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Abstract: Current therapy directed at delaying the progression of diabetic nephropathy 

includes intensive glycemic and optimal blood pressure control, renin angiotensin-aldosterone 

system blockade and multifactorial intervention. However, the renal protection provided by 

these therapeutic modalities is incomplete. There is a scarcity of studies analysing the 

nephroprotective effect of antihyperglycaemic drugs beyond their glucose lowering effect 

and improved glycaemic control on the prevention and progression of diabetic 

nephropathy. This article analyzes the exisiting data about older and newer drugs as well as 

the mechanisms associated with hypoglycemic drugs, apart from their well known blood 

glucose lowering effect, in the prevention and progression of diabetic nephropathy. Most 

of them have been tested in humans, but with varying degrees of success. Although 

experimental data about most of antihyperglycemic drugs has shown a beneficial effect in 
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kidney parameters, there is a lack of clinical trials that clearly prove these beneficial effects. 

The key question, however, is whether antihyperglycemic drugs are able to improve renal 

end-points beyond their antihyperglycemic effect. Existing experimental data are post hoc 

studies from clinical trials, and supportive of the potential renal-protective role of some of 

them, especially in the cases of dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 

receptor agonists and sodium-glucose cotransporter 2 inhibitors. Dedicated and adequately 

powered renal trials with renal outcomes are neccessary to assess the nephrotection of 

antihyperglycaemic drugs beyond the control of hyperglycaemia. 

Keywords: diabetes mellitus; diabetic nephropathy; diabetic chronic kidney disease; 

albuminuria; nephroprotection; antihyperglycemic drugs; SGLT2 inhibition; albuminuria; 

DDP4 inhibitors; glucagon-like peptide agonists 

 

1. Diabetes Mellitus and Nephroprotection 

Diabetes mellitus (DM) is the leading cause of end stage renal disease in the world. According to 

the latest figures from the International Diabetes Federation, 382 million people live with diabetes 

around the world [1] and approximately one in three of them will eventually develop chronic kidney 

disease [2]. 

Current therapy directed at delaying the progression of diabetic nephropathy includes intensive 

glycemic and optimal blood pressure control, proteinuria and albuminuria reduction, interruption of the 

renin angiotensin-aldosterone system through the use of angiotensin converting enzyme inhibitors  

and angiotensin type-1 receptor blockers, along with dietary modification and cholesterol-lowering 

agents [3], including also multifactorial intervention [4]. However, the renal protection provided by 

these therapeutic modalities is incomplete. 

The exact pathogenesis of diabetic nephropathy (DN) is multifactorial, complex and not completely 

understood. Evidence of that is that an increasing number of studies have indicated that certain diabetic 

patients do not present the same evolution as was then defined: for example, some often have 

significant initial deterioration of glomerular filtration rate whereas, in others, microalbuminuria is 

reduced spontaneously. Chronic kidney disease may be accompanied, rather than preceded, by 

macroalbuminuria, or it may develop in patients with microalbuminuria or even in those with 

albuminuria levels that revert to normal. In fact diabetic kidney disease without proteinuria is 

increasingly recognized [5]. 

The classic term “diabetic nephropathy” has shifted to a new one “diabetic chronic kidney disease” 

(DCKD) [6]. From here onwards, this will be the term used in this article. In the diabetic milieu, 

metabolic derangements and hemodynamic alterations, particularly activation of the renin-angiotensin 

system, triggers a number of cell signalling cascades, which mediate a cellular response through 

activation of key transcription factors. In response to such signals, renal cells such as tubular epithelial 

cells, podocytes, and mesangial cells can produce chemokines, growth factors, and profibrotic 

cytokines. These responses contribute to a cycle of inflammation, oxidative stress, cellular injury, 

progressive fibrosis, and loss of glomerular filtration rate. Podocyte loss, endothelial dysfunction, 
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alterations in the glomerular basal membrane and tubular injury contribute to increasing proteinuria 

during the development and progression of DCKD nephropathy [7]. 

Intensive control of glycemia and of blood pressure are effective in both preventing the onset and 

reducing the progression of albuminuria and DN. Antihypertensive agents differ significantly in their 

albuminuria-lowering capacity despite having similar blood pressure lowering potency.  

Renin-angiotensin-aldosterone system (RAAS) inhibitors have been shown to be more effective than 

other drugs. Multifactorial intervention has also been shown to be effective and intensive treatment has 

demonstrated a 61% reduction in the risk of developing macroalbuminuria and a 55% reduction in the 

cardiovascular composite end point when the intensive treatment group is compared to the 

conventional care group [8]. However, little information is available regarding the ability of  

anti-hyperglycemia agents to lower albuminuria or prevent or slow down the progression of DCKD. 

This article analyzes the exisiting data about older and newer drugs as well as the mechanisms 

associated with hypoglycemic drugs, apart from their well-known blood glucose lowering effect, in the 

prevention and progression of diabetic nephropathy. Most of them have been tested in humans, but 

with varying degrees of success. Although some of them have shown promising results, in most cases 

clinical trials in humans are lacking or have resulted in failure (see summary in Table 1). 

2. Older Hypoglycemic Treatments and Nephroprotection 

2.1. Insulin Treatment and Nephroprotection 

The benefits of intensive glycemic control were not limited to delaying the onset and slowing the 

progression of DCKD but extended to decreasing the incidence of cardiovascular diseases, the main 

cause of mortality in these patients [9]. However, these benefits are related to better blood glucose 

control, and not related to any specific class of hypoglycemic treatment. 

The Diabetes Control and Complications Trial (DCCT) was a milestone in delaying the onset and 

slowing up the progression of DN in patients with type 1 DM [10]. The United Kingdom Prospective 

Diabetes Study (UKPDS) showed that intensive blood glucose control by either sulphonylureas or 

insulin reduced the risk of microvascular complications 22 [11]. And more recent randomized 

controlled studies in patients with type 2 DM have yielded mixed results. The ADVANCE (Action in 

Diabetes and Vascular Disease) [12] trial showed that intensive glycemic control reduced albuminuria, 

nephropathy and the need for dialysis. Likewise, the ACCORD (Action to Control Cardiovascular 

Risk in Diabetes) trial showed significantly lower rates of albuminuria (but not of more advanced 

nephropathy) in the intensive glycemic therapy group [13]. Contrary, the VADT (Veterans Affair 

Diabetic Trial) did not show improvements in either nephropathy or retinopathy with intensive 

glycemic control [14]. 

Pilz  et al. [15] analyzing 1415 healthy, non-diabetic participants demontrated that reduced insulin 

sensitivity, measured by a hyperinsulinemic–euglycemic clamp, is continuously associated with a 

greater risk of increasing albuminuria. However, it remains to be clarified whether insulin resistance and 

albuminuria emerge in parallel as a consequence of a common pathogenic pathway (e.g., endothelial 

dysfunction) or whether insulin resistance is a causal factor for the pathogenesis of albuminuria. The 
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question of whether insulin treatment is associated with improvements in urinary albumin excretion 

independently of blood glucose levels must also be clarified. 

To sum up, intensive glycemic treatment in both type 1 and type 2 DM reduces the risk and 

progression of early DCKD, but no data exists as to the specific nephroprotective properties of insulin 

therapy apart from the benefits derived from blood glucose control. 

2.2. Metformin 

Metformin is a biguanide drug that improves sensitivity to insulin, increases insulin-stimulated 

uptake and utilization of glucose, reduces basal hepatic glucose production, causes weight reduction 

and decreases hunger. It is a well-established drug for the treatment of type 2 DM and there are more 

than 40 million patient years of experience in the past 50 years [16]. Evidence suggests that metformin 

reduces mortality and morbidity in type 2 diabetes patients. It possesses a cardioprotective property 

that is independent of its hypoglycaemic effect, and not presented by sulphonylureas or insulin [17]. 

Additionally, a systematic review of diabetic patients with heart failure has demonstrated that a greater 

reduction in mortality and hospital admissions is associated with metformin than with any of the other 

anti-diabetic drugs [18]. 

In addition to the cardiovascular benefit, some experimental studies have also suggested that 

metformin has nephroprotective properties. Metformin, in rats, reduces vascular dysfunction and 

protects against tubular injury induced by gentamicin [19], by modulating oxidative stress on the 

tubules and restoring biochemical alterations [20,21]. In a diabetic rat model, metformin also protects 

against tubular cell injury induced by glycosuria, and prevents podocyte injury [22]. 

Despite these cardiovascular benefits of metformin and the experimental data about 

nephroprotection, no study has shown any benefit with the use of metformin for renal end points in 

patients with diabetes mellitus. 

2.3. Sulfonylureas 

There is a lack of studies about the renal effects of sulphonylureas on DCKD. Very recently, an 

experimental study has investigated the effect of implanting micro-osmotic pumps containing 

gliquidone into the abdominal cavities of rats with DN [23]. When compared to control or to rats 

treated with insulin, these authors detected that gliquidone treatment effectively reduced urinary 

protein. This reducion in proteinuria is probably related to the findings detected in the animals, such as 

improvement in histological glomerular lesions, promotion of tubular reabsorption and improvement in 

some biomarkers such as protein kinase C, protein kinase A and tubular expression of megalin and 

cubilin. The authors suggested that the beneficial effect may be due to a decreased expression of the 

following receptors: receptors for advanced glycation end products, protein kinase C-β and protein 

kinase A as well as the tubular expression of the albumin reabsorption-associated proteins (megalin 

and cubilin) after gliquidone treatment. 

A great limitation of the study is the fact that administration of gliquidone via a micro-osmotic 

pump probably differs from oral administration in terms of therapeutic efficacy. A higher plasma 

concentration might be obtained with the use of a micro-osmotic pump. If this is the case, the renal 

excretion of gliquidone will be higher and the glomerular and tubular effects might be more apparent. 
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As a result, it may be difficult to control diabetic nephropathy and lower urinary protein through oral 

administration of gliquidone. 

Another study compared the effect of rosiglitazone, metformin, or glyburide in 4351 recently 

diagnosed type 2 diabetic patients followed up over 5 years [24]. Only rosiglitazone decreased both 

albuminuria and diastolic blood pressure. Glyburide had no effect on renal function decline. 

Whether these effects would have translated into microvascular and, perhaps more importantly, 

macrovascular protection is unknown, since the study was not designed to assess these  

long-term outcomes. 

In the Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation 

(ADVANCE) study, a combined approach of routine blood pressure lowering and intensive glucose 

control resulted in substantial reductions in major renal events and all-cause death [25]. The absence of 

interaction between blood pressure lowering and intensive glucose control indicates that the effects of 

these two interventions were independent. However, the study was unable to demonstrate the benefit 

of glicazide on renal events separately from the effects derived from intensive glucose control. 

No other studies have analyzed the effect of sulphonylureas on the development or progression  

of DN. 

2.4. Alpha-Glucosidase Inhibitors 

Alpha-glucosidase inhibitors such as acarbose slow down carbohydrate digestion and primarily 

reduce postprandial hyperglycemia, thereby offering an additional therapeutic approach in the  

long-term treatment of type 2 diabetes. 

Although there have been no reported direct effects on DN associated with acarbose treatment, 

extrapolating data from experimental animal studies suggests that this drug can favourably influence 

cardiovascular risk factors. Acarbose treatment up-regulates glucagon-like peptide-1 (GLP-1) 

production, insulin-like growth factor-I (IGF-I) and modulates fibroblast growth factor [26]. 

Nevertheless, these findings have not been demonstrated in humans. 

An analysis from UKPDS studied 1946 type 2 diabetes mellitus patients comparing acarbose vs. 

placebo. After three years, acarbose significantly improved glycemic control irrespective of 

concomitant therapy for diabetes, with a high percentage of flatulence, 30% vs. 12% reported in the 

placebo group. Urine albumin and insulin sensitivity were not significantly different at any time during 

the study [27]. 

2.5. Metiglinides 

Although two glinides are available, nateglinide and repaglinide, this latter has a more extended use 

and may be prescribed in patients with differing degrees of renal insufficiency since it is mainly 

metabolised by the liver. There is a lack of studies analyzing the effect of glinides on albuminuria or 

the progression of DN. 

In order to analyze the effect on hyperfiltration and nitric oxide bioavailability, nine patients  

newly diagnosed with type 2 DM without microalbuminuria were randomized to a treatment with 

rosiglitazone or nateglinide, each for 12 weeks [28]. Ten healthy controls were used as placebo group. 
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Rosiglitazone ameliorated glomerular hyperfiltration in early type 2 diabetes and improved nitric 

oxide bioavailability. No other renal parameters were analized when nateglinide and rosiglitazone 

were compared. No other studies have tested the effect of glinides on DN. 

2.6. Thiazolidinediones 

Thiazolidinediones are oral antidiabetic compounds that decrease insulin resistance and stimulate 

the peroxisome proliferator-activated receptor (PPAR-γ), a nuclear receptor present in various tissues. 

Apart from improving glycemic control, many background and clinical studies have shown that 

thiazolidinediones have beneficial effects on other components of metabolic syndrome and 

cardiovascular risk factors. Moreover, accumulating evidence suggests that these agents may have 

renal benefits. 

Animal studies show that thiazolidinediones decrease urine protein excretion and prevent 

glomerulosclerosis and tubulointerstitial fibrosis [29,30] and restore podocyte integrity [31]. At the 

same time several systemic and local renal actions of thiazolidinediones observed in experimental 

studies may represent plausible mechanisms for these renoprotective properties [32]. 

A number of human studies have also examined the renal effects of thiazolidinediones on patients 

with diabetes. Some of them reported significant decreases in urine albumin excretion [33–35], 

whereas others did not show a significant effect [36]. Most of these studies have included a small 

number of patients. 

A meta-analysis that includes 15 studies (five with rosiglitazone and 10 with pioglitazone) 

involving 2860 patients showed that treatment with thiazolidinediones significantly decreases urinary 

albumin and protein excretion in patients with diabetes [37]. 

Nevertheless, the discrepancy between the conflicting results in clinical studies could perhaps be 

explained by the fact that the risk of albuminuria among patients with type 2 DM, seems to be 

modulated by, among other factors, the presence of the PPARG-γ2 P12A polymorphism variant. A 

reduced risk of albuminuria is significantly associated with this phenomenon [37,38]. This fact can result 

in a heterogeneous response in urinary albumin excretion after treatment with thiazolidinediones. 

Several mechanisms have been described to explain the association of thiazolidinediones with renal 

benefit including improving insulin sensitivity by inhibiting the release of free fatty acids, inhibition of 

tumor necrosis factor-α, stimulating the production of several insulin-sensitizing adipokines, including 

adiponectin and visfatin [34,35,37,38]. 

The favorable renal effect of thiazolidinediones on type 2 DM is not completely dependent on their 

insulin-sensitizing action. Metformin produces similar glycemic control but has practically no effect 

on urinary albumin excretion [32,38]. 

Finally, it is also worth mentioning that rosiglitazone treatment has been shown to cause severe side 

effects, such as weight gain, fluid retention, and increased cardiovascular risk and it has been 

withdawn from the market [39]. Pioglitazone is associated with a significantly lower cardiovascular 

risk and mortality, but in some cases risk of heart failure is increased [18,40] and other concerns such 

as a slight increased risk of bladder cancer compared to the general population [41]. However, this 

concern has not been confirmed in recent meta-analyses [42]. 
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Despite the possible benefits of thiazolidinediones in delaying the progression of DCKD, it is 

important to determine whether the benefit of using pioglitazone outweighs the risks, especially in 

patients with chronic kidney disease. 

3. New Hypoglycemic Treatments and Nephroprotection 

3.1. Incretin-Based Therapies 

Incretin-based therapies in the treatment of patients with type 2 DM include the orally active 

dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) and the injectable glucagon-like peptide-1 (GLP-1) 

receptor agonists. Both share the same mechanism of action, stimulating insulin secretion and 

inhibiting glucagon secretion. While gliptins act by inhibiting the enzyme that breaks down GLP-1, 

thus increasing the level of GLP-1 in the blood stream, GLP-1 receptor (GLP-1R) agonists act directly 

on the beta cell to stimulate insulin secretion by activating signal transduction when glucose is present. 

When glucose is not present, this receptor no longer couples to stimulate insulin secretion in order  

to prevent hypoglycemia. Active GLP-1 is responsible for glucose-dependent insulin secretion, 

suppression of glucagon secretion and delayed gastric emptying. 

The antidiabetic action of DPP-4 inhibitors is mediated by slowing the degradation of endogenous 

GLP-1. DPP-4 inhibitors are, however, not able to raise the GLP-1 to levels achieved after injection  

of GLP-1R agonists and, therefore, their hypoglycaemic efficacy is less than that of GLP-1R  

agonists [43]. However, DPP-4 inhibitors may have therapeutic benefits that extend beyond glucose 

lowering. Data suggests that GLP-1 has direct renal and cardiac effects, and that the GLP-1R is 

localized in extra-pancreatic tissues, including the kidney and heart. DPP-4 inhibitors block the 

degradation of endogenous GLP-1 and might also influence circulating levels and activity of other 

vasoactive peptides that could act on the kidney [44,45]. 

GLP-1R agonists also have effects beyond glucose control that may be of indirect help for 

nephroprotection: they reduce body weight, induce satiety and influence the gastrointestinal system 

(gut motility, pancreatic exocrine enzyme secretion) and the cardiovascular system (endothelial and 

myocardial function). GLP-1R agonists reduce body weight, whereas DPP-4 inhibitors do not affect 

body weight [46]. In general DPP4 inhibitors ameliorate kidney disease to a lesser extent than do 

GLP1R, by improving weight-related risk factors including body fat content and distribution [46]. 

Evidence from animal and human studies indicates that incretin-based therapies might prevent the 

onset and progression of DCKD, as measured by clinical and histological improvements.  

Incretin-based therapies may positively influence haemodynamic variables (hyperfiltration, glomerular 

capillary hydraulic pressure, and systemic blood pressure), metabolic factors (glycaemia, 

dyslipidaemia, oxidative stress) and inflammatory pathways in the pathogenesis of DCKD [46]. 

In addition, there is some evidence that GLP-1R agonists and DPP-4 inhibitors mediate sodium 

excretion and diuresis to lower blood pressure. The pleiotropic actions of DPP-4 inhibitors are ascribed 

primarily to their effects on GLP-1 signalling, but other substrates of DPP-4, such as brain natriuretic 

peptide and stromal-derived factor-1a, may play other roles [47]. Collectively, these pleiotropic effects 

may reduce the risk of DCKD in patients with type 2 DM [47]. The beneficial effects of incretin-based 
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therapies on renal risk factors in type 2 DM seem to go beyond glucose control and might thereby 

confer renoprotection. 

In the human kidney, expression of GLP-1R mRNA was demonstrated by in situ hybridization, and 

GLP-1R expression was detected using 125I-labelled GLP-1 [48] but the exact cellular location of  

GLP-1R in the kidney, both in humans and animal species, requires further study. 

3.1.1. Dipeptidyl Peptidase-4 Inhibitors 

DPP-4 inhibitors (gliptins) are emerging as second line treatment ahead of sulphonylureas or 

metformin due to a possible beneficial effect on the beta cell and their weight neutrality. They are 

effective, well tolerated and have been shown to be safe in general. All of them, except for linaglitin, 

require dose adjustment based on glomerular filtration rate in order to avoid plasma accumulation and 

side effects. 

The main action of DPP-4 inhibitors is to increase the levels of endogenous incretin hormones, 

especially GLP-1. But DPP-4 inhibitors are also bound to the surface of many cell types including 

kidney proximal tubular cells and endothelial cells [49]. Microvesicle-bound DPP-4 is secreted from 

tubular epithelial cells. It is found in urine and may be an early marker of renal damage before the 

onset of albuminuria [49]. 

3.1.1.1. Experimental Data 

Sun et al. [49] also described higher urinary microvesicle DPP-4 levels in patients with DM 

compared to non-diabetic controls that positively correlated with the extent of albuminuria in patients. 

Upregulation of DPP-4 expression in renal glomeruli occurs during inflammation and usually 

accompanies the development of diabetes-induced glomerulosclerosis [50]. 

Renal effects of DPP-4 inhibitors appear to be, at least in part, mediated by increased GLP-1  

levels [51]. In addition to the pancreas, GLP-1R protein is expressed predominantly in proximal 

tubules [52] and numerous other tissues including glomerular endothelial cells, mesangial cells and 

podocytes. Its expression was decreased in diabetic compared with nondiabetic mice [51]. 

In the kidney, DPP-4 is expressed on the brush border of proximal tubules and glomerular 

podocytes [53]. DPP-4 is also excreted in the urine. 

Preclinical data suggesting the nephroprotective effects of DPP- 4 inhibitors can de attributed to 

sitagliptin [54], vildagliptin [55], and linagliptin [56]. Treatment with DPP-4 inhibitors in diabetic rats 

lowered glycemia and ameliorated glomerular, tubulointerstitial, and vascular lesions. It also reduced 

kidney lipid peroxidation as measured by decreased malondialdehyde content. Light and electron 

microscopic studies of renal tissue revealed inhibited interstitial expansion, glomerulosclerosis, and 

thickening of the glomerular basement membrane [55]. 

However, since the discovery of DPP-4 as an adenosine deaminase binding protein [57], the 

expression of DPP-4 has been considered a marker of renal injury, including diabetic nephropathy. 

Several studies have demonstrated the nephroprotective effects of DPP-4 inhibitors on experimental 

animals [58]. 

Liu et al. [55], using a type 1 DM model, minimized the effect of DPP-4 inhibition on insulin 

release as streptozotocin destroys the islet cells in the pancreas. As a result, it is thought that the 
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glucose-lowering effect of the incretin system is nullified. In that study the authors reported that 

vildagliptin was renoprotective, with a reduction in albuminuria and improvement in the histological 

changes in the kidney, associated with reduced DPP-4 activity and increased GLP-1 levels. The 

authors concluded that these changes were probably not attributable to the hypoglycaemic effect  

of vildagliptin. 

In streptozotocin treated rats, when compared to vehicle, treatment with linagliptin has shown 

reduced glomerulosclerosis after treatment with linagliptin alone or in combination with angiotensin 

receptor blockade [56]. 

Sitagliptin ameliorated renal lesions, including glomerular, tubulointerstitial, and vascular  

lesions [56,59–61], in Zucker diabetic rats. Whether these effects were direct or dependent on glucose 

reduction was not ascertained. Nevertheless, another study reported that sitagliptin decreased  

IL-1β, TNF-α levels and Bid protein levels [60], indicating protective effects against inflammation  

and apoptosis in the kidney. Another study has shown that linagliptin reduced AGE and RAGE levels 

and oxidative stress, improved albuminuria, and ameliorated the histological features of 

glomerulopathy [62]. 

A more recent study by Vavrinec et al. [63] showed that vildagliptin, without affecting plasma 

glucose levels or proteinuria, was able to decrease glomerulosclerosis and restore myogenic arteriolar 

constriction to normal levels, possibly due to reduced oxidative stress. This series of experimental 

studies shows that DPP4-inhibitors at the kidney level may promote both negative and positive effects, 

with most data pointing to the protective effects of DPP4-inhibitors on kidney function. 

Whether these effects are direct or partially mediated by changing glucose concentration warrants 

further scrutiny, even though results obtained in models of Type 1 DM seem to support a direct effect. 

Besides GLP-1 and GIP, DPP-4 cleaves multiple substrates, such as brain natriuretic peptide 

(BNP), ANP, substance P, among others, many of which are vasoactive [64]. On the other hand,  

DPP-4 is also expressed at the apical brush border surface of renal proximal tubular cells and also has 

GLP-1 independent renal and cardiovascular actions [64]. 

3.1.1.2. Clinical Data 

Few studies have been devoted to directly assessing the effects of DPP4 inhibitors on renal 

functional measures and the key question is whether DPP4 inhibitors are able to improve renal  

end-points beyond their antihyperglycemic effect. 

In some uncontrolled studies with small number of patients, six months of treatment with  

sitagliptin [65] for 12 or 17 weeks of treatment with alogliptin [66] reduced albuminuria in patients 

with type 2 DM. This data was confirmed and expanded in a pooled analysis of phase III trials of 

linagliptin, which showed a significant reduction in albuminuria after a mean of 24 weeks of treatment. 

The urinary albumin-to-creatinine ratio was reduced by 32% at week 24 in the linagliptin group 

compared with 6% in the placebo group. The significant reduction achieved in the albuminuria was 

already detected in week 12 (−29%) and was independent of blood pressure levels and HbA1c [67]. 

Interestingly, 16 weeks of treatment with exenatide reduced both albuminuria and urinary levels of 

TGF-α and type IV collagen (versus glimepiride) in patients with type 2 DM [68]. Of note, the degree 

of urinary albumin-to-creatinine ratio reduction did not correlate with the level of change in HbA1c, 



J. Clin. Med. 2015, 4 1875 

 

 

thereby suggesting that the effect of the DPP-4 inhibitor on urinary albumin-to-creatinine ratio may 

have been independent of the improvement in glycemic control [67]. 

A similar inhibitory trend against the development and progression of microalbuminuria was 

observed in another study using saxagliptin in patients with type 2 diabetes and cardiovascular 

complications [69], although it was unclear whether the observed effect was due to a significant 

improvement in glycemic control or whether it was associated with a subsequent decrease in 

cardiovascular or renal complications. 

Another phase IIIb, multicenter, randomized, double-blind, placebo-controlled, parallel-group 

study, evaluating the glycemic and renal efficacy of linagliptin in subjects with type 2 diabetes and 

renal impairment, is the MARLINA study (Efficacy, Safety & Modification of Albuminuria in Type 2 

Diabetes Subjects With Renal Disease With LINAgliptin) (https://clinicaltrials.gov/ct2/show/ 

NCT01792518 Identifier: NCT01792518). It is currently ongoing.  

In a pooled analysis from a large clinical trials program of the DPP4 inhibitor linagliptin in type 2 

DM, that included 5466 patients, linagliptin was not associated with increased renal risk but was 

associated with a significant reduction in clinically relevant kidney disease end points in patients with 

type 2 diabetes [70]. 

There have been recent concerns about the disconnection between the glucose-lowering effect and 

cardiovascular safety of certain diabetic agents. After the association between rosiglitazone use and 

increased cardiovascular risk was reported [71], several trials have been performed to determine the 

cardiovascular safety of DPP4 inhibitors in diabetic patients with various degrees of renal impairment. 

Undoubtedly, cardiovascular benefit may affect renal outcomes. 

Two such trials for DPP-4 inhibitors have been published [69,72]. These placebo-controlled studies, 

involving a median 2 years of treatment with alogliptin and saxagliptin, respectively, demonstrated no 

cardiovascular harm and a modest reduction in albuminuria progression in high-risk patients with type 

2 DM, most of whom had a history of cardiovascular disease. Post hoc analyses of these trials did not 

detect any effects of DPP-4 inhibitors on clinically relevant renal end points. However, this data 

should be interpreted with caution, as the trials were not adequately powered to study the effects of 

DPP-4 inhibitors on renal outcomes. Newer studies will be published shortly (TECOS: Tial Evaluating 

Cardiovascular Outcomes with Sitagliptin) and medium long-term (CAROLINA: Cardiovascular 

Outcome Study of Linagliptin Versus Glimepiride in Patients with Type 2 Diabetes) and 

CARMELINA (linagliptin in cardiovascular an renal outcomes) and also MARLINA trial, studying 

the effects of linagliptin on microalbuminuria in type-2 DM patients, that will help us to completely 

assess cardiovascular and renal safety. 

3.1.2. Glucagon-Like Peptide-1 Receptor Agonists 

3.1.2.1. Experimental Data 

Apart from the several effects described above, the effects of GLP-1R agonists and DPP-4 

inhibitors on kidney disease have been extensively studied in diabetic kidney disease models, where 

they may have protective roles in reducing proteinuria and glomerular sclerosis, which are associated 
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with protection from endothelial injury and reduction in oxidative stress and inflammation [47,73].  

Of note, these effects of incretins appear to be independent of glycemic control [73,74]. 

Experimental studies using various diabetic models suggest that incretins protect the vascular 

endothelium from injury by binding to GLP-1 receptors, thereby ameliorating oxidative stress and the 

local inflammatory response, which reduces albuminuria and inhibits glomerular sclerosis [47]. 

Initial studies in hypertension-prone rats showed that GLP-1 prevented the development of 

hypertension, ameliorated histologically verified renal damage and reduced albuminuria [75]. 

There is evidence to suggest that long-term treatment with the GLP-1R agonist exendin-4 

ameliorates DN in both type 1 and type 2 DM animal models, most probably through its action on the 

glomerular endothelial and infiltrating inflammatory cells [74]. 

In humans, GLP-1 promotes natriuresis by acting on the proximal tubule, thereby also increasing 

the fractional excretion of lithium (as a measure of end-proximal tubule delivery) [76]. GLP-1 also 

reduces water and salt intake in rats, healthy men, and obese individuals [77]. 

3.1.2.2. Clinical Data 

In the study of Zangh et al. [68], 31 type 2 diabetic patients with microalbuminuria were randomly 

allocated to receive exenatide or glimepiride treatment. At 16 weeks, after correcting for blood 

pressure, glucose level and body mass index, 24-h urinary albumin, urinary TGF-β1 and type IV 

collagen were significantly lower in the exenatide group than in the glimepiride group (p < 0.01), 

while glycemic control showed no statistical difference between the two groups. These results suggest 

that exenatide reduces urinary TGF-β1 and type IV collagen excretion in patients with type 2 diabetes 

and microalbuminuria, which may be partly contributory to its directly renoprotective role [68]. 

In phase III trials included in meta-analyses, GLP-1R agonists decreased systolic blood pressure by 

2–5 mmHg, having a modest effect on diastolic blood pressure (0.5–2 mmHg), although not achieving 

statistical significance [78]. The antihypertensive action of GLP-1R agonists might be partly 

attributable to a combination of GLP-1-mediated natriuresis and diuresis, but could also involve 

improved endothelial function, increased release of vasoactive factors (such as nitric oxide and atrial 

natriuretic peptide), a decrease in ET-1 levels and alteration in the balance of the autonomic nervous 

system [79,80]. 

GLP-1, GLP-1R agonists and DPP-4 inhibitors also affect renal haemodynamics [81].  

The GLP-1-related increase in sodium delivery to the macula densa restores disrupted 

tubuloglomerular feedback associated with diabetes, resulting in relative vasoconstriction of the 

afferent renal arteriole and, consequently, a decrease in capillary hydraulic pressure. However, 

pathways that affect renal haemodynamics independently of tubuloglomerular feedback also seem to 

be present, suggesting an interaction with vasoactive [43,82]. 

As occurs with DPP4 inhibitors, cardiovascular safety is a key point with GLP1-R analogues. 

Large-scale clinical studies with cardiovascular end points are underway, although much needed 

studies with renal end points are still required. 

DPP4 inhibitors have shown neutral effect in cardiovascular outcomes [69,72]. Nevertheless, the 

first studies published with GLP1-R analogues have shown a positive effect on cardiovascular 

outcomes. This may have a beneficial effect on renal outcomes. In a large retrospective analysis [83], 
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patients treated with the GLP-1R analogue exenatide were shown to have a 20% reduction in 

cardiovascular events in comparison with other glucose-lowering agents. To a certain extent, 

improvements in surrogate cardiac outcomes observed in GLP-1 or GLP-1 analogues have been found 

to be independent of their euglycaemia achievements [84]. 

The effects of GLP-1 or its analogues on cardiovascular outcomes may be related to a direct  

effect on cardiomyocytes mediated both by GLP-1-increased myocardial insulin sensitivity and 

subsequent glucose uptake, endothelial function, endothelial cells and vascular smooth muscle cells 

and pro-inflammatory markers [85]. 

To date, mechanistic investigation of their effects on microvascular or large-vessel diabetic vascular 

disease is lacking. LIRA-RENAL Study is ongoing (The Effect of Liraglutide in Patients With 

Prediabetes and Kidney Failure). Regardless of the mechanisms involved, ongoing cardiovascular 

outcome trials including EXSCEL (Exenatide Study of Cardiovascular Event Lowering Trial), 

LEADER (Liraglutide Effect and Action in Diabetes), and also HARMONY (Effect of Albiglutide, 

When Added to Standard Blood Glucose Lowering Therapies, on Major Cardiovascular Events in 

Subjects With Type 2 Diabetes Mellitus) may help to dissipate doubts about cardiovascular safety. 

3.2. Sodium-Glucose Cotransporter-2 Inhibitors 

Sodium-glucose cotransporter-2 (SGLT2) inhibitors are emerging as new therapies with 

complementary mechanisms of action that are independent of insulin secretion or action. They have 

acceptable safety profiles and may provide additional therapeutic options to achieve glycaemic control 

and renoprotection. This renoprotection may be derived from direct effects, such as attenuating 

diabetes-associated hyperfiltration and tubular hypertrophy, as well as reducing the tubular toxicity of 

glucose and indirect effects such as improving glycaemic control, reducing insulin levels and 

improving insulin sensitivity, improving weight control due to modest reductions in body weight, 

improving blood pressure control due to the natriuretic effect and weight loss and lowering uric acid 

levels [86]. 

Like agents that block the renin–angiotensin system, SGLT2 inhibitors also reduce single-nephron 

glomerular filtration rate in the chronically diseased kidney, though by quite different mechanisms.  

In case of SGLT2 inhibitors these drugs reduce sodium reabsorption in the proximal tubule, so 

increasing delivery to the macula densa, augmenting the tubuloglomerular feedback and reducing 

single-nephron glomerular filtration rate [87,88]. This may be nephroprotective as in diabetic  

patients hyperglycemia causes increases in proximal tubular reabsorption secondary to induction of 

tubular growth with associated increases in sodium/glucose co-transport. This increase in proximal 

reabsorption leads to a decrease in solute load to the macula densa, deactivation of the 

tubuloglomerular feedback, and an increase in glomerular filtration rate. Glomerular hyperfiltration is 

currently recognized as a risk progression of kidney disease in diabetic patients. Limiting proximal 

tubular reabsorption by SGLT2 inhibitors constitutes a potential target to reduce hyperfiltration [89]. 

These beneficial effects may not be present in patients with established renal impairment. This may 

be due to the fact that the magnitude of glucose excretion and haemoglobin A1c reduction induced by 

SGLT2 inhibitors is dependent upon the filtered glucose load and is maximal in diabetic subjects with 

normal glomerular filtration rate (GFR). However, a high filtered glucose load is associated with only 
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modest glucose reduction in patients with renal impairment, where the filtered glucose load is reduced. 

As a consequence, in this context, SGLT2 inhibitors show a decrease of glucose lowering efficacy. 

Moreover, DCKD is associated with impaired autoregulation of renal blood flow, meaning that 

drops in blood pressure will be more likely to be associated with reduction in renal perfusion in the 

diabetic kidney. This is particularly the case in patients with established renal impairment. In some 

cases, volume depletion and blood pressure lowering associated with SGLT2 inhibitors has been 

associated with acute-on-chronic renal impairment [90]. This fact should be taken into account given 

that their effect on blood pressure, natriuresis, osmotic diuresis, volumen depletion and weight loss, 

hypotension has also been found to be a side effect of SGLT2 inhibition, especially in patients taking 

loop diuretics [91]. 

Monitoring of renal function is currently justified when using RAAS blockade in patients with 

diabetes and similar considerations may also be appropriate in selected (volume sensitive or patients 

with increased hypertensive response to sodium depletion stimuli) patients receiving SGLT2 

inhibitors, especially as nearly all diabetic patients receive RAAS blockade. 

3.2.1. Experimental Data 

Experimental evidence has been collected to determine whether SGLT2 inhibitors act in a 

nephroprotective manner in diabetes. Some experimental studies have shown beneficial effects via the 

different mechanisms by which SGLT2 inhibitors may be associated with nephroprotection. For this 

purpose experimental models have been set up in rodents. These studies have shown a reduction in the 

inflammatory response in the kidney, such as less macrophage infiltrates, lower cytokine levels  

(TGF-β and MCP-1) as well as lower apoptosis rates, and indicate anti-oxidative effects  

through SGLT2 inhibition. These effects are independent of its effects on blood pressure or glucose 

control [92]. 

On the other hand, SGLT2 inhibitors are able to attenuate the hyperfiltration associated with 

experimental diabetes [93,94]. This is thought to be mediated by the reduction in proximal sodium 

absorption when SGLT2 is inhibited, leading to increased distal sodium delivery to the macula densa, 

suppression of tubuloglomerular feedback pathways and a compensatory and persistent reduction in 

intraglomerular pressure. 

Renal angiotensin aldosterone blockade is one of the keys to nephroprotection in diabetic kidney 

disease. Indeed in one experimental study, the combination of RAAS blockade with SGLT2 inhibition 

was associated with additive renoprotective effects compared to either drug alone [95]. 

Finally, the use of SGLT2 inhibitor empaglifozin has demosntrated that inhibition of glucose 

reabsorption was able to attenuate the renal hypertrophy associated with experimental  

diabetes [96,97], reduce albuminuria and markers of renal inflammation [98]. 

3.2.2. Clinical Data 

Dedicated renal protection studies have not yet been completed on humans, although such studies 

are currently underway (Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular 

Outcomes in Participants with Diabetic Nephropathy (CREDENCE) trial-NCT02065791). 
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Clinical data on nephroprotection of SGLT2 inhibitors come only from clinical trials, conducted 

with end points of efficacy and safety, not with renal end points. Few clinical studies examined the 

effects of SGLT2 inhibition on renoprotection and glycaemic control in CKD [99–104]. 

In these studies the urinary albumin/creatinine ratio fell in treatment groups and increased or 

decreased at a lesser extent in controls. These studies show results at short and medium term, and 

glomerular filtration rate showed a slight decrease in eGFR that was observed due to the 

haemodynamic effect of SGLT2 inhibitors. Nevertheless, after a follow-up greater than 80 weeks, a 

reverse pattern was observed in a small number of participants. This finding should be confirmed in a 

larger population using renal measurements as primary end-points. Unfortunately, these large trials do 

not offer insights into the potential nephroprotective effect of these agents due to the  

short-term follow-up. 

One of the major issues still under debate is the cardiovascular risk profile of SGLT2 inhibition. 

The incidence of cardiovascular events was observed to increased in the first 30 days post-initiation of 

treatment probably due to volume depletion and hypotensive episodes [105]. Similarly, stroke may 

occur more often in patients undergoing hypotensive episodes. Several large, long-term studies with 

cardiovascular endpoints are ongoing and will provide data in the next two to six years. Those include 

the DECLARE-TIMI58 for dapagliflozin (expected in 2019), CANVAS for canagliflozin (expected in 

2018), and EMPA-REG OUTCOMES. This latter study has been recently published, showing that 

patients with type 2 diabetes at high risk for cardiovascular events who received empagliflozin, as 

compared with placebo, had a lower rate of the primary composite cardiovascular outcome and of 

death from any cause when the study drug was added to standard care. This study supports a strong 

evidence for a reduction in cardiovascular risk with the use of a SGLT2 inhibitor (empaglifllozin) [106]. 

Very recently the US Food and Drug Administration (FDA) and the the European Medicines 

Agency (EMA) have begun a review of SGLT2 inhibitors used to treat type 2 DM to evaluate the risk 

for diabetic ketoacidosis. This is as a consequence of the appearance of 121 cases of euglycemic 

asymptomatic diabetic ketoacidosis with blood sugar levels only moderately increased. During the 

review review, healthcare professionals will be informed about the risk of diabetic ketoacidosis and 

how to manage it in those patients. More information is needed about this complication as well as its 

possible relation with the drug. To date there is no data to suggest that this complication can directly 

affect renal function. 

Taken together, these findings suggest that SGLT2 inhibitors may have a renoprotective effect with 

a decline in albuminuria and a long-term maintenance of glomerular filtration rate. However at present, 

it is not possible to determine if the above-mentioned effects have a long-term advantageous impact on 

the progression of diabetic nephropathy. It is also not posible to determine whether the decline in 

albuminuria is related to indirect effects (blood pressure reduction, increased of natriuresis, weigth loss 

or improving glycaemic control), changes in intraglomerular hemodynamic and pressure, as 

demonstrated for ACEi and sartans, or whether it may be ascribed to other actions of SGLT2 inhibitors 

on renal function. Interestingly, the pattern of an acute reduction followed by a stabilization in GFR 

reported in these studies on SGLT2 inhibitor groups is similar to those reported with angiotensin 

converting enzyme inhibitor in subjects with CKD but with different underlying mechanisms for the 

changes in GFR [99,100,107]. 
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Table 1. Summary of renal effects of hypoglycemic drugs on nephroprotection: experimental and clinical studies. 

Drug Direct Renal Nephroprotective Mechanisms 
Indirect Nephroprotective Mechanisms 

(Apart from Glycaemic Control) 
Nephroprotective Effect in Clinical Studies Clinical Trials 

Insulin ↓insulin sensitivity is associated with ↑risk of albuminuria [15]  Indirect data from UKPDS study Not done 

Metformin Reducing vascular dysfunction and oxidative stress in rats [19–21] Cardiovascular benefit Not done Not done 

Sulphonylureas 

↓proteinuria IN animal models: Improvement in histological glomerular lesions, 

promotion of tubular reabsorption of some biomarkers by↓expression of PKC-β, 

PKA, megalin and cubilin [23] 

 No effect on albuminuria [24]  

α-Glucosidase 

inhibitors 
Up-regulates GLP-1 production and IGF-1 in experimental models [26]  Not done Not done 

Metiglinides 

(repaglinide) 
  

No differences in albuminuria compared with 

metformin or insulin [26] 
Not done 

Thiazolidinediones 

Improving insulin sensitivity. Inhibition of TNF-α [34]  

Improving histological lesions, decrease proteinuria and and restore podocyte in 

animal models [29–31] 

Improvement of metabolic síndrome and 

cardiovascular risk factors [29,30] 

Heterogeneus response in albuminuria  

Benefit decreasing albuminuria in meta-analysis 

Conflicting results  

Small number of patients [33–37] 

Not done 

DPP-4 inhibitors 
Ameliorating histological lesions in rats [55]  

↓IL-1β, ↓TNF-α, ↓Bid protein levels in experimental studies [60] 
 

Sitagliptin decreases albuminuria after 6 moths 

of treatment [65–67] 

MARLINA trial 

(on going) 

GLP-1R analogs 

Ameliorated renal histological lesions in animal models [74]  

Promoting natriuresis acting in proximal tubule in humans [77] restoring  

tubulo-glomerular feedback [81] 

Reducing blood pressure and increasing 

natriuresis [78] 

Exenatide reduces albuminuria and TFG-β1 and 

type IV collagen excretion and 

microalbuminuria compared to glimepiride in 

patients with type 2 diabetes mellitus [68] 

Not done 

SGLT2 inhibitors 

-Attenuating diabetes-associated hyperfiltration and tubular hypertrophy (Thomas) 

-Reducing the tubular toxicity of glucose  

- Reducing single-nephron glomerular filtration rate  

- In experimental diabetes reduce albuminuria and markers of renal inflammation  

- In animal models SGLT2 inhibits inflammatory response in kidney (TGF-β, 

MCP-1), and ↓apoptosis rates  

- Restoring tubuloglomerular feedback [92,93,98] 

Decreasing weight and blood pressure, 

improving glycaemic control and increase 

in sodium excretion 

Not done 

CREDENCE trial 

(On going). 

Indirect data from 

previous clinical 

trials 

DPP-4: dipeptidyl peptidase-4; GLP-1R: glucagon-like peptide-1 receptor; SGLT2: Sodium-glucose cotransporter-2; References are in brackets.
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4. Conclusions 

In conclusion, SGLT2 inhibitors are a new class of antidiabetic drugs that induce a moderate effect 

on blood glucose, in chronic kidney disease patients. Existing data are supportive of a potential  

renal-protective role for SGLT2 inhibition in patients with diabetes. Further studies are needed to 

investigate whether SGLT2 inhibitors have renoprotective effects beyond the control of 

hyperglycaemia in diabetic patients as well as subjects with established DCKD. Nevertheless, they may 

represent a significant additional therapeutic tool to the current trreatments in the clinical prevention and 

management of diabetic nephropathy. Dedicated, adequately powered, renal outcome trials are eagerly 

awaited to assess the clinical utility of SGLT2 inhibition as a renal-protective therapy. 

Although experimental data about most antihyperglycemic drugs has shown a beneficial effect in 

kidney parameters, there is a lack of clinical trial results that clearly prove these beneficial effects. The 

key question, however, is whether antihyperglycemic drugs are able to improve renal end-points 

beyond their antihyperglycemic effect. Existing experimental data comes from post hoc studies from 

clinical trials, and are supportive of the potential renal-protective role of some of them, especially 

dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists and sodium-glucose 

cotransporter 2 inhibitors. Dedicated and adequately powered renal trials with renal outcomes are 

neccessary to assess the nephroprotection of antihyperglycaemic drugs beyond the control  

of hyperglycaemia. 
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