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Sepsis is a life threatening condition mediated by systemic infection, but also triggered by hemorrhage and trauma. These are 
significant causes of organ injury implicated in morbidity and mortality, as well as post-sepsis complications associated with 
dysfunction of innate and adaptive immunity. The role of cellular bioenergetics and loss of metabolic plasticity of immune cells 
is increasingly emerging in the pathogenesis of sepsis. This review describes mitochondrial biology and metabolic alterations of 
immune cells due to sepsis, as well as indicates plausible therapeutic opportunities.  
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Introduction

Sepsis, the leading cause of death among critically ill patients, 

is a syndrome characterized by initial exaggerated systemic in-

flammatory response to infection or trauma followed by rela-

tively prompt immune dysfunction. In acutely ill patients, a ro-

bust inflammatory response to severe sepsis is typically linked 

with multiple organ dysfunction syndrome (MODS), whereas 

septic shock is in addition associated with hypotension that 

does not respond to fluid resuscitation and vasopressors [1, 2]. 

The mortality rates are from 25 to 30% for severe sepsis and up 

to 30-40% in shock [3, 4]. Importantly, while early diagnosis 

and antibiotic therapy improved survival, post-sepsis compli-

cations have devastating impact. In particular, cognitive im-

pairment, physical disabilities and frailty link to susceptibility 

to injury and infections, as well as poor recovery are associated 

with high mortality among sepsis survivors [5].  

Organ dysfunction from sepsis is traditionally attributable to 

the effects of inflammatory mediators and tissue hypoxia and 

cell damage [6-8]. Organ injury is especially detrimental in 

lung and kidney, where regenerative capacity is limited. Sur-

prisingly, several studies have found a substantial discordance 

between histological analysis and the degree of organ failure in 

patients who died from sepsis [9-11]. Little or no apoptosis or 

necrosis was found and in many cases tissue oxygen delivery 

was preserved [9]. Notably, most clinical trials revealed little or 

no effects of the anti-inflammatory therapy [12, 13]. Low effi-

cacy of anti-inflammatory drugs raises many questions about 
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duration of tested therapies, pre-existing conditions and ap-

parently multifactorial causes of sepsis.  However, it is suggest-

ed that despite of oxygen bioavailability sepsis has a profound 

impact on cellular metabolism along with impairment of mito-

chondrial function [14, 15]. In particular, a reduced cellular 

respiration, also termed “cell hibernation” or “cytopathic hy-

poxia”, may be initially linked to cells survival, but afterward 

can trigger to multi-organ failure in sepsis [16, 17]. The concept 

was developed by early studies that found abnormal swollen 

mitochondria in animal model of sepsis [18]. Subsequently, it 

has become apparent that sepsis is characterized by a reduced 

function of the mitochondrial respiratory chain and accompa-

nied by free radical generation and bioenergetic reprograming 

toward glycolytic metabolism [19, 20]. 

Sepsis has a tremendous impact on the immune system by 

affecting leukocytes pro-inflammatory activity, microbial erad-

ication, viability and proliferation [21, 22]. In the initial phase 

of infection or trauma, immune response encounters hyperin-

flammation. This event is associated by excessive accumula-

tion of inflammatory cytokines and damage associated molec-

ular pattern proteins (DAMPs) in tissue fluids and plasma [23, 

24]. The cytokine storm is also described as systemic inflam-

matory response syndrome (SIRS), that characterized an ex-

cessive release of inflammatory cytokines, including interleu-

kin (IL) 1 and 17 and tumor necrosis factor alpha (TNF-α) [25]. 

However, initial leukocyte activation is leading to immune 

dysfunction and development of immunosuppression [26]. 

Critically ill patients often progress to immunosuppression 

within a few hours of sepsis diagnosis followed by increased 

susceptibility to lung infection persisting for several days or 

weeks. In addition to high risk of nosocomial infections, septic 

patients developing chronic critical illness for greater than 14 

days progress to persistent inflammation, immunosuppression 

and catabolism syndrome (PICS). These conditions are associ-

ated by following ~20-40% mortality rate by the 2-year mark 

[27, 28]. It is important to note that over 2.5 million survivors of 

severe sepsis, septic shock, and PICS are at risk of lung infec-

tion and death [28].

Recent advances in clinical and experimental sepsis provided 

a wide range of discoveries related to immunometabolism and 

bioenergetics. However, despite economic and social burden of 

sepsis, therapeutic interventions are limited, mostly to early ad-

ministration of antibiotics and fluids resuscitation.  An effective 

treatment for critically ill patients or to improve quality of life 

among sepsis survivors is crucially needed. In this review, we 

highlight metabolic alterations in immune and organ tissue ho-

meostasis, and indicate emerging therapeutic opportunities. 

Mitochondrial function and alignment with 
glucose oxidative metabolism

Mitochondrial bioenergetics consist oxidative phosphoryla-

tion (OxPhos) integrated with the glycolytic pathway of the 

Krebs cycle (Fig. 1). Glucose enters the cellular milieu through 

the glucose transporter 1 (Glut1) followed by conversion to py-

ruvate that is mediated by series of enzymatic steps, including 

glucose phosphorylation to glucose-6-phosphate (G-6-P) fol-

lowed by conversion to pyruvate, reducing NAD+ to NADH and 

generating two ATP molecules. Following its transportation 

into the mitochondria through converted into acetyl-CoA, py-

ruvate is further oxidized to CO2 via the Krebs cycle to generate 

NADH that is oxidized via the OxPhos. In particular, mitochon-

drial electron transfer chain (ETC) complexes are essential for 

generation of mitochondrial membrane potential and proton 

gradient that is further utilized for production of ATP at the 

complex V (ATP synthase). In addition to the breakdown of 

glucose via glycolysis, cells have the ability to metabolize other 

substrates, such as lipids and glutamine, which feed into the 

Krebs cycle and drive OxPhos. Fatty acid β-oxidation and glu-

Figure 1. Integration of metabolic pathways. Glucose is metabolized to 
pyruvate through the glycolysis. Pyruvate (and fatty acids) enters the mi-
tochondria where they are converted to acetyl-CoA. This enters the Krebs 
cycle that donates electrons to electron transport chain. Through OxPhos, 
electrons are sequentially transferred to generate a H+ gradient across the 
inner mitochondrial membrane, which drives the synthesis ATP. In addition 
to the glycolysis, cells have the ability to metabolize alternative substrates, 
such as lipids and glutamine. FAO and glutaminolysis replenish the Krebs 
cycle intermediates acetyl-CoA and α-ketoglutarate, respectively, thereby 
fueling OxPhos. PPP generates riboses for nucleotides synthesis.
PPP, pentose phosphate pathway; OxPhos, oxidative phosphorylation; FAO, fatty 
acid β-oxidation; ADP, adenosine diphosphate; ATP, adenosine triphosphate; ETC, 
electron transport chain. 
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taminolysis replenish the Krebs cycle intermediates ace-

tyl-CoA and α-ketoglutarate, respectively, thereby fueling oxi-

dative phosphorylation. Of note, during inflammation and/or 

reduced oxygen, ATP production is derived by breakdown of 

glucose due to glycolysis and pyruvate being routed toward 

lactate instead acetyl-CoA. In sepsis, this situation is associated 

with increased amounts of tissue localized and in systemic lac-

tate, though impaired lactate clearance is also a contributing 

factor [29, 30].  

Mitochondrial dysfunction correlates with 
sepsis-related multi-organ failure

Along with bioenergetics, mitochondria are involved in sev-

eral crucial functions that include program cell death pathway, 

calcium flux and redox signaling [31-34]. The exact reason for 

mitochondrial dysfunction during sepsis is not well under-

stood. However, inflammatory molecules such as nitric oxide 

(NO), carbon monoxide, and reactive oxygen/nitrogen species 

directly impair several components of the mitochondrial ETC 

complexes and mitochondrial respiration [16, 35, 36].  Addi-

tionally, lower metabolic rates in sepsis have been associated 

with decreased the amounts of mitochondrial DNA and ex-

pression of major components of ETC complexes [37]. This is 

significant issue because mitochondrial DNA code nearly 

eighty percent of mitochondrial protein. Besides decreased 

amounts of major components in mitochondrial respiratory 

chain complexes and ATP synthase, recent studies have shown 

diminished pyruvate dehydrogenase expression in sepsis and 

ARDS [38-40]. It is important to note that pre-existing factors 

contribute to the severity of sepsis, including cigarette smok-

ing, environmental exposure to toxins, metabolic syndrome of 

diabetes and obesity and aging [41-43]. 

Clinical analysis of sepsis by Dr. Mervyn Singer laboratory 

has shown that the extent of mitochondrial impairment in 

lungs was correlated with mortality rate. In particular, sep-

sis-associated mortality is significant in patients that develop 

acute respiratory distress syndrome (ARDS) [44, 45]. Patients 

who died from severe sepsis had decreased muscle ATP con-

tent while higher levels of ATP were seen in survivors [45]. Or-

gan dysfunction and clinical illness were accompanied by de-

creases in metabolic rate and mitochondrial mass [37]. 

However, recovery of metabolic activity and organ function is 

possible, and were strongly regulated by expression of markers 

of mitochondrial biogenesis such as PRARgamma-coactiva-

tor-1a (PGC-1a), nuclear respiratory factors 1 and 2 (NRF-1 

and -2), and via repression of the biogenesis suppressor nucle-

ar receptor interacting protein-140 (RIP140) [37, 46-48]. More-

over, most recent pre-clinical studies, and our results, indicated 

that not only preservation, but also mitochondrial biogenesis 

is an essential step in reestablishing immune or tissue organ 

homeostasis during recovery from sepsis [49-51].  

Metabolic control of immune cell homeostasis 
and pro-inflammatory activation

Severe infections, trauma and hemorrhage are initially asso-

ciated with hyperinflammatory state, which frequently leads to 

immunoparalysis. This situation is implicated in nosocomial 

infections (high risk of hospital-related infections), and com-

munity acquired pneumonia [26, 52]. Recently, it has become 

apparent that these events are correlated with specific meta-

bolic and bioenergetic alterations in immune cells [53, 54]. 

Many immune cells lose their bioenergetic plasticity due to 

glycolytic and anabolic metabolism. Leukocytes from patients 

with severe sepsis show deficient cellular metabolism that 

were associated with a defective response to secondary stimu-

lation. Notably, recent studies suggest that both glycolysis and 

OxPhos are impaired in monocytes of post-septic immuno-

suppressed patients [55, 56]. 

1. Neutrophils 

Neutrophils are most abundant leukocytes in circulation. 

Along with macrophages,  they are a first line of innate im-

mune response during microbial infections in traumatic injury 

[57]. Mitochondria were relatively recently described in neu-

trophils. They have relatively low density and negligible oxygen 

consumption rate [58]. Indeed, neutrophil pro-inflammatory 

action is predominantly supported via an extensive glucose 

utilization [59]. Activated neutrophils also synthesize NADPH, 

an essential cofactor for the NADPH oxidase 2 (NOX2) func-

tion specifically directed to generation of the superoxide and 

subsequently hydrogen peroxide (H2O2) (Fig. 2) [60, 61]. Be-

sides glycolysis, neutrophil bioenergetics is also partially sup-

ported by the pentose phosphate pathway (PPP) of glycolysis 

and glutaminolysis. Activation of Hypoxia-inducible factor-1α 

(HIF-1α) and the mammalian target of rapamycin (mTOR) are 

major metabolic signaling components that control neutrophil 

glycolytic phenotype [62, 63]. For example, HIF-1α activates 

the Glut 1 and also control the expression of a number of anti-

microbial factors in neutrophils, including granule proteases, 
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antimicrobial peptides, NO, and TNF-α [64, 65]. When innate 

immune cells are deficient in myeloid-specific HIF-1α, mice 

are not protected against Staphylococcus aureus sepsis, indi-

cating that this HIF-1α pathway and glycolytic flux are integral 

for septic immune responses [24, 66]. 

Interestingly, while mitochondria have little or negligible im-

pacts to neutrophil bioenergetics, recent studies indicate that 

proximal localization of mitochondria in the leading edge is 

crucial for optimal chemotaxis [67-69]. In particular, dissipa-

tion of mitochondrial membrane potential, a situation found 

upon exposure to bacterial product LPS, nearly completely di-

minished neutrophils chemotaxis [50, 70]. This is relevant issue 

because host-generated inflammatory mediators and bacterial 

products are present in circulation of individuals with estab-

lished sepsis.  These mediators effectively prevent neutrophil 

chemotactic response and cause random adhesion to epitheli-

um, and thereby cause vascular injury (Fig. 3) [71]. Previous 

studies have indicated that mitochondrial membrane depolar-

ization also reduced neutrophil respiratory burst. Although 

this issue is directly linked to inability to kill bacteria, mecha-

nistic insights remain to be determined [51, 72]. It is important 

to note, ROS produced by respiratory burst, likely mitochon-

drial source, or simple exposure to extracellular hydrogen per-

oxide bolus have a significant impact on neutrophil pro-in-

flammatory function.  Apparently, H2O2 is indispensable for an 

effective microbial eradication, but it is also preventing and/

or promoting neutrophil transition from pro-inflammatory to 

anti-inflammatory phenotype that linked to bacterial killing 

(Fig. 3) [73, 74]. Collectively, these new findings clearly indicate 

that mitochondria play a crucial role in neutrophil biology.

2. Macrophages and dendritic cell

In the presence of pathogens or trauma and ischemia, mac-

rophages rapidly switch from a resting state to a highly active 

pro-inflammatory state. This is associated with increased cyto-

kines, chemokines and production of other host defense fac-

tors that enhanced phagocytosis, and later on antigen presen-

tation. TLR4-LPS engagement is associated with acquisition of 

pro-inflammatory phenotype, which often called classical 

(M1) macrophages [75]. M1 macrophages have a high micro-

bicidal activity and are characterized by production of pro-in-

flammatory cytokines and ROS. Similar to neutrophils, HIF-1α 

is a primary regulator of glycolytic metabolism in M1-polar-

Figure 2. Neutrophils anti-microbial action is linked to bioenergetics. NA-
DPH, which is required for production of ROS, is generated in PPP branch 
of glycolysis or from the oxidation of glutamine derived malate to pyruvate. 
In this manner, the biochemical pathways of glycolysis and glutaminolysis 
provide the microbicidal activity to activated neutrophil. 
PPP, pentose phosphate pathway; ADP, adenosine diphosphate; ATP, adenosine 
triphosphate; ROS, reactive oxygen species; MPO myeloperoxidase; NOX2, NA-
DPH oxidase 2; HOCI, hypochlorous acid.

Figure 3. Mitochondria plays a crucial role in regulating neutrophil func-
tion. (A) Mitochondrial function in the leading edge supports neutrophil 
chemotaxis. In infection site, LPS-TLR4 engagement indices mitochondrial 
depolarization and subsequent inhibition of neutrophil motility and promote 
pro-inflammatory action. Pro-bactericidal effects are activated by NADPH 
oxidase activation. Notably, H2O2 is important to bacterial killing and 
promote neutrophil transition from pro-inflammatory to anti-inflammatory 
phenotype. (B) Severe sepsis and shock is characterized by accumulation 
of bacterial products and DAMPs in circulation. LPS inhibits neutrophil 
chemotaxis and promote pro-inflammatory activation flowed by random 
adhesion to endothelial cells. Neutrophils extravasation and activation is 
implicated in tissue injury. 
ATP, adenosine triphosphate; TLR, Toll-like receptor; LPS, lipopolysaccharide; NA-
DPH, nicotinamide adenine dinucleotide phosphate; DAMPs, damage associated 
molecular pattern proteins.
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ized macrophages. Another important regulator of macro-

phage activation is carbohydrate kinase-like protein (CARKL) 

which is typically reduced in M1 [76]. In turn, CARKL expres-

sion promotes exit toward M2 phenotype, in which the induc-

tion of pro-inflammatory cytokines is greatly diminished [75]. 

This phenotype can be directly elicited by stimulation macro-

phages with IL-4 and IL-13. M2-polarized macrophages also 

participate in host defense, including neutralization of para-

sites, infections and stimulate tissue repair by production of 

anti-inflammatory cytokines and phagocytosis of dying cells 

[75, 77]. Indeed, poor transition from M1 to M2 phenotype has 

detrimental impact on recovery from organ injury.  For exam-

ple, it has been shown that deficiency of AMP-activated pro-

tein kinase (AMPK) is directly implicated in impaired M1-

to-M2 transition and disrupted clearance of apoptotic cells 

during the resolution phase [78-81].    

M1 and M2 activation are characterized by a distinct meta-

bolic profile that differs from resting macrophages (M0) [82]. 

In particular, M1 macrophages have high rates of glucose and 

glutamine uptake and lactic acid production with little or no 

flux through OxPhos [83, 84]. In activated macrophages, Ox-

Phos is inactivated following the inducible form of nitric oxide 

synthase (iNOS) dependent NO production; NO competes 

with oxygen to inhibit the terminal electron acceptor (complex 

IV) of mitochondrial electron transport chain [85, 86]. Our re-

cent studies indicate that preservation of major components of 

mitochondrial complexes is possible in a polymicrobial in-

tra-abdominal model of sepsis [50, 87]. For example, met-

formin is major metabolic AMPK activator that promoted mi-

tochondrial biogenesis and thus, decreased the severity of 

endotoxin induced acute lung injury [50]. Notably, MAPK ki-

nase 3 inhibition effectively preserve mitochondrial function 

on lung of mice subjected to endotoxin injury [88]. These find-

ing suggest that preservation/restoration of mitochondrial 

function was essential for immune recovery from sepsis. Inter-

estingly, an increment in mitochondrial ROS production is re-

quired for normal macrophage bactericidal activity [89]. In re-

gards to the metabolic phenotype, M2 macrophages had 

higher rates of fatty-acid oxidation (FAO), mitochondrial bio-

genesis [56]. Compared to HIF-1α dependent glycolytic metab-

olism of M1 macrophages, equation of M2 phenotype is asso-

ciated with FAO and oxidative metabolism. These are mediated 

by at least in part by activation of STAT6 [56] that promotes ex-

pression of genes involved in FAO and OxPhos due to mito-

chondrial biogenesis mediated by peroxisome-proliferator-ac-

tivated receptor-γ co-activator-1β (PGC-1β) [56]. Moreover, 

expression of peroxisome proliferator-activated receptor 

(PPAR) is increased in M2 macrophages, and this supports the 

view that PPAR are important transcription factor that drive 

transition to the M2 phenotype [90].

Similarly to macrophages, dendritic cells (DC) oxidize glu-

cose in the mitochondria through OxPhos and in response to 

TLR agonists. They also activate the metabolic switch for gly-

colytic metabolism during pro-inflammatory activation [84]. 

An initial increase in glycolysis occurs within minutes of DC 

activation. Over the course of 18 hours, activated DC sustains 

elevated glycolysis along with loss of OxPhos. This metabolic 

shift appeared to have a substantial impact in regulating 

DC-induced T cell responses [91].

Although above paragraph summarized major characteris-

tics of M1 and M2 phenotypes, it is important to note that sev-

eral intermediate or phenotypic deviations are likely implicat-

ed in pathophysiological conditions. For example, M1-deriven 

pro-inflammatory response is implicated in inflammatory or-

gan injury, at least in a murine model of sepsis. In turn, a sub-

sequent transition to M2 may contribute to immunosuppres-

sion. This raises a question whether these adverse effects are 

mediated by bioenergetic adaptations. However, a plausible 

explanation may be derived from two recent studies that sug-

gest dysfunction of both oxidative phosphorylation and glycol-

ysis occurred in immunosuppressed monocytes [55, 56]. An-

other intriguing question is how macrophage M2 polarization 

accelerates resolution from organ injury, but it may also pro-

mote adverse fibrogenic remodeling. Indeed, these areas of re-

search have recently revealed that several intermediate pheno-

types of macrophages are possible [92, 93]. However, current 

models provide unclear explanation how bioenergetics profile 

of immune cells support normal resolving conditions, but also 

can promote disease progression. This is likely linked due to 

local tissue environment. Further studies are needed to delin-

eate if bioenergetic profiles of M2 macrophages is different in 

M2 participating in essential normal wound healing vs. M2 as-

sociated with pathological fibrosis. Similar concerns are relat-

ed to participation of M2 phenotype in resolution of inflam-

matory conditions, though is also suggested to elicit the 

immunosuppressive effects.    

3. T cells 

A hallmark of a successful immune response is the genera-

tion of memory T cells which are antigen-specific and can be 

rapidly activated to respond quickly to pathogen [94]. Indeed, 

production of regulatory T cell (Treg) contributes to T-cell in-

activation and increase severity and mortality in experimental 
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sepsis and post sepsis complications [95, 96]. T cells differ 

from innate cells in two important functions. First, they prolif-

erate extensively and rapidly upon antigen specific activation. 

Secondly, after completion of the immune response, a subset 

of lymphocytes generates a long-lived, antigen-specific mem-

ory cells that mediate protection against reinfection [61, 94]. 

As expected, the metabolic profile of these each distinct sub-

set of lymphocytes are different depend on their bioenergetics 

demands.  In particular, naïve T cell relies on glucose oxida-

tion through OxPhos  [97-100]. This bioenergetic profile is sig-

nificantly altered when naïve T cells are stimulated through 

antigen or cytokine receptor-dependent mechanism.  Stimu-

lated cell undergoes rapid growth, proliferation, and acquisi-

tion of specialized effector functions. These events are sup-

ported by enhanced glycolysis and glutaminolysis [101]. For 

example, CD28 stimulation is linked to PI3K/Akt –dependent 

increases in the abundance of Glut1 on T cell membrane sur-

face [101]. This not only enhances the uptake of glucose by ac-

tivated T cells but also promotes a switch from OxPhos to gly-

colytic metabolism via mammalian target of rapamycin 

(mTOR) [94, 101]. CD3, specific T cell receptor, also stimulate 

proliferation and strong dependence on extracellular gluta-

mine [102]. In this study, Wang et al. observed that stimulation 

of resting T cells increases glycolytic flux through PPP, and 

glutaminolysis, while suppressing oxidation of pyruvate and 

fatty acids. Subsequent study revealed that although HIF-1α 

and Myc are rapidly induced upon T cell activation, Myc is 

primarily required for glycolysis, glutaminolysis, and T cell 

proliferation [103]. It is well-defined that following activation 

and proliferation, T cells differentiate into T helper (Th) 1, Th2, 

Th17, or Treg subsets.  Activated T helper cells use glycolysis 

to support their effector functions [104], whereas Treg cell 

predominantly use OxPhos and mitochondrial FAO for devel-

opment and survival [105]. Memory T cells share many of the 

same characteristics of naïve cell; they are long-lived, relatively 

inert cells with limited biosynthetic demands. Although both 

naïve and memory T cells are dependable on oxidative metab-

olism, memory T cells are metabolically unique because mem-

ory T cells are quiescent but positioned to respond rapidly. 

Memory T cells predominantly use FAO to generate acetyl-CoA 

to fuel OxPhos [106, 107]. 

Metabolic pathways can influence not only activation of T 

cells, but also the development of various T helper subsets. The 

transitions of T cells from naïve to activation and back to 

memory formation are highly dependent on and regulated by 

cellular metabolism in response to environmental signals. 

Extension of metabolic profile to diagnose 
outcome of sepsis

Lactate is an established marker of bioenergetic alterations 

in predictor of mortality in sepsis. However, recent studies in-

dicate that patents with prior use of metformin have shown 

nearly 30% increase survival despite high level of lactate [108]. 

Notably, while lactate is among well-established predictors of 

sepsis, recent clinical trials have shown that decrease in lac-

tate production had no effects on sepsis survival [109, 110]. 

Clinical studies also suggest that lactate clearance may not be 

used as a surrogate marker of microcirculatory blood flow 

[111]. Several groups have performed broader metabolic pro-

filing in sepsis to test whether incorporation of multiple me-

tabolites could serve as prognostic indicators in sepsis, includ-

ing identification of citrate, malate, glycerol, carnitine, sucrose, 

mannose, methionine, arginine and other metabolites [112-

114]. Further metabolomic studies provide potentially valu-

able diagnostic markers to more accurately predict outcome 

in septic patients [113, 115]. In particular, analysis on plasma 

samples for FAO, gluconeogenesis, and the Krebs cycle be-

tween revealed a defect in FAO in non-survivors [113]. Apart 

from the direct role of metabolites in insuring the cellular en-

ergy resources, metabolites have an underestimated their role 

in signaling pathways and regulation of gene expression [115]. 

The interaction between metabolic pathways and the epigen-

etic profile of the cells plays an important role in the inflam-

matory phenotypes of immune cells during sepsis [115]. One 

of the most extensively described is the deacetylase enzymes 

SIRT1 in sepsis. TLR4 signaling results in SIRT1 binding to NF-

κB to decrease NF-κB dependent transcription of pro-inflam-

matory cytokine [116].

Given the mitochondrial bioenergetics dysfunction and 

mortality rate in sepsis [16, 17], main metabolic switch AMPK, 

mTOR, HIF-1α and other regulator of glycolysis are among im-

portant therapeutic targets. For example, recovery of AMPK 

activity reduced the severity of sepsis and lung injury. AMPK 

also improved bacterial eradication in mouse model of perito-

nitis or intra-abdominal bacterial sepsis [70, 117, 118]. In part, 

AMPK activation reduced cytokine production, inhibited 

DAMPs release such as HMGB1 release [119]. Of note, AMPK 

also reduced immunosuppression through diminishment of 

HIF-1α and preservation of sensitivity of macrophages second-

ary challenge with LPS, thus reduced their immunosuppres-

sive phenotype [50, 117, 120, 121]. In turn, Cheng et al. have 

shown that HIF-1α is important for preservation immune cell 

function when oxygen level is limited [66]. Notably, AMPK ac-
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tivator AICAR used in this study has substantial off-site effects 

related to adverse impact on immune chemotaxis, similar to 

AMP, GMP and other nucleotides [66]. Moreover, recent study 

uncovered that specific mechanism(s) are responsible for in-

activation of AMPK activity during sepsis and in immunosup-

pressed monocytes. Therefore, typical AMPK activators may 

provide optimal effects as recently observed in mouse fungal 

infection model [55]. Notably, targeting glycolytic pathway, in-

cluding pyruvate kinase M2 (PKM2) effectively reduced the 

severity of sepsis [122, 123]. Although this is exciting and 

promising area of research, it is not clear whether prior recov-

ery of mitochondrial function is required for benefits mediated 

by reduced glycolytic flux toward restoration of immune ho-

meostasis. 

Conclusions

Severe sepsis and septic shock induce profound metabolic 

alterations and loss of bioenergetic plasticity in immune sys-

tem. The pro-inflammatory phase and subsequent develop-

ment of immunosuppression appear to have deficiency in mi-

tochondrial bioenergetics of immune and parenchymal cells. 

Thus, pharmacological interventions that improve mitochon-

drial biogenesis and quality control are likely relevant for sep-

sis and other inflammatory conditions related to loss of bioen-

ergetic and metabolic plasticity. 
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