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Abstract

Although mutations drive the evolutionary process, the rates at which the

mutations occur are themselves subject to evolutionary forces. Our purpose

here is to understand the role of selection and random genetic drift in the evo-

lution of mutation rates, and we address this question in asexual populations at

mutation-selection equilibrium neglecting selective sweeps. Using a multitype

branching process, we calculate the fixation probability of a rare nonmutator in

a large asexual population of mutators and find that a nonmutator is more

likely to fix when the deleterious mutation rate of the mutator population is

high. Compensatory mutations in the mutator population are found to decrease

the fixation probability of a nonmutator when the selection coefficient is large.

But, surprisingly, the fixation probability changes nonmonotonically with

increasing compensatory mutation rate when the selection is mild. Using these

results for the fixation probability and a drift-barrier argument, we find a novel

relationship between the mutation rates and the population size. We also

discuss the time to fix the nonmutator in an adapted population of asexual

mutators, and compare our results with experiments.

Introduction

Because most mutations are deleterious, the mutation rate

can not be too high; in fact, in an infinitely large popula-

tion, for a broad class of fitness functions, an error thresh-

old has been shown to exist above which the deleterious

effects of mutation cannot be compensated by selection

(Eigen 1971; Jain and Krug 2007). The mutation rate is not

zero either (Baer et al. 2007), and it has been argued that

the stochastic fluctuations in a finite population limit the

evolution of mutation rates below a certain level since in

small enough populations, the advantage gained by

lowering the mutation rate cannot compensate the effect of

random genetic drift (Lynch 2010). Empirical data for

organisms with widely different effective population size

show a negative correlation between the deleterious muta-

tion rate and the population size (Sung et al. 2012), and

some quantitative insight into this relationship has been

obtained by treating all deleterious mutations to be lethal

(Lynch 2011). However, this is clearly an extreme scenario,

and it is important to ask how the deleterious mutation

rate evolves when mutations are only weakly deleterious.

Many theoretical and experimental investigations have

also shown that in an adapting asexual population, a

mutator allele causing a higher mutation rate than that of

the nonmutator can get fixed [see a recent review by

Raynes and Sniegowski (2014)]. As the mutators produce

not only deleterious but also beneficial mutations at a

higher rate than the nonmutators, the mutator allele can

hitchhike to fixation with favorable mutations (Smith and

Haigh 1974; Taddei et al. 1997). However, once the

population has reached a high fitness level, high mutation

rates are detrimental because most mutations will now be

deleterious, and in such a situation, the mutation rate is

expected to decrease (Liberman and Feldman 1986).

Indeed, in some experiments (Tr€obner and Piechocki

1984; Notley-McRobb et al. 2002; McDonald et al. 2012;

Turrientes et al. 2013; Wielgoss et al. 2013), the mutation
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rate of an adapted population carrying a mutator allele

has been seen to decrease and the time to fixation has

been measured, but a theoretical understanding of this

time scale is missing.

To address the issues discussed above, we study the fate

of a rare nonmutator in a large asexual population of

mutators using a multitype branching process (Patwa and

Wahl 2008). An important difference between the

previous works on mutator hitchhiking (Taddei et al.

1997; Andre and Godelle 2006; Wylie et al. 2009; Desai

and Fisher 2011) and our study is that here the mutator

population is assumed to be at mutation-selection equi-

librium and is therefore not under positive selection.

However, compensatory mutations that alleviate the effect

of deleterious mutations are included in our model. We

find that when only deleterious mutations are present, a

nonmutator can get fixed with a probability that increases

with the deleterious mutation rate of the mutator.

Compensatory mutations in the mutator population are

expected to decrease the fixation probability of the non-

mutator, and we find that this intuition is indeed correct

when deleterious mutations in the mutator are effectively

lethal. But, surprisingly, when the deleterious mutations

are mildly harmful, the fixation probability is found to

initially increase and then decrease as the rate of compen-

satory mutations increases. Our study thus identifies the

conditions under which the spread of nonmutators is

suppressed in the absence of positive selection, and com-

plements earlier works in which a mutator hitchhikes

with beneficial mutations to fixation (Taddei et al. 1997;

Andre and Godelle 2006; Wylie et al. 2009; Desai and

Fisher 2011).

Using our results for the fixation probability and a

drift-barrier argument which states that the advantage

offered by a decrease in the deleterious mutation rate is

limited by random genetic drift in a finite population

(Lynch 2010), we find that the deleterious mutation rate

decreases with increasing population size in accordance

with experimental data (Sung et al. 2012). However,

unlike previous theoretical work that treats the deleterious

mutations to be effectively lethal (Lynch 2011), here we

consider both strongly and weakly deleterious mutations,

and not only reproduce the result in Lynch (2011), but

also find a new scaling law in the latter case. We also use

the results for the fixation probability to find the time to

lower the mutation rate in an adapted population of

mutators and compare our theoretical results with recent

experiments (McDonald et al. 2012; Wielgoss et al. 2013).

Model and Methods

We consider an asexual population in which the fitness of

an individual with k deleterious mutations is given by

WðkÞ ¼ ð1� sÞk, where the selection coefficient 0 < s < 1.

A deleterious mutation is allowed to occur at a rate Ud

and a beneficial one at a rate Ub\Ud. We are interested

in the fate of a nonmutator that arises in this population

and whose total mutation rate is smaller than that of the

mutator. In a sufficiently large population of mutators in

which stochastic fluctuations due to genetic drift may be

ignored, this can be addressed using a branching process

(Patwa and Wahl 2008), as described below.

The fixation probability p(k, t) of a single copy of a

nonmutator allele with fitness W(k) present at generation

t changes according to (Johnson and Barton 2002)

1� pðk; tÞ ¼ exp �WðkÞ
WðtÞ

X
k0

Mðk ! k0Þpðk0; t þ 1Þ
" #

;

(1)

where WðtÞ ¼ P1
k¼0 WðkÞpðk; tÞ is the average fitness of

the mutator population and p(k, t) is the mutator fre-

quency. The above equation expresses the fact that a sin-

gle copy of the rare allele in the fitness class k whose

offspring distribution is Poisson with mean W(k)/W(t)

will be lost eventually if each of its offspring, which may

undergo mutations with probability M(k?k0), do not

survive. Here we consider strong mutators whose muta-

tion rate is much higher than that of the nonmutator

(Sniegowski et al. 1997; Oliver et al. 2000) and therefore

neglect the mutation rate of the latter in most of the

following discussion (however, see Fig. 1). We also

assume that the mutator population is at mutation-
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Figure 1. Dependence of the fixation probability obtained using a

multitype branching process on the deleterious mutation rate Ud for

two values of the selection coefficient s and compensatory mutation

rate Ub ¼ 0. The points are obtained by numerically solving (2) when

the mutation rate of the nonmutator is zero (s,□), and the stationary

state solution of (1) when the nonmutator’s mutation rate is 50 times

lower than that of the mutator (+, 9). The lines show the analytical

result (6).

756 ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Evolution of Mutation Rates A. James & K. Jain



selection equilibrium as is likely to be the case in large

populations that have been evolving for a long time in a

constant environment. As a result, the probability p(k, t)
becomes time-independent. These considerations lead

to a relatively simpler, but still highly nonlinear

equation given by

1� pðkÞ ¼ exp �WðkÞpðkÞ
W

� �
: (2)

The above expression, of course, reduces to the well-

known single locus equation (Fisher 1922; Haldane 1927)

when the nonmutator can be present in only one genetic

background, but here we are dealing with a multitype

branching process because a nonmutator can arise in any

fitness class.

The total fixation probability is obtained on summing

over all genetic backgrounds (Johnson and Barton 2002),

ptot ¼
X1
k¼0

pðkÞpðkÞ; (3)

where the probability that a nonmutator arises in a back-

ground of k deleterious mutations is given by the mutator

frequency p(k) in the stationary state.

Although the steady-state frequency p(k) in the absence

of compensatory mutations that mitigate the effect of

deleterious mutations is known exactly (Kimura and Mar-

uyama 1966; Haigh 1978), the corresponding solution

with nonzero Ub is not known. We therefore compute

the mutator frequency numerically for nonzero Ub using

(A1) given in Appendix 1, and use these results in (2) to

find the fixation probability for arbitrary Ub. To make

analytical progress, we use a perturbation theory in which

the effect of the small dimensionless parameter Ub=s can

be studied by expanding the quantities of interest in a

power series in Ub=s, and write

pðkÞ ¼
X1
n¼0

Ub

s

� �n

pnðkÞ; pðkÞ ¼
X1
n¼0

Ub

s

� �n

pnðkÞ: (4)

The terms p0ðkÞ and p0ðkÞ corresponding to n = 0 in

the above expansion give the results in the absence of

compensatory mutations, and in Appendix 1, we calcu-

late the stationary state fraction p(k) to linear order in

Ub=s.

Results

Fixation probability

In the absence of compensatory mutations

We first consider the case when Ub ¼ 0. Taking the loga-

rithm on both sides of (2), and expanding the left hand

side (LHS) up to p20ðkÞ, we find that either p0ðkÞ ¼ 0, or

p0ðkÞ ¼ 2
WðkÞ
W0

� 1

� �
� 2sð�k0 � kÞ; (5)

where the average fitness W0 ¼ e�Ud and the average

number of deleterious mutations �k0 ¼ Ud=s (Kimura and

Maruyama 1966; Haigh 1978). The last expression on the

right hand side (RHS) of (5) is obtained by expanding

the exponentials as the parameters Ud and s are small. As

the fixation probability must not be negative, the expres-

sion (5) is valid when k\b�k0c, and the solution

p0ðkÞ ¼ 0 holds otherwise. Here ⌊x⌋ denotes the largest

integer less than or equal to x. More generally, a nonmu-

tator can get fixed if its fitness WðkÞ � e�sk is larger than

the average fitness e�s�k of the mutator population, or

k\b�kc, �k being the average number of deleterious muta-

tions (Johnson and Barton 2002).

Equation (5) shows that the fixation probability p0ðkÞ
decreases as the number of deleterious mutations increase,

as one would intuitively expect. However, the probability

p0ðkÞ that a nonmutator would arise in a background

with k\�k0 deleterious mutations increases. On summing

over the backgrounds in which a nonmutator can arise,

as explained in Appendix 2, we find that the total fixation

probability falls in two distinct regimes defined by

whether Ud is below or above s:

p0 ¼
Xb�k0c
k¼0

p0ðkÞp0ðkÞ ¼
2Ud;Ud � sffiffiffiffiffiffiffi

2sUd

p

q
;Ud � s:

(
(6)

For �k0 � 1, as a mutation is costly, it can be treated as

effectively lethal (Johnson 1999). In this situation, the

advantage conferred by the nonmutator is simply given by

1� e�Ud � Ud and the classical result for the single locus

problem gives the fixation probability to be 2Ud (Fisher

1922; Haldane 1927). For �k0 � 1, the total fixation proba-

bility apparently receives contribution from �k0 genetic

backgrounds, but merely
ffiffiffiffiffi
�k0

p
genetic backgrounds are

actually relevant because the Poisson-distributed frequency

p0ðkÞ has a substantial weight for fitness classes that lie

within a width
ffiffiffiffiffi
�k0

p
of the mean (also, see Appendix 2).

Equation (6) shows that for fixed s, the nonmutator is

more likely to be fixed when Ud is large. But, for a given

Ud, the fixation probability initially increases with the

selection coefficient and then saturates to 2Ud. In Figure 1,

the analytical results above are compared with those

obtained by numerically iterating (2) and (1) when the

mutation rate of the nonmutator is zero and Ud=50,

respectively, and we see a good agreement in both cases.

Including compensatory mutations

We now study how compensatory mutations in the

mutator population affect the fixation probability of the
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nonmutator. Figure 2 shows that when �k0 � 1, the fixation

probability decreases with Ub, but for �k0 � 1, it changes

nonmonotonically: it first increases and then decreases with

increasing Ub. To understand this behavior, consider the

change dptot ¼ ptot � p0 in the fixation probability due to

compensatory mutations which is simply given by

dptot ¼
Xb�kc
k¼0

p0ðkÞdpðkÞ þ p0ðkÞdpðkÞ þ dpðkÞdpðkÞ: (7)

When Ub is nonzero, the change in the fixation probability

dpðkÞ ¼ pðkÞ � p0ðkÞ and the mutator frequency

dpðkÞ ¼ pðkÞ � p0ðkÞ behave in a qualitatively different

manner. With increasing Ub, the average fitness of the muta-

tor population increases which, by virtue of (2), decreases

the fixation probability of the nonmutator, i.e., dp(k) < 0.

However, as the frequency of individuals with less deleteri-

ous mutations increases when Ub is nonzero, the change in

the mutator fraction dp(k) > 0. Thus, the change in the total

fixation probability given by (7) receives both positive and

negative contributions, and it is not obvious which one of

these factors would have a larger effect.

To address this question, we calculate the fixation

probability for small Ub=s as described below. Substitut-

ing (4) in the expression (7) for dptot, and neglecting

terms of order ðUb=sÞ2 and higher, we find that

dptot � ðUb=sÞp1, where

p1 ¼
Xb�k0c
k¼0

p0ðkÞp1ðkÞ þ p1ðkÞp0ðkÞ: (8)

The contribution p1ðkÞ is calculated in Appendix 3,

and we find that

p1ðkÞ � �2s�k0ð1� p0ðkÞÞ; k\b�k0c; (9)

which is negative, as expected. An expression for the frac-

tion p1ðkÞ is obtained in Appendix 1, and its behavior is

shown in Figure 3 for small and large �k0. For small �k0,

the frequency p0ðkÞ is close to one in the zeroth fitness

class and zero elsewhere. But the correction p1ðkÞ is negli-
gible in all the fitness classes. For large �k0, the contribu-

tion p1ðkÞ is significantly different from zero in many

fitness classes and can be approximated by

p1ðkÞ ¼ �k0p0ðkÞ ln
�k0
k

� �
; k � 1: (10)

Thus, as claimed above, the fraction p1ðkÞ is positive for

k\�k0 and negative for k[�k0 (also, see Fig. 3).

When Ud � s, as already mentioned, the fraction p1ðkÞ
is negligible in all the fitness classes and p0ð0Þ � 1. Using

these results in (8) and (9), we get p1 ¼ �2s�k0, and thus

dptot
p0

¼ �Ub

s
;Ub\Ud\s: (11)

This reduction in the fixation probability of the nonmuta-

tor when Ub is nonzero is expected as the effect of com-

pensatory mutation is to restore the mutators that have

suffered lethal mutation to the zeroth mutation class, thus

enabling them to offer competition to the nonmutators.

When Ud � s, as shown in Appendix 3, we can obtain a

quantitative estimate of the initial increase in dptot by calculat-
ing the sum on the RHS of (8) to obtain (A14), and thence
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dptot
p0

¼ Ub

2s
;Ub\ s\Ud: (12)

Thus, we find that for small Ub, the increase of the

mutator frequency in fitness classes with fewer delete-

rious mutations dominates the increase in the muta-

tor fitness resulting in positive dptot. However, for

large Ub, the net change in the fixation probability is

negative because the last term in the summand of

(7), which is also negative, enters the picture. As the

maximum in dptot occurs at large Ub=s, the perturba-

tion theory described here can not capture the even-

tual decrease in this parameter regime. A quantitative

comparison of the results obtained by numerically

solving (2) and (A1) for arbitrary Ub with the analyt-

ical results (11) and (12) for small Ub=s is shown in

Figure 2, and we observe a good match when Ub=s is

small. For large Ub=s and Ud=s, a fit to the numerical

data shows that the fixation probability decreases lin-

early with Ub.

Evolution of mutation rates in finite
populations

The drift-barrier hypothesis states that in a finite popula-

tion, the beneficial effect of lower deleterious mutation

rate can be outweighed by the stochastic effects of

random genetic drift which limits the evolution of muta-

tion rates (Lynch 2010). In a finite population of size N,

a mutation that decreases the deleterious mutation rate

confers an indirect selective advantage and will spread

through the population. However, as Ud decreases, the

fixation probability of such a mutant decreases until it

reaches its neutral value pneu ¼ 1=N. Here we have

calculated the fixation probability p0 neglecting stochastic

fluctuations. The full fixation probability Π that includes

the neutral and the large population limit may be

obtained as follows.

The fixation time for a mutator in a finite population

of nonmutators when all mutations are deleterious has

been calculated using a diffusion theory by Jain and

Nagar (2013), and shown to increase exponentially with

the population size. The fixation probability � e�2NS is

thus exponentially small in the population size (Kimura

1980; Assaf and Mobilia 2011), where we have identified

the rate of decrease of fixation probability with a selection

coefficient 2S. This effective selection coefficient is found

to match exactly with the result (6) for the fixation prob-

ability p0 obtained here using a branching process.

Although this is not a rigorous proof, these observations

strongly suggest that the fixation probability of a nonmu-

tator in a finite population of size N is of the classical

form (Kimura 1962)

P ¼ 1� e�2S

1� e�2NS
; (13)

where S ¼ p0=2. We also mention that the probability 2S

depends on the difference in the deleterious mutation rate

of the mutator and the nonmutator when the mutation

rate of the nonmutator is nonzero (Jain and Nagar 2013),

and has also been shown to be insensitive to the distribu-

tion of selective effects (Desai and Fisher 2011).

Thus, according to (13), a crossover between positive

selection and neutral regime occurs when p0 �N�1 and

gives a lower bound on the mutation rates. We recall that

the fixation probability p0 in (6) shows a transition when

Ud � s, and at this mutation rate, the fixation probability

p0 � s. This translates into a change in the behavior of Ud

when Ns crosses one, and we have

Ud � ðsN2Þ�1;Ns � 1
N�1;Ns � 1:

�
(14)

Thus, in the weak selection regime (Ns � 1), the dele-

terious mutation rate depends on the selection coefficient

and decreases faster than when the selection is strong.

Figure 4 shows the preliminary results of our numerical

simulations for a finite size population of mutators with

mutation rate Ud in which nonmutators with mutation

rate Ud=2 can arise with a certain probability. This popu-

lation of nonmutators and mutators evolves via standard

Wright-Fisher dynamics, and the time to fix the nonmu-

tators is measured (Jain and Nagar 2013). For a fixed N,

the fixation time is found to increase as the mutation rate

of the mutator is decreased until a minimum mutation
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rate is reached below which the fixation time remains

constant. This lower bound, shown in Figure 4, exhibits

different scaling behavior in the weak and strong selection

regimes, in accordance with (14).

Discussion

Fixation probability

A rare mutator arising in a population of nonmutators

carries a higher load of deleterious mutations but offers

indirect benefit by producing more beneficial mutations.

The fixation probability of a rare mutator in a finite

nonmutator population has been studied by Andre and

Godelle (2006) and Wylie et al. (2009) analytically, and

found to vary nonmonotonically with the mutation rate

of the mutator. It has been shown that the fixation

probability is of the classical form (13) where the effec-

tive selection coefficient S when scaled by the selective

advantage s increases (decreases) when the ratio of

mutation rate to selection coefficient is below (above)

one. Here, we studied a situation in which a nonmutator

appears in a mutator population and is beneficial as it

produces fewer deleterious mutations, and calculated its

fixation probability ptot using a branching process. The

mutator population is assumed to be at mutation-selec-

tion balance, and therefore, by definition, selective

sweeps resulting in the spread of favorable mutations are

neglected. However, it is interesting to note that the

scaled fixation probability of the nonmutator obtained

here also changes its behavior when the deleterious

mutation rate is of the order of the selection coefficient,

see (6). Our work significantly extends the previous

result of Lynch (2011) as the deleterious effect of muta-

tions is allowed to be mild here, and therefore, we are

dealing with a truly multilocus problem.

Compensatory mutations that alleviate the effect of

deleterious mutations are found to have a surprising

effect on the fixation probability of the nonmutator.

Although they improve the fitness of the mutator

population, it also means that the nonmutator can arise

in a better genetic background where it has a better

chance of fixation. Thus, compensatory mutations

affect both the resident mutator population and the

invading nonmutator allele in a positive manner. The

effect of these two factors on the fixation probability of

the nonmutator is, however, opposite and can result

in an unexpected increase in the fixation probability of

the nonmutator when compensatory mutations are pre-

sent. Here we have shown analytically that this scenario

is realized when the mutations are weakly deleterious

and the compensatory mutation rate is small, as

illustrated in Figure 2. The increase in the fixation

probability due to compensatory mutations can be quite

high, but we do not have analytical estimates for this.

An exact solution of (A1) would, of course, pave the

way for a better analytical understanding but is currently

not available.

Fixation time

In a maladapted asexual population, the mutators can

sweep the population as they facilitate rapid adaptation

(Raynes and Sniegowski 2014). But as the population

adapts and the supply of beneficial mutations diminishes,

mutators have a detrimental effect on the population fit-

ness and a mutation that lowers the mutation rate is

favored. In bacteria Escherichia coli, several genes (such as

mut T and mut Y) are involved in avoiding or repairing

the errors that occur during the replication process, and

defects in these genes can lead to the mutator phenotype

(Miller 1996). But compensatory mutations in the defec-

tive error-repair machinery can reduce the mutation rate,

at least, partially (Wielgoss et al. 2013). We therefore

model this situation by assigning a probability b with

which mutators can convert into nonmutators due to a

mutation in the proofreading or error-repair region. In

E. coli, the conversion probability f from nonmutator to

mutators has been estimated to be � 10�6 per bacterium

per generation (Boe et al. 2000). But the probability b for

the reverse mutation is not known, although one expects

b < f, possibly because it is a gain-of-function mutation

(Wielgoss et al. 2013).

When the rate Nb at which the nonmutators are pro-

duced from the mutators is small enough that the new

alleles behave independently, the time taken to fix the

nonmutator population is given by T ¼ ðNbptotÞ�1. In a

long-term evolution experiment on E. coli, Wielgoss et al.

(2013) found the mutation rate to decrease by about a

factor two in a nearly adapted mutator population with a

mutation rate 150 times that of the wild type in two lin-

eages. As the population size in Lenski’s experiments has

been estimated to be about 107 (Wahl et al. 2002), the

product Nb can be at most ten which is not too large.

We first note that in the experiment of Wielgoss et al.

(2013), the fixation time was longer in the lineage in

which the mutation rate decreased by a smaller amount,

in accordance with (6). To make a quantitative compar-

ison, we consider the ratio of the times for the two lin-

eages, as T depends strongly on the probability b which is

not known experimentally. Using the data in Table 2 of

Wielgoss et al. (2013), we find the ratio of fixation time

in mutT mutY-L background to that in mutT mutY-E

background to be 9209/5157�1.8. The theoretical formula

(6), on replacing Ud by the difference between the muta-

tion rate of the nonmutator and mutator, yields 1.5 (1.2)
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when mutations are assumed to be strongly (weakly)

deleterious and the selection coefficient same in both lin-

eages. As (6) is obtained assuming that the mutators are

strong whereas the mutation rates decreased merely by a

factor two in the experiment, a more careful examination

is needed. Solving (1) numerically in the stationary state,

we find that the ratio is unaffected when the mutations

are strongly deleterious. But using the mutation rates in

Table 2 of Wielgoss et al. (2013) and s� 0.01 yield the

ratio to be about 4.5. Although the theoretical conclu-

sions (1.5 � 4.5) are in reasonable agreement with experi-

ments, the above analysis suggests that the reversion

probability b may not be too small (i.e., Nb[� 1), and a

more sophisticated theory that takes care of the interfer-

ence between the nonmutators (Gerrish and Lenski 1998)

may be required to obtain a closer match. We close this

discussion by noting that in an experiment on Saccha-

romyces cerevisiae in which the adapted population

reduced its genomewide mutation rate by almost a factor

four in two of the experimental lines (McDonald et al.

2012), the fixation time seems to increase with the

mutation rate, in contradiction with the experiment of

Wielgoss et al. (2013) and the theory presented here.

Evolution of mutation rates

Experiments show that the mutation rate decays as N�0:7

for prokaryotes and N�0:9 for eukaryotes (Sung et al.

2012). The population size and deleterious mutation rates

are negatively correlated as deleterious mutations can get

fixed in small populations due to stochastic fluctuations,

but not in large populations where the genetic drift is

ineffective (Lynch 2010). Here, we have shown that a

reciprocal relationship between the population size and

mutation rate holds for large populations, but for small

populations, the deleterious mutation rate decreases much

faster, see Figure 4. This is in contrast to experimental

results mentioned above where the data has been fitted

assuming a single scaling law. In view of our theoretical

results discussed above, a more careful analysis of

experimental data is required.

While the evolution of deleterious mutation rate has

received much attention, to the best of our knowledge,

analogous theoretical predictions for the beneficial muta-

tion rate are not available. As large populations experi-

ence clonal interference (Gerrish and Lenski 1998) which

results in the wastage of beneficial mutations, the rate of

beneficial mutations is observed to be smaller in large

populations in microbial experiments (Perfeito et al.

2007). An understanding of the relationship between the

population size and the rate of beneficial mutations

would be an interesting avenue to explore. Other poten-

tial factors that can affect the correlation between the

mutation rate and the population size include epistasis

and recombination. Here, we have also ignored the cost

of fidelity, and it remains to be seen how the results pre-

sented here are affected on including it (Kimura 1967;

Kondrashov 1995; Dawson 1998). A more detailed under-

standing of the mutation rates, both empirically and theo-

retically, remains a goal for the future.
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Appendix 1: Mutator frequency when
compensatory mutations are
included

For small selection coefficient and mutation rates, the

mutator frequency p (k, t) obeys the following continuous

time equations:

@pð0; tÞ
@t

¼ �Udpð0; tÞ þ Ubpð1; tÞ þ s�kpð0; tÞ
@pðk; tÞ

@t
¼ �Upðk; tÞ þ Udpðk� 1; tÞ
þ Ubpðkþ 1; tÞ � sðk� �kðtÞÞpðk; tÞ;

(A1)

where U ¼ Ud þ Ub and �kðtÞ ¼ P1
k¼0 kpðk; tÞ. In the

stationary state, the LHS is zero and the frequencies

are time-independent. On dividing both sides of the

above equations by s, we find that the stationary fre-

quency p(k) depends on the ratios Ub=s and Ud=s. We

first expand the fraction p(k) in a power series about

Ub=s ¼ 0 as
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pðkÞ ¼
X1
n¼0

Ub

s

� �n

pnðkÞ; (A2)

where pnðkÞ is proportional to the nth derivative of p(k)

with respect to Ub=s evaluated at Ub ¼ 0. The lowest

order term p0ðkÞ is the solution of the steady state of

(A1) in the absence of compensatory mutations, and is

known to be a Poisson distribution with mean �k0 ¼ Ud=s

(Haigh 1978):

p0ðkÞ ¼ e�
�k0
�k
k
0

k!
; k ¼ 0; 1; . . . (A3)

To find the solution with nonzero Ub, we first set the

LHS of (A1) equal to zero and substitute (A1) in these

equations. On neglecting the terms of order ðUb=sÞ2 and

higher, we obtain the following equations for p1ðkÞ:
�k1p0ð0Þ ¼ �p0ð1Þ (A4)

�k0p1ðk� 1Þ � kp1ðkÞ þ �k1p0ðkÞ
¼ p0ðkÞ � p0ðkþ 1Þ; k ¼ 1; 2; . . .

(A5)

where �k1 ¼
P1

k¼0 kp1ðkÞ. Equation (18) above immedi-

ately yields �k1 ¼ ��k0. Thus, as expected, the effect of

compensatory mutations is to decrease the deleterious

mutations in a population. Using this result in (A5), after

some simple algebra, we get the following one-term

recursion equation for p1ðkÞ; k� 1:

p1ðkÞ ¼
�k0
k
p1ðk� 1Þ � 1

k
þ

�k0
kþ 1

� �
p0ðkÞ; (A6)

which can be iterated easily to give

p1ðkÞ ¼
�k
k
0

k!
p1ð0Þ � p0ðkÞ �k0ðHkþ1 � 1Þ þHk

� 	
; (A7)

where the harmonic number Hk ¼
Pk

i¼1 i
�1 and the

fraction p1ð0Þ is determined using the normalization con-

dition, viz.
P1

k¼0 pðkÞ ¼ 1. As the fraction p0ðkÞ already

satisfies this condition, we have the constraintP1
k¼0 p1ðkÞ ¼ 0, on using which, p1ð0Þ can be found. For

large k, using Hk � ln k in (A7), we obtain the expression

(10).

Appendix 2: Fixation probability in
the absence of compensatory
mutations

To find the total fixation probability given by (3), we use

the expression (5) for the fixation probability and (A3)

for the mutator fraction p0ðkÞ which is a Poisson

distribution with mean �k0. When �k0 � 1, we have

p0 � p0ð0Þp0ð0Þ ¼ 2Ud. But for �k0 � 1, on summing

over the mutator backgrounds in which a nonmutator

can arise, we obtain the total fixation probability to be

p0 ¼
Xb�k0c
k¼0

p0ðkÞp0ðkÞ ¼ 2s
e�b�k0cb�k0cb�k0cþ1

b�k0c!
: (A8)

On using the Stirling’s formula x! � ffiffiffiffiffiffiffiffi
2px

p ðx=eÞx for

large x in the last expression, we immediately obtain (6).

Another way of seeing the result in the large �k0 regime is

by approximating the Poisson-distributed p0ðkÞ by a

Gaussian with mean and variance equal to �k0 and thus

obtain

p0 � 2s

Z �k0

�k0�
ffiffiffi
�k0

p dkð�k0 � kÞ 1ffiffiffiffiffi
�k0

p e
�ðk��k0Þ2

2�k0

� 2s

ffiffiffiffiffi
�k0

q Z 1

0

dx xe�x2

; (A9)

where we have used the fact that the mutator frequency is

substantial in the fitness classes lying within a distanceffiffiffiffiffi
�k0

p
of the mean.

Appendix 3: Fixation probability
when compensatory mutations are
included

Inserting ptot ¼ p0 þ ðUb=sÞp1 and W ¼ W0 þ ðUb=sÞW1

in (2), and using the exact equation for p0ðkÞ, we get a

rather involved expression for p1ðkÞ given by

p1ðkÞ ¼ �W1

W0

WðkÞp0ðkÞð1� p0ðkÞÞ
W0 �WðkÞð1� p0ðkÞÞ

: (A10)

As all the parameters are smaller than one, we work with

the approximate expression (5) for the probability p0ðkÞ
and arrive at (9).

We now calculate the contribution p1 given by (8)

when �k0 � 1 using the expression (9) for p1ðkÞ and the

frequency p1ðkÞ in (10). We have

p1 ¼ �2s�k0ð1�
X1
k¼b�k0c

p0ðkÞÞ þ 2s
X1
k¼0

ð�k0 � kÞp1ðkÞ

�
X1
k¼b�k0c

p1ðkÞp0ðkÞ (A11)

¼ 2s�k0
X1
k¼b�k0c

p0ðkÞ � 2
X1
k¼b�k0c

ð�k0 � kÞsp1ðkÞ; (A12)

where we have assumed that Ub;Ud; s are small, but Ub=s

and Ud=s are finite. The last expression is obtained on

using the normalization condition
P1

k¼0 p1ðkÞ ¼ 0 and
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the expression for the average �k1. For large �k0, we approx-

imate the Poisson distribution p0ðkÞ by a Gaussian as

p0ðkÞ � 1ffiffiffiffiffiffiffiffiffi
2p�k0

p e
�ðk��k0Þ2

2�k0 1� k� �k0

2�k0
þOð�k�2

0 Þ
� �

: (A13)

Approximating the sums in (A12) by integrals, we

finally have

p1
s
� �k0 �

ffiffiffiffiffi
�k0
2p

s2
4

3
5� 2�k0ffiffiffi

p
p

Z 1

0

dz
e�z2

1þ z
ffiffiffi
2
�k0

q �
ffiffiffiffiffi
�k0
2p

s
(A14)

where we have carried out an integration by parts in the

second integral on the RHS and neglected subleading

terms in �k0.
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