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Type II nodal line states have novel properties, such as direction-reliant chiral anomalies

and high anisotropic negative magneto-resistance. These type II nodal line states have

been widely investigated. Compared to nodal line materials, there are far fewer proposed

nodal surface materials, and furthermore, a very recent challenge is to find a realistic

material that co-exhibits both nodal line and nodal surface states. In this manuscript,

we present the study of the electronic and topological states of pure zirconium within

the density functional theory. We found that pure Zr is an interesting material that rarely

exhibits both the type II nodal line state (in kz = 0 plane) and nodal surface state (in kz

= π plane). The nontrivial topological states are explained based on the orbital-resolved

band structures. Our study shows that pure Zr can serve as a new platform to investigate

the interplay between the nodal line state and the nodal surface state.
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INTRODUCTION

Topological semimetals and topological metals (Fang et al., 2016; Yan and Felser, 2017; Schoop
et al., 2018; Zhou et al., 2018; Gao et al., 2019; Hu et al., 2019; Klemenz et al., 2019; Pham et al., 2019;
Xie et al., 2019; Yi et al., 2019) have been widely investigated because they can be regarded as good
candidates for use in the areas of spintronics and quantum computers. Weyl and Dirac materials
(Ouyang et al., 2016; Zhong et al., 2016; Zhou et al., 2016; Liu et al., 2017; Fu et al., 2018; Meng
et al., 2019, 2020a; Zhang et al., 2020), which host 2-fold and fourfold degenerate band-crossing
points, have been explored in real materials and their exotic properties have been confirmed in
experiments. Moving forward, a series of three-dimensionmaterials, with 1D and 2D band crossing
points, have been predicted to be nodal line semimetals/metals (Phillips and Aji, 2014; Gan et al.,
2017; Jin et al., 2017, 2019, 2020; Lu et al., 2017; Yang et al., 2017; Chen et al., 2018; Gao et al., 2018;
Liu et al., 2018) and nodal surface semimetals/metals (Wu et al., 2018; Zhang et al., 2018; Wang
et al., 2020), respectively.

Moreover, topological semimetals/metals can also be classified by the tilting degree of the
fermion cone. Hence,Weyl materials can be roughly divided into twomain categories, namely, type
I Weyl semimetals/metals (Osterhoudt et al., 2019) where the two bands have opposite velocities
and type II Weyl materials (Soluyanov et al., 2015; Ma et al., 2019) where the two bands have the
same velocity. Type II Weyl materials are expected to exhibit many interesting features (Koepernik
et al., 2016; Yu et al., 2016; Sharma et al., 2017), such as signals in magneto-oscillations, anisotropic
chiral anomalies, and an unusual magneto-response.

Besides the two types of Weyl materials, a third type exists, named hybrid Weyl materials
(Alisultanov, 2018), in which one Weyl point is type I while the other one is type II. Similar to
Weyl materials, nodal line materials are composed of numerous band crossing points and they can
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FIGURE 1 | (A) Primitive cell and (B) the bulk Brillouin zone of pure Zr.

FIGURE 2 | Band structure of pure Zr via the GGA-PBE method. A series of

band crossing points can be found near the Fermi level, and these band

crossing points are divided into two regions (i.e., region A1 and region A2).

also be classified as type I, type II, and hybrid types on the basis
of the band dispersion around the band crossing points.

Nodal surface materials have been proposed in some 3D
materials with different families, such as the Ti3Al family (Zhang
et al., 2018), BaVS3 family (Liang et al., 2016), and HfIr3B4
(Wang et al., 2020). The predicted nodal surface materials are
far fewer, compared to nodal line and nodal point materials.
What is more, up to now, there has been no experimental
verification of nodal surface materials. Noted that the nodal
surface properties can be predicted among magnetic materials
due to the bands for each spin channel can be effectively seen as
a spinless system with a chosen spin polarization axis. Therefore,
nodal surface materials can be seen as good candidates for using
in spintronic.

In this manuscript, we aim to present a first-principle study
of the electronic structures and the topological signatures of
a new metal (i.e., pure Zr) co-featuring the type II nodal line
state and the nodal surface state. Importantly, P63/mmc Zr is
a realistic material and its experimental lattice constants are a
= b = 3.232 Å; c = 5.147 Å, respectively (Wyckoff, 1963). Our
results provide a realistic material platform for exploring the

fundamental physics of type II nodal line and nodal surface states,
and their hybridization.

COMPUTATIONAL DETAILS

We performed this study by the following main steps: (i)
We investigated the most stable configuration by volume
optimization and calculation of lattice parameters for
P63/mmc Zr, (ii) We computed band structures, including
the 2D band structure along Γ -M-K-Γ -A-L-H-A high-
symmetry points and the orbital-resolved band structures.
These two investigations were completed with the Vienna
ab initio Simulation Package (Sun et al., 2003). Volume
optimizations and lattice parameter estimations were carried
out with the generalized gradient approximation (GGA)
(Perdew et al., 1996) of the Perdew–Burke–Ernzerhof
(PBE) functional (Perdew et al., 1998). The cutoff energy
was set as 600 eV. The Brillouin zone was sampled by a
Monkhorst–Pack k-mesh with a size of 11 × 11 × 6. The
self-consistent field convergence for the total energy and
the force variation were set as 1 × 10−6 eV and 0.00001
eV·Å−1, respectively.

Experimentally, Zr is a realistic material and it naturally
shares a hexagonal phase, with 194 space group numbers,
a P63/mmc space group, and a series of ICSDs (such as
653524, 653525, 653528, 653529)1. The crystal structure of Zr
was fully relaxed before the band-structure calculation. The
crystal model as well as the atomic positions were determined
and are shown in Figure 1A. From this, one can see that
this crystal model contains two Zr atoms; one located at the
(0.6666, 0.3333, 0.75) position, and the other located at the
(0.3333, 0.6666, 0.25) position. The achieved optimized lattice
constants are a = b = 3.234 Å; c = 5.161 Å, respectively,
which are in good agreement with the experimental ones
(Wyckoff, 1963). The calculated electronic density of states
of Zr is shown in Figure S1, the metallic properties of Zr
can be observed due to a large peak appears around the
Fermi level.

1Available online at: https://materialsproject.org/materials/mp-131/
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FIGURE 3 | Enlarged band structures of pure Zr via the GGA-PBE method along Γ -M (A,C) and M-K (B,D) paths, respectively. The band structures calculated in

(A–D) do not have spin–orbit coupling (have spin–orbit coupling).

FIGURE 4 | The shape of the nodal line at the kz = 0 plane. The Γ -centered nodal line is marked as a white line.
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RESULTS AND DISCUSSION

We first consider the electronic band structure of pure Zr in the
absence of spin-orbit coupling. The GGA-PBE result for the band
structure along Γ -M-K-Γ -A-L-H-A high-symmetry points (see
Figure 1B) is exhibited in Figure 2. From this figure, one can see
the metallic behavior of this material with some obvious band
crossing points. These band crossing points are formed by the
overlapping between band 1 (labeled as 1) and band 2 (labeled as
2). These two bands belong to the irreducible representations A1

and B2 of the C2v symmetry. Furthermore, these band crossing
points are mainly located at two regions, named as A1 and A2,
respectively. In Figure S2, the band structure of Zr metal under

experimental lattice constants is also computed via GGAmethod
and one can see that these band-crossing points are still retained.

In the A1 region, two band crossing points (i.e., P and Q)
can be found along the Γ -M and M-K paths, respectively. All
of these band crossing points are located quite close to the
Fermi level. Because the pure Zr system enjoys spatial inversion
and time reversal symmetries, the P and Q band crossing
points belong to a nodal line instead of isolated points (Jin
et al., 2019). Moreover, the Γ -M and M-K paths are situated
in the mirror-invariant plane kz = 0, which can protect a
nodal line.

The enlarged band structures (in the absence of spin-orbital
coupling) around P and Q band crossing points are given in

FIGURE 5 | Band structures of pure Zr via the GGA-PBE method along A-L-H-A paths. The band structures calculated in (A,B) are without spin–orbit coupling (with

spin–orbit coupling).

FIGURE 6 | Band structures of pure Zr via the GGA-PBE method along A-M-L-R paths. The insert figure is selected k-paths at the kz = π plane.

Frontiers in Chemistry | www.frontiersin.org 4 September 2020 | Volume 8 | Article 585753

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zhang and Wang Pure Zirconium

Figures 3A,B, respectively. Around these band crossing points,
the band structures host a large linear energy region (see
Figures 3A,B). Based on the slopes of the involved bands in
crystal momentum space around the band crossing points P and
Q, one can see that they belong to type II. To determine whether

P and Q band crossing points are isolated nodal points or belong
to a nodal line, the shape of the nodal line at the kz = 0 plane is
exhibited in Figure 4. From this figure, a Γ -centered nodal line
(highlighted by the white line) can be obviously observed at the
kz = 0 plane.

FIGURE 7 | Orbital resolved band structures of pure Zr via the GGA-PBE method along A-M-L-R paths. (A–E) are for Zr-dxy, Zr-dyz, Zr-dxz, Zr-, Zr- orbitals,

respectively.
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One should note that the nodal line state is protected by
two independent mechanisms for Zr system: one is the spatial
inversion and the time reversal symmetries; the other one is
mirror symmetry Mz , because the two crossing bands have
opposite mirror eigenvalues. Therefore, the nodal line state in
the Zr system is robust because Zr hosts two kinds of symmetry-
protected mechanisms. That is, if we break only one kind of
symmetry protection, the nodal line state will be retained. The
same symmetry protection mechanism has also been reported
in previous work, such as TiB2 with the type I nodal line state
(Zhang et al., 2017).

The SOC effect was also taken into consideration in the
Zr system in region A1, and the calculated band structures
around P and Q band crossing points are given in Figures 3C,D,
respectively. From these figures, one can see that the SOC-
induced gaps around P andQ are∼17 and∼27meV, respectively.
We noted that these opened gaps around the band crossing points
are indeed small and these values of Zr are smaller than the values
of some previously proposed nodal line materials (Meng et al.,
2020b), such as Cu3NPd (60–100 meV), CaAgBi (80–140 meV),
BaSn2 (60–160 meV).

The band structure of pure Zr along A-L-H-A paths is
given without SOC in Figure 5A. In region A2, there are two
bands linearly crossing at the A point, and they then become
degenerate in plane kz = π forming a nodal surface. The nodal
surface state is essential because it can be indicated by symmetry
(i.e., the non-symmorphic S2z and the time reversal symmetries
T). Consider the twofold screw rotation S2z in pure Zr, S2z
(x,y,z)→(-x,-y,z+1/2). In the kz = π plane, each k point is
invariant under S2zT. Because (S2zT)2 = T001 = on plane kz =π,
the bands on this plane have a Kramer-like degeneracy. A nodal
surface can be also understood as a result of Kramer degeneracy.

To further confirm the nodal surface state in the kz = π plane,
the band structure along the A-M-L-R paths (see the insert figure
in Figure 6) is given in Figure 6. From it, one can see that the two
bands are also degenerated with each other in this plane, which
results in a nodal surface state in plane kz = π . The effect of spin–
orbit coupling (SOC) on the electronic structure is examined and
the results of band structure along A-L-H-A (with SOC) are given
in Figure 5B. The values of the SOC-induced gaps along A-L-H-
A directions are up to 61 meV. The gaps in Zr are smaller than
those in some topological materials (Meng et al., 2020b), such as
Cu3NPd (60–100 meV), and BaSn2 (60–160 meV).

Finally, the orbital-resolved band structures of Zr-dxy, Zr-
dyz, Zr-dxz, Zr-dx2−y2 , Zr-dz2 orbitals are given in Figure 7. One
can see that band 1 (see Figure 2) is mainly coming from the
hybridization between the Zr-dyz and Zr-dxz orbitals. However,
band 2 forms the hybridization among Zr-dxy, Zr-dx2−y2 , Zr-dz2
orbitals. In the A1 region, as shown in Figure 7, the band crossing
point P is mainly coming from Zr-dxz and Zr-dxy orbitals,
however, the band crossing point Q is mainly arising from the
Zr-dyz and Zr-dx2−y2 orbitals. In region A2, the band crossing

points of the surface states (kz = π plane) are dominated by the
Zr-dz2 orbital, however, the contribution of other orbitals of Zr
atom cannot be ignored.

CONCLUSIONS

In conclusion, based on symmetry analysis and first-principle
calculations, we have shown a realistic material, pure Zr, which
features a type II nodal line state at the kz = 0 plane and a nodal
surface state at the kz = π plane when the SOC effect is ignored.
The nodal line state at the kz = 0 plane is protected by the spatial
inversion, time reversal, and horizontal mirror symmetries. The
nodal surface state at the kz = π plane is protected by the screw
rotation and time reversal symmetries. The effect of SOC on the
topological nodal line and nodal surface states was tested and the
SOC-induced band gaps for both A1 and A2 regions were found
to be smaller than 61 meV.

The orbital-resolved band structures of Zr-dxy, Zr-dyz, Zr-dxz,
Zr-dx2−y2 , Zr-dz2 orbitals for the pure Zr system were exhibited.
In region A1, the point P is mainly coming from Zr-dxz and
Zr-dxy orbitals, however, the point Q is mainly arising from the
Zr-dyz and Zr-dx2−y2 orbitals. In region A2, the surface states (kz
= π plane) are dominated by the Zr-dz2 orbital, however, the
contribution of other orbitals of the Zr atom cannot be ignored.
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