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Genome-wide association studies the evaluation of association between candidate gene and disease status is
widely carried out using Cochran-Armitage trend test. However, only a small number of research papers have
evaluated the distribution of p-values for the Cochran-Armitage trend test. In this paper, an enhanced version
of Cochran-Armitage trend test based on bootstrap approach is introduced. The achieved results confirm that
the distribution of p-values of the proposed approach fits better to the uniform distribution, and it is thus con-
cluded that the proposed method, which needs less assumptions in comparison with the conventional method,
can be successfully used to test the genetic association.

© 2016 Elsevier B.V. All rights reserved.
Keywords:
Bootstrap method
Monte Carlo simulation
Chi-squared test
Contingency table
Genetic association
p-values
1. Introduction

A central goal of genomewide association studies (GWAS) is to iden-
tify genetic risk factors for complex disorders. In order to find the
disease genetic risk factors in a population, GWAS measures DNA
sequence variations across human genome (Bush and Moore, 2012).
Practitioners inmedical sciences and bioinformatics useGWAS to inves-
tigate the relations in different disorders; GWAS of different cancers
(Easton and Eeles, 2008), GWAS of pancreatic cancer (Amundadottir
et al., 2009). The idea of genetic variations with alleles that are common
in the population may explain much of the heritability of common dis-
eases, see (Reich and Lander, 2001) and (Schork et al., 2009). Review of
GWAS can be found in several texts and papers, see (Moore et al., 2010)
among others.

In the simplest form of association mapping, a set of markers are
genotyped in both sample of cases and sample of unrelated controls
and then using different association tests, allele frequency differences
or genotype frequency differences at each marker will be studied
(Pritchard and Donnelly, 2001). The main idea behind GWAS studies
relies on the fact that if a mutation has positive correlationwith suscep-
tibility of a disease, then that mutation is expected to be more frequent
among affected individuals than those unaffected individuals (Pritchard
and Donnelly, 2001). Hence, considering the existence of linkage
disequilibrium (LD) between the marker locus and the susceptibility
mutation, the marker close to the disease mutation may also present
a frequency difference between case and control group of study
(Pritchard and Donnelly, 2001).

Case-control traits can be analysed using either logistic regression or
contingency table techniques (Bush and Moore, 2012). Contingency
tablemethods examine the deviation from independence that is expect-
ed under the null hypothesis of observing no association between the
disease under study and the measured allelic/genotyping frequency
differences (Bush and Moore, 2012). Pearson chi-squared test and the
related Fisher's exact test are the most widely used tests for indepen-
dence of the rows and columns of the contingency table (Bush and
Moore, 2012).

It should be noted that the association tests are performed separate-
ly for each individual marker and depending on the aim of study, the
data for each marker with minor allele a and major allele A can be rep-
resented either as genotype count (e.g., a/a, A/a and A/A) or allele count
(e.g., a and A) (Clarke et al., 2011). It is widely believed that the allelic
association test with 1 degrees of freedom (df) is more reliable than
the genotypic test with 2 df. However, it is imperative to note that this
superior performance can only be considered for the case of having
the penetrance of the heterozygote genotype between the penetrance
of the two homozygote genotypes (Clarke et al., 2011).When the distri-
bution of genotypes in the population deviates from Hardy-Weinberg
proportions (HWE), of which additive, dominant and recessive models
are all examples (Clarke et al., 2011), the frequency of genotypes rather
than alleles should be compared by the Cochran-Armitage test for trend
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Table 1
Genotype counts distribution for the case-control studies.

w0=0 w1=1 w2=2 Total

Case n0 n1 n2 n
Control m0 m1 m2 m
Total N0 N1 N2 N
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(Sasieni, 1997). For more information on different models see (Clarke
et al., 2011).

Thus, the advantage of the Cochran-Armitage trend test in compari-
son to Pearson's Chi-Square test is that it possesses the superior
conservation and is not dependent on the HWE assumption (Sasieni,
1997). Therefore a number of authors have recommended to use the
Cochran-Armitage trend test as the genotype-based test for association
(Sasieni, 1997; Corcoran et al., 2000; Li, 2008; Risch and Merikangas,
1996; Risch, 2000). It should also be noted that the allelic and trend sta-
tistic are equivalent when the combined sample is in HWE (Sasieni,
1997).

However, a major drawback of model basedmethods is that the sta-
tistical properties depend on the choice of weights. Thus, the model
miss-specifications minimize the power of the test (Sasieni, 1997;
Corcoran et al., 2000; Li, 2008; Risch and Merikangas, 1996; Risch,
2000). Furthermore, Escott-Price et al. (2013) showed that, although
in most scenarios the Cochran-Armitage trend test is more powerful
than the chi-squared test of genotype counts, the advantage is not
substantial. Even, when the disease locus is extremely biased from the
additive model, the chi-squared test of genotype counts can be more
powerful than the Cochran-Armitage trend test due to the choice of
scores for each genotype in the trend test (Escott-Price et al., 2013).

Although, there are considerable studies about the advantages and
disadvantages of Cochran-Armitage trend test, to the best of our knowl-
edge, there is a small number of researches which evaluated the distri-
bution of p-values for this association test. In this paper the distribution
of the p-values derived by the Cochran-Armitage trend test has been
studied and it has been shown that unlike the considered presumption
those p-values obtained by this test are not uniformly distributed. To
overcome this issue, we introduce a new method, based on the boot-
strap technique, for computing the p-value of the Cochran-Armitage
trend test.

The bootstrapmethod has become a standard tool in statistical anal-
ysis and is an indispensable tool for testing statistical hypotheses. Using
resampling, bootstrap approximates the sampling distribution of a sta-
tistic under the null (or the alternative) hypothesis. Bootstrap provides
a practical complement to asymptotic parametric inference, hence have
attracted many attentions in the applied. The efficiency of the nonpara-
metric bootstrap method has also been shown by Amiri and von Rosen
(2011) in which for example in the case of the Pearson chi-squared
statistic with a Yates' correction and Fisher's exact test, remarkable im-
provement has been achieved. The Pearson chi-squared statistic with a
Yates' correction and Fisher's exact test, are quite conservative and fail
to reject the null hypothesis and can not be recommended to test
independence with small sample sizes.

The remainder of this paper is organized as follows. The concept of
Cochran-Armitage trend test is explained in Section 2. Section 3 studies
the alternative approach to draw the inference including the bootstrap
version of Cochran-Armitage trend test. Section 4 investigates the pro-
posed method using the Monte Carlo simulation, which show they are
the accurate tests in terms of the significant level and statistical
power. Section 4 also demonstrates the improvements in goodness-of-
fitness achieved by the introduced bootstrap approach. The paper
concludes with a concise summary in Section 5.
Table 2
Frequency table.

score

w0 w1 … wJ−1 total
n0 n1 … nJ−1 n
m0 m1 … mJ−1 m
N0 N1 … NJ−1 N
2. Cochran-Armitage trend test

The Cochran-Armitage's trend test is a widely used test for trend
among binomial proportions which uses the genotype contingency
table (Table 1) in a different manner than Pearson's test. Power is very
often improved as long as the probability of having disease increases
with the number of disease-associated alleles. In genetic association
studies in which the underlying genetic model is unknown, the additive
version of this test is most commonly used. In order to measure the
effect of genotype i and to detect particular types of association, we
introduce a weight wi. The special choice (w0,w1,w2)=(0,1,2), repre-
sents the additive effect of allele A. (See Table 2.)

Let us consider a single-marker locuswith twopossible alleleswhich
are commonly denoted by A and a. Thus, each individual has three
possible genotypes AA ,Aa, and aa. In the following we denote the two
alleles by 0 and 1 instead of A and a and the genotypes by 0 ,1 ,2, the
sum of the two allele indices involved. We assume a random sample
of n cases and m unrelated controls. The case-control data can then be
summarized according to genotypes as shown in Table 1.

Here, (n0 ,n1 ,n2) are counts of the genotypes in cases and
(m0 ,m1 ,m2) are counts of the genotypes in controls, and (N0 ,N1 ,N2)
are counts of the genotypes in case-control samples. Let n and m be
the total number of cases and controls, respectively, and the total sam-
ple size, N=n+m. As cases and controls are independently sampled
the genotype counts for cases and controls follow independentmultino-
mial distributions with parameters (p0 ,p1 ,p2), and (p0′ ,p1′ ,p2′), respec-
tively, where pi and pi′, i=0,1,2, are the genotype probabilities in cases
and controls.

n0;n1;n2ð Þ : Multi n;p0;p1;p2ð Þ;

m0;m1;m2ð Þ : Multi m;p00; p
0
1; p

0
2

� �
:

Under the null hypothesis of no association, H0:pi=pi′ for i=0,1,2.
The Cochran-Armitage's trend test statistic for the data in Table 1 is
given by

T ¼ N N n1 þ 2n2ð Þ−n N1 þ 2N2ð Þð Þ2

n N−nð Þ N N1 þ 4N2ð Þ− N1 þ 2N2ð Þ2
� � : ð1Þ

The statistic in Eq. (1) follows the chi-square distribution with one
degree of freedom (df), see (Armitage, 1955). Let us denote the
Cochran-Armitage trend test as CA in the rest of work.

Agresti (2007) states CA in terms of the Pearson chi-squared statis-
tic. Consider a contingency table 2× J with ordered column, see
Table 1. Let nj~bin(Nj,pj), j=0,… , J−1, it is of interest to test the
following null hypothesis

H0 : p0 ¼ p1 ¼ … ¼ pJ−1;
H1 : pi≠pj; ∃i≠ j:

ð2Þ

It can be carried out by using a linear probability model

pj ¼ α þ βwj: ð3Þ
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One can use the ordinary least square approach for testingβ. Letw ¼
∑Njwj=N, ~pj ¼ nj=Nj and p̂ ¼ n=N. The prediction equation is

p̂ j ¼ p̂þ β̂ wi−wð Þ;

where

β̂ ¼
X

Nj ~pj−p̂
� �

wj−w
� �

X
Nj wj−w

� �2 :

Using the Pearson chi-squared statistics

X2 ¼
X

j

N j ~pj−p̂
� �2

p̂ 1−p̂ð Þ ¼ Z2 þ X2 Lð Þ � χ2
J−1; ð4Þ

Where

Z2 ¼
cβ2

p̂ 1−p̂ð Þ∑j
N j wj−w

� �2
;

X2 Lð Þ ¼ 1
p̂ 1−p̂ð Þ∑j

N j p� j−p̂ j

� �2
;

under linear probability model X2(L)~χJ−2
2 that using the application of

Cochran's theorem, Z2~χ1
2. It can be used to test H0:β=0 for the linear

trend, the test of independence using Z2 is called the Cochran-Armitage
(CA) trend test.

3. Bootstrap Cochran-Armitag trend test

The bootstrap method has brought a vast new body of statistics in
the form of nonparametric approaches to model uncertainty, in which
not only the individual parameters of the probability distribution, but
also the entire distribution are sought (Amiri, 2013). This has led to a
versatile tool for data analysis, in particular in the field of statistical hy-
pothesis tests. Two monographs on the bootstrap method written by
Efron and Tibshirani (1994) and Davison and Hinkley (1997) are very
useful in this regard in that they focus more on applications than on
the theoretical approach. The idea of the bootstrapmethod is to approx-
imate the sampling distribution of the proposed statistic, and this tech-
nique is based on resampling,which provides a practical complement to
asymptotic parametric methods. The flexibility and robustness of this
technique, especially in situations where the violation of assumptions
is being dealt with, can be counted as two advantages of the technique
(Good, 2013).
Fig. 1. The Q-Q plot of the p-value for
Amiri and von Rosen (2011) use the bootstrap to carry out the test of
the contingency table. In order to test the association using the boot-
strap method, the resampling should be performed on Eij, where it is
held for the expected value in the (i, j)th cell. The principle of the
bootstrap test is the performance of bootstrap resampling under the
null hypothesis, which is explained in (Efron and Tibshirani, 1994)
and (Davison and Hinkley, 1997). The null hypothesis of the lack of
the association in the contingency table is H0 :pij=pi.p.j, it leads to
H0 :Eij=Oi.O.j/O.., and therefore resampling under the null hypothesis
is resampling on Eij rather than Oij, where Oij is held for the observed
value. The dot in the subscription denotes summation. Let X2⁎ be
the resampled that is done under null hypothesis and has χJ−1

2 ,
since X2⁎=Z2⁎+X2⁎(L), Z2⁎ has χ1

2 and can be used to test H0 :p0=
p1=…=pJ−1.

3.1. First approach: NBCA

The test can be done using the following steps,

1. Calculate T or Z2.
2. Resample data under Eij, and obtain the contingency table N⁎=

{n0⁎,… ,nJ−1⁎,m0⁎,… ,mJ−1⁎}, where N� � MultiðN; E00N ;…;
E2ð J−1Þ

N Þ.
3. Repeat the second step B times, and calculate Tb⁎ or Zb2⁎, b=1,… ,B.
4. Estimate p-value using

p−value ¼ # T�
bNT

� �
B

:

Let us denote the above approach as NBCA.

3.2. Second approach: PBCA

Another approach is to consider a parametric bootstrap. To this end,
consider each allele or column are produced from the independent pdf.
Under the null hypothesis

f p nð Þ ¼ ∏
J−1

j¼0

Nj
nj

� 	
pn j 1−pð ÞN j−n j ; ð5Þ

that is actually a product of four binomial pdf. In order to estimate p,
themaximum likelihood estimation (MLE) of it can be used i.e., p̂ ¼ n

N.
The procedure of the test is the same as below, just in the step 3,

the resampled contingency tables are generated using f p̂ðnÞ ¼

∏
J−1

j¼0

Nj
nj

� 	
p̂n j ð1−p̂ÞN j−n j . The test referred to as PBCA in the rest

of work.
the proposed tests, n=m=50.



Fig. 2. Violin plot of the simulated p-value for the proposed tests when null hypothesis is
not correct.
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4. Numerical studies

This section demonstrates the validity of the proposed methods for
the inference of Cochran-Armitage trend test. In order to study thefinite
sample properties of the proposed approaches, Monte Carlo experi-
ments are used. The proposed methods are simultaneously based on
the same simulated data in order to provide a meaningful comparison
of various algorithms. In total 5000 simulations were performed. In
order to make a comparative evaluation of the procedures, we seek
the certain desirable features such as the actual significance level.

In order to produce the simulation, the data is generated using
(n0,n1,n2):Multi(n,(0.2,0.4,0.2)) and (m0,m1,m2):Multi(m,(0.2,0.4,0.2)).
The Q-Q plot of the p-value of the proposed tests are given in Fig. 1,
Fig. 3. Q-Q-plots of random nu

Fig. 4. The Q-Q plot of in terms of the expe
which shows that the p-value using the bootstrap tests fit better to
the uniform distribution, that admits the bootstrap can be nominated
to draw the inference.

Racine and Mackinnon (2007) suggest

p−value ¼ # T�
bNT

� �
Bþ 1

þ U
Bþ 1

; ð6Þ

where U:Unif(0,1). Under null hypothesis, P(p−valuebα)=α for any
finite B, specially if the number of bootstrap is not large.

The simulated data are generated using (n0,n1,n2) :
Multi(n, (0.2,0.4,0.2)) and (m0,m1,m2) :Multi(m, (0.4,0.2,0.2)). The
Violin plot of the simulated power is given in Fig. 2. The Violin plot is
a combination of a box plot and a kernel density plot; it starts with a
box plot, and then adds a rotated kernel density plot to each side of
box plot that provides a better indication of the shape of distribution
and summary of data.

Fig. 3 illustrates the Q-Q plot of generated random number of size
100,000 from χ1

2. The results confirm that the statistic with distribution
χ1
2 suffer from the lack of goodness-of-fitness in the right tail. This fact is

also quite evident for Cochran-Armiatage trend test.
In order to study the efficiency the proposed approaches, we

generate 2000 tables with (n0,n1,n2) :Multi(n, (0.2,0.4,0.2)) and
(m0,m1,m2) :Multi(m, (0.2,0.4,0.2)), where n=m=20. The Q-Q plot
from χ1

2 and the bootstrap approach is given in Fig. 4, where clearly
confirms the superior of the proposed approaches. Note also that both
proposed bootstrap approaches perform similarly here.

5. Conclusion

This article explores the genetic association study for the case-
control design that draw the inference of the equality of the genotype
frequencies. GWAS represent important challenges and opportunities
in bioinformatics as they enable modeling of complex genotype-
phenotype relationships using the mathematical and statistical ap-
proaches. Such models aids us to understand and interpret genetic
mber generated from χ1
2.

cted values from χ1
2 and the bootstrap.
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association studies and promotes the development of powerful algo-
rithms to examine genotype-phenotype relationships.

In this paper, we explored the Cochran-Armitage trend test and
its bootstrap versions. It was shown that the proposed bootstrap
can be used to test the genetic association. The results confirm that
the p-value of the proposed approaches fits better to the uniform distri-
bution, specially on the right side. Another advantage of the proposed
tests require less assumption in comparison with the conventional
method. The results also support that the proposed approaches can be
successfully employed to test the genetic association. Extending the
proposed idea in this paper to obtain a better test that is more robust
under choosing weights for the Cochran-Armitage trend test is our
future research plan.
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