusionCatcher13 due to its high sensitivity and comparatively low

false discovery rate.25 Clinical data for the TCGA samples are

summarised in Table 1. Several samples had missing or ambiguous sta-

tus for the two main prognostic and treatment-predictive biomarkers

in breast cancer: oestrogen receptor alpha (ER, gene symbol ESR1)

and Erb-B2 receptor tyrosine kinase 2 (HER2, gene symbol ERBB2).

We therefore decided to define ER and HER2 status by the expres-

sion of ESR1 and ERBB2, respectively, since expression levels of these

genes are available for every sample in the cohort from the RNA-Seq

data. Following this definition, 75% of samples were ER-positive

and 15% HER2-positive, a distribution that is in-line with current

literature26 (see Table 1 and Figure S1). After applying the gene

expression-based cut-off, the receptor status changed for 6.7% and

11.7% of samples previously annotated as positive or negative for ER

or HER2, respectively. PAM50 molecular subtype classification was

obtained from TCGA.11

In total, we detected over 274 000 fusion transcript events in

1092 samples, an average of 251 fusions per sample (Tables S2 and

S3). A total of 16 530 unique genes were involved as fusion partners

TABLE 1 Clinical characteristics and molecular subtypes of the
TCGA-BRCA cohort

Age at diagnosis

<35 29 (2.7%)

35-50 269 (24.6%)

50-75 652 (59.7%)

>75 140 (12.8%)

NA 2 (0.2%)

Gender

Female 1081 (99.0%)

Male 11 (1.0%)

Tumour stage

I 180 (16.5%)

II 619 (56.7%)

III 249 (22.8%)

IV 20 (1.8%)

Other/NA 24 (2.2%)

PAM50 status

Luminal A 565 (51.7%)

Luminal B 213 (19.5%)

HER2-enriched 82 (7.5%)

Basal 191 (17.5%)

Normal-like 41 (3.8%)

ER status by IHC

Positive 798 (73.1%)

Negative 237 (21.7%)

Intermediate 2 (0.2%)

NA 47 (4.3%)

HER2 status by IHC

Positive 163 (14.9%)

Negative 557 (51.0%)

Equivocal 178 (16.3%)

Intermediate 12 (1.1%)

NA 174 (15.9%)

ER status by FPKM

Positive 819 (75.0%)

Negative 273 (25.0%)

HER2 status by FPKM

Positive 158 (14.5%)

Negative 934 (85.5%)

ER/HER2 status by FPKM

ER+, HER2+ 103 (9.4%)

ER+, HER2� 716 (65.6%)

ER�, HER2+ 55 (5.0%)

ER�, HER2� 218 (20.0%)
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and 6293 of those occurred in more than one sample. There were no

significant differences in the number of fusion events by PAM50 sub-

type, receptor status or tumour stage (Fisher's exact test, P = .334,

P = .154, and P = .874, respectively). Only 2.2% of all unique fusion

gene pairs were found among 111 samples annotated as normal

breast tissue by TCGA, indicating that most of the detected fusions

are specific to cancer (Table S2). Among all fusion events in tumours,

16 262 (5.9%) had a miRNA host gene as 30 partner with a breakpoint

located upstream of the intronic miRNA (miRNA-including fusions).

The number of miRNA-excluding host gene fusions with the miRNA

falling outside of the fusion product was similar with 15 674 events

(5.7%). In total, we detected 672 miRNA host genes with 734 unique

miRNAs as 30 partners in fusion transcripts.

3.2 | microRNA host genes are overrepresented in
fusion transcripts

We have previously shown that miRNA host genes are overrepre-

sented as fusion partners in the SCAN-B breast cancer cohort.6 To

confirm this in the TCGA data, we constructed a logistic regression

model that considered miRNA host gene status, gene size, and the

interaction between the two factors (Figure 1A). Host genes of

miRNAs were indeed also overrepresented in the TCGA fusions

(P = 7.62 � 10�7, Wald test). The model was limited to all expressed

protein-coding genes in the TCGA-BRCA cohort.

Looking at the genomic location of fusion partners, 90.8% of

fusion events were inter-chromosomal and 9.2% were intra-chromo-

somal. As shown in Figure 1B, the fusion partners of intra-

chromosomal fusions were significantly more likely to be further apart

when the 30 partner was a miRNA host (P < 2e � 16, Fisher's exact

test). The median distance between fusion partners was 21.3 million

base pairs (Mb) for miRNA hosts and 13.8 Mb for non-hosts. No sig-

nificant differences were observed in the distance between the two

fusion partners when comparing miRNA-including and miRNA-

excluding host gene fusions. Fusion transcripts linking closely located

genes may be false positive events produced through readthrough

transcription13; fusions flagged by FusionCatcher as joining adjacent

genes or genes located less than 10 000 base pairs (Kb) apart were

therefore removed before any analyses were performed.

3.3 | 50 partners of miRNA host fusions are highly
expressed and have lower promoter methylation

In accordance with the model of miRNA-convergent fusions we hypo-

thesise that there is a selection for 50 partners that modulate miRNA

expression in a way that provides an advantage to the cancer cell. We

therefore analysed the properties of 50 partners of miRNA host fusion

transcripts, starting with their expression level. As seen in Figure 1C,

the 50 fusion partners of miRNA host genes had significantly higher

expression levels than other 50 partners (P < 2e � 16, Student's t-test).
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The expression of 50 fusion partners of miRNA hosts was also

significantly higher for miRNA-including fusions compared with

miRNA-excluding fusions (P = .01, Student's t-test). Strikingly, 30 fusion

partners in fusions with miRNA hosts as 50 partners instead had lower

expression in miRNA-including fusions (Figure S2, P = 5.00 � 10�8,

Student's t-test). Fusions with a miRNA host as 50 partner preserve the

host gene promoter and would not be predicted to change miRNA

expression. Overall, genes had significantly higher expression in sam-

ples where they were detected in fusion events (P < 1e � 16), indicat-

ing that the probability of a gene taking part in a fusion is partly

dependent on expression.

Since we observed that miRNA host genes have the most

highly expressed 50 fusion partners, we postulated that these 50

partner genes may have more active promoter regions than other

fusion partners. It is well established that DNA methylation levels

influence promoter activity and accessibility for transcription factor

binding. We therefore downloaded the corresponding TCGA meth-

ylation data and examined CpG islands in the region of �1000 to

+200 bases around the transcription start site of each expressed

protein-coding gene. Average methylation levels across samples

and CpG islands are shown in Figure 1D. Indeed, the 50 fusion part-

ners of miRNA hosts also had significantly lower methylation of

promoter regions than other 50 fusion partners (P = .01, Student's

t-test). In general, genes had lower promoter methylation in sam-

ples where they were involved in fusion transcripts (P < 2e � 16,

Student's t-test).

3.4 | 50 fusion partners are enriched for genes
involved in adhesion and the extracellular matrix

Next, we analysed the cellular pathway involvement of 50 fusion

partners to better understand the regulatory context of miRNA

expression. We were interested both in comparing the 50 partners

of miRNA host vs non-host fusion transcripts, as well as the 50

fusion partner usage between different subgroups of breast

tumours. We performed a gene set overrepresentation analysis

and examined GO terms, KEGG pathways, HALLMARK and

REACTOME gene sets obtained from the Molecular Signature

Database (MSigDB).16 Only 5.9% of fusion transcripts had a

miRNA in the 30 partner gene, and therefore the total number of

50 partners of miRNA hosts was much smaller than for non-hosts

(3525 vs 12 822 unique 50 partner genes, respectively). This is

problematic for the statistics of overrepresentation analysis, so

we created gene lists of equal length for every tumour subgroup

by randomly selecting equally large sets of non-host 50 partners.

Host genes of canonical snoRNAs were removed from the lists of

non-host 50 partners as they have also been shown to be overrep-

resented among fusion transcripts.27 As a background for the

overrepresentation analyses we used all expressed genes in the

TCGA-BRCA cohort. All significant gene sets are included in

Table S4.

Figure 2 shows the top 10 enriched gene sets among 50 partners

of miRNA host fusions divided by molecular subtype together with

the corresponding P-values for overrepresentation among 50

partners of non-host genes. Overrepresentation results for TCGA-

BRCA samples grouped by receptor status and for the SCAN-B

cohort are shown in Figure S3. Gene sets related to the extracellu-

lar matrix, focal adhesion and epithelial-to-mesenchymal transition

(EMT) were consistently among the most overrepresented, regard-

less of molecular subtype or 30 miRNA host status. This was also

observed in the SCAN-B data (Figure S3). Furthermore, oestrogen

response genes were overrepresented among fusion partners for

both miRNA host and non-host fusions in the Luminal A and B

subtypes, which mainly contain ER-positive tumours. Interestingly,

several gene sets related to translation, including eukaryotic
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F IGURE 2 Gene set overrepresentation analysis of 50 fusion partners of miRNA hosts vs non-hosts, split by molecular subtype for the TCGA-
BRCA cohort. The plots show �log10 of the adjusted P-values for the top 10 most significantly enriched KEGG, REACTOME, HALLMARK and
GO pathways among 50 partners of miRNA host fusions (black dots) together with the corresponding P-values for non-host fusions (grey dots)
[Color figure can be viewed at wileyonlinelibrary.com]
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translation initiation and elongation, SRP-dependent co-translational

protein targeting to membrane, and nonsense-mediated decay

(NMD) were overrepresented regardless of subtype among the 50

partners of miRNA host gene fusions, but not among non-host

fusions. Additional subtype-specific gene sets with enrichment

exclusively in miRNA host fusions included keratinisation in Basal-

like tumours (P = .0069, Fisher's exact test), as well as tight junctions

and ‘pathways in cancer’ in Luminal A tumours (P = 5.01e � 6 and

3.66e � 8, respectively, Fisher's exact test).

We performed the analogous enrichment analysis for 30 part-

ner genes in fusions with miRNA hosts as 50 partners for the dif-

ferent molecular subtypes in the TCGA data (Table S5). Since

these fusions retain the promoter of the host gene they are not

predicted to change miRNA expression. Gene sets related to the

extracellular matrix, cell adhesion, and EMT were again signifi-

cantly overrepresented with no clear difference between miRNA

host and non-host fusions. Interestingly, there was no difference

between host and non-host fusions for the gene sets related to

protein translation that were overrepresented specifically among

50 partners in 30 miRNA host fusions. Furthermore, none of the

aforementioned gene sets with subtype-specific overrepresenta-

tion exclusively in 50 partners of miRNA host fusions were signifi-

cantly overrepresented in the 30 partner analysis. These results

indicate that the 50 partners of miRNA host gene fusions have dis-

tinct functional characteristics.

3.5 | Key transcription factors driving expression
of the 50 partners of miRNA host fusions

After concluding that the 50 partners of fusion transcripts show strong

enrichment for specific pathways, some clearly related to the tumour

phenotype, we proceeded to analyse the underlying transcriptional

networks. We based our analyses on the UniBind robust set of experi-

mentally supported transcription factor-DNA interactions18 and

defined the promoter regions as �1000 to +200 bp around the tran-

scription start site for each gene. Comparisons between miRNA host

and non-host fusions were performed by creating equally sized sets of

random non-host 50 partners, as in the pathway overrepresentation

analysis. All significant transcription factors are included in Table S4.

Figure 3 shows enriched transcription factors and associated

REACTOME pathways for the molecular subtypes, with the heatmaps

indicating what fraction of the 50 fusion partners in each pathway that

are targets for a specific transcription factor. Results for tumours

grouped by receptor status are shown in Figure S4. Target genes of

the different paralogs of FOS and JUN, subunits of activator protein
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1 (AP-1), were overrepresented in all subtypes and in many cases

among 50 partners for both miRNA hosts and non-host genes.

Kruppel-like factor 5 (KLF5) targets were enriched in the Luminal A

and B, as well as HER2-enriched subtypes, but not in Basal-like

tumours. We also observed an overrepresentation of ESR1 target

genes in the predominantly ER-positive Luminal A and B subtypes.

The Luminal A subtype furthermore had specific enrichment among

miRNA host fusions of targets for serum response factor (SRF), the

glucocorticoid receptor (NR3C1) and forkhead box A1 (FOXA1), a

modulator of ESR1 signalling. In the Luminal B subtype, target genes

of both ESR1 and TEA Domain Transcription Factor 4 (TEAD4) were

overrepresented specifically among the 50 partners of miRNA host

fusions. Strikingly, the transcription factors AP-1, SRF, and TEAD4

have all been linked to epithelial-to-mesenchymal transition

(EMT)28-30 and heat shock factor 1 (HSF1), enriched in both Luminal A

and Basal-like tumours, has been associated with many aspects of

malignancy.31 These findings recapitulate the results of the cellular

pathway analysis, highlighting the use of key regulatory networks in

driving fusion transcript expression.

3.6 | Upregulation of oncogenic miRNAs in fusion
transcripts

Fusion transcripts that place miRNAs under the control of new pro-

moters and pathways could lead to functional changes in the cancer

cell. To study the effect of host gene fusions on miRNA expression

we therefore performed a differential expression analysis of miRNAs

between tumours where their host gene was a 30 partner in a fusion

and tumours without fusions involving the host gene.

A total of 80 unique miRNAs had significantly higher expression

in tumours where their host gene was a 30 partner in a fusion event

compared with samples without fusions involving the host gene

(Table S6). No miRNAs were underexpressed in their respective fusion

samples, indicating that miRNA host fusions primarily are associated

with upregulation of the included miRNA. The other chromosome

copy may also still contain a functional host gene and miRNA. We and

others have previously reported fusion transcripts involving the

miRNA precursor mir-21 and its host gene VMP1,6,32 and several

papers have reported VMP1 fusions without noting the presence of
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mir-21.33-36 Here we found fusions with VMP1 as 30 partner in

64 tumours (5.9% of the samples). There were 88 different fusion

transcripts using 56 unique 50 partner genes with the most common

partners being RPS6KB1 (10 fusions), DCAF7 (5 fusions) and ACTB

(4 fusions). For comparison, only 8 samples (0.7%) had 50 fusions

involving VMP1. As shown in Figure 4A, the mature miRNA products

miR-21-5p and miR-21-3p were both significantly upregulated in

tumours with 30 VMP1 fusions compared with tumours without host

gene fusions (P = 2.2e � 7 and P = 1.2e � 22, edgeR exact test).19

Five samples with VMP1 fusion transcripts had matched WGS data, all

confirming the existence of these fusions at the DNA level

(Figure 4B).

Several mature miRNAs of the mir-106b~mir-93~mir-25 cluster

were also significantly overexpressed in tumours with 30 fusions of

the host gene MCM7 (Figure 4C). The corresponding P-values for

miR-106b-5p and -3p were .0011 and 6.5e � 7, for miR-93-5p and

-3p .013 and 2.7e � 7, and for miR-25-5p and -3p 9.8e � 4 and

1.6e � 5 (edgeR exact test).19 Fusions of MCM7 have previously been

reported in the SCAN-B breast cancer cohort,6 as well as in ovarian

and prostate cancer from the TCGA project.5 Here we found fusion

transcripts with MCM7 as 30 partner in eight tumours, however none

of them had WGS data available. All fusions used different 50 partners,

most of them with higher expression than the host gene (Figure 4D).

To further analyse the impact of miRNA upregulation on tumour

biology, we used the TCGA RNA-Seq data to perform global correla-

tion tests for the differentially expressed mature miRNAs of mir-21

and the mir-106b~mir-93~mir-25 cluster against all their putative tar-

get genes as predicted by TargetScan.23 We also calculated correla-

tions between these miRNAs and the TCGA reverse phase protein

array (RPPA) data (Table S7). For miR-21-5p there were 539 predicted

target genes with significant negative correlation at the mRNA level,

105 of them with direct experimental evidence according to TarBase

v837 and 4 significantly negatively correlated proteins that were

predicted targets (none of them in TarBase). The six mature miRNAs

in the mir-106b~mir-93~mir-25 cluster together had 1390 significantly

negatively correlated predicted target mRNAs, 502 with direct experi-

mental evidence and 17 significantly negatively correlated predicted

target proteins (9 in TarBase).

Many studies have reported oncogenic functions for miR-21-5p

and the mir-106b~mir-93~mir-25 cluster, which is also paralogous to

the mir-17~92 and mir-106a~mir-363 clusters.38-40 For example, the

tumour suppressor PTEN has been shown to be regulated by both

miR-21-5p and miR-106b-5p.41,42 We found that PTEN mRNA levels

were significantly negatively correlated with both miR-21-5p, miR-

106b-5p, and miR-25-3p (Pearson's r = �.23, �.26 and �.16;

P = 2.4e � 10, 2.7e � 20 and 2.5e � 8, respectively). Other nega-

tively correlated validated targets for miR-21-5p included the mRNAs

of LIFR, a metastasis suppressor in breast cancer,43 and SPRY2, a nega-

tive regulator of RAS and MAPK signalling,44 with Pearson correla-

tions of �0.46 and �0.42, respectively (P = 4.9e � 60 and

5.4e � 48). Validated targets for miR-106b-5p with negative correla-

tion at the mRNA level included the tumour suppressors RB1 and

RBL245 (Pearson's r = �.32 and �.27; P = 3.4e � 26 and 5.9e � 17).

From these data it is also possible to identify putative new target

genes that have been predicted as targets by TargetScan and that are

negatively correlated with the miRNAs across the TCGA-BRCA sam-

ples. Examples for miR-21-5p are the proteins of SRSF1, a regulator

of alternative splicing,46 and XBP1, a transcription factor involved in

the unfolded protein response47 (Pearson's r = �.27 and �.26;

P = 8.8e � 9 and 3.4e � 8). ESR1, the oestrogen receptor alpha, was

predicted as a target for miR-106b-5p and miR-93-3p, and both

miRNAs were negatively correlated with the mRNA (Pearson's

r = �.20 and �.15; P = 1.3e � 7 and .02). ESR1 protein was also neg-

atively correlated with miR-106b-p using two different antibodies

(Pearson's r = �.36 and �.18; P = 3.1e � 31 and 3.0e � 5). Further-

more, PEA15, a multifunctional protein involved in DNA damage

response,48 was predicted as a target for miR-106b-5p and miR-

25-5p and was negatively correlated on the protein, but not mRNA,

level (Pearson's r = �.22 and �.15; P = 3.9e � 9 and .006).

Finally, we also selected 11 tumours with miRNA host gene

fusions and available RNA from the SCAN-B breast cancer cohort for

experimental validation by real-time quantitative RT-PCR. Seven out

of the 11 samples (64%) had a readily detectable fusion transcript and

for 9 out of the 11 samples (82%) the miRNA was expressed above

the median level of a control group of six tumours (Table S8 and

Figure S5).

4 | DISCUSSION

Here we have investigated the 50 partners that drive expression of

fusion transcripts involving miRNA host genes in breast tumours

from the TCGA and SCAN-B cohorts. MicroRNA host genes are

enriched among fusion partners in both datasets and we hypothesised

that the 50 partners would be part of cellular pathways and transcrip-

tional programmes that were relevant to the tumour phenotype.
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F IGURE 5 This schematic figure of fusion transcripts involving
mir-100 illustrates how the expression of a 30 fusion partner and its
intronic miRNA can be regulated by the same transcription factors
across many fusion events, even when the 50 fusion partner genes are
different. We have observed that 50 partners of miRNA host genes
tend to be regulated by transcription factors that are of biological
relevance to the samples' molecular subtype
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We found that the 50 partner genes used by miRNA hosts as a set

have higher expression and lower promoter methylation than the 50

partners of non-host fusion transcripts. The 50 partners of both

host and non-host fusions were strongly enriched for genes related

to the extracellular matrix, focal adhesions and EMT in all tumour

subgroups, and oestrogen response genes were enriched in the

Luminal A and B subtypes that are dominated by ER-positive

tumours. A few pathways were specifically enriched for partners of

miRNA host genes including translation and NMD in all molecular

subtypes, keratinisation in basal-like tumours and tight junctions in

the Luminal A subtype.

The creation of fusion transcripts provides a mechanism for

uncoupling the expression of specific miRNAs from their host genes

and normal transcriptional programme, and the transcription factors

that were overrepresented in the promoters of 50 partner genes func-

tion in different aspects of malignancy. The transcription factors AP-1,

SRF and TEAD4 have all been linked to EMT,28,29 reflecting the

enrichment of gene sets related to the extracellular matrix and cell

adhesion. In cancer cells, HSF1 drives a complex transcriptional pro-

gramme including, for example, regulation of the cell cycle, metabo-

lism, adhesion and translation31 and both KLF4 and KLF5 regulate

proliferation and apoptosis, although potentially with opposing

effects.49 Overrepresentation of targets for ESR1 and FOXA1 in the

luminal subtypes is in line with the cooperation between these two

transcription factors and the importance of oestrogen signalling in

these tumours.50 Figure 5 shows an example of how key transcription

factors can deregulate miRNA expression through convergent fusions

using different 50 partners.

We furthermore hypothesised that the fusion transcripts should

change miRNA expression to benefit the tumour cell through regula-

tion of the known hallmarks of cancer such as increased survival, pro-

liferation, angiogenesis or migration. Differential expression analysis

identified a number of miRNAs that were upregulated in tumours with

fusions involving their host gene. These included the well-established

oncogenic miRNAs mir-21 in VMP1 and the mir-106b~mir-93~mir-25

cluster in MCM7. Expression of these miRNAs was anticorrelated with

many predicted and experimentally validated target genes across the

TCGA breast cancer cohort. These included many tumour suppres-

sors, which is in line with the proposed oncogenic role for the

miRNAs,41 but there were also many oncogenes among the negatively

correlated genes (Table S7). This suggests that the functions of these

miRNAs might be more complex than what has previously been

appreciated, and that there might be subgroups of tumours where

their roles are different. Since cellular signalling pathways normally

contain both positive and negative regulators, this is not necessarily

an unexpected finding, but a clear reminder that no miRNA evolved

for the purposes of a cancer cell.

Although several papers have identified fusion transcripts in

cancer,5 global analyses of miRNA host gene fusions are still lacking

with the exception of our work in breast cancer.6 We have previously

reported that fusions involving miRNA hosts are common but over-

looked for several reasons; research has focused on protein-coding

genes and in-frame fusion transcripts, and miRNA-convergent fusions

using different 50 partners may not have been classified as recurrent.

One advantage with the TCGA data is that more than 98% of the

samples have small RNA sequencing data, which allowed us to analyse

the effects of host fusions on miRNA expression. Still, the number of

samples with fusions for a given host gene becomes limiting for

the ability to detect differentially expressed miRNAs. Whole genome

sequencing data was also available from TCGA for 5 out of the

64 tumours with mir-21 fusions, allowing us to verify the genomic

fusions involving mir-21.

The expression of miRNAs can be deregulated in many different

ways, including genomic amplification and deletion, altered promoter

methylation, transcriptional rate, or processing. To this list we have

added convergent fusion transcripts, potentially caused by genomic

rearrangements that change the promoter region. We have shown

that the set of 50 partners in miRNA host fusions is non-random and

demonstrates overrepresentation of highly expressed genes in

subtype-specific pathways active in breast cancer. This adds material

to the process of genetic selection and tumour evolution in cancer

cells and suggests that miRNA host fusions may provide a growth

advantage and function as tumour ‘drivers’.
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