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Abstract

Biomarker research is continuously expanding in the field of clinical proteomics. A combination of different
proteomic–based methodologies can be applied depending on the specific clinical context of use. Moreover,
current advancements in proteomic analytical platforms are leading to an expansion of biomarker candidates that
can be identified. Specifically, mass spectrometric techniques could provide highly valuable tools for biomarker
research. Ideally, these advances could provide with biomarkers that are clinically applicable for disease diagnosis
and/ or prognosis. Unfortunately, in general the biomarker candidates fail to be implemented in clinical decision
making. To improve on this current situation, a well-defined study design has to be established driven by a clear
clinical need, while several checkpoints between the different phases of discovery, verification and validation have
to be passed in order to increase the probability of establishing valid biomarkers. In this review, we summarize the
technical proteomic platforms that are available along the different stages in the biomarker discovery pipeline,
exemplified by clinical applications in the field of bladder cancer biomarker research.
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Introduction
Diseases with high complexity such as cancer are associ-
ated with increased incidence rates worldwide. Recent
data reveal that approximately 7.6 million deaths caused
by cancer occurred in 2008, with this number corre-
sponding to 13% of all deaths [1]. Based on these num-
bers, there is substantial room for improvement in the
current strategies for development of biomarkers cap-
able of being introduced into clinical practice. According
to the National Cancer Institute (http://www.cancer.gov/),
a biomarker is defined as “a molecule detected in body
fluids or tissues that are associated with a special process
(normal or abnormal), a condition or disease”. Depending
on the intended use, biomarkers can be distinguished
on the following categories; diagnostic biomarkers
which incorporate disease detection, prognostic that
represent prediction of the course of a particular disease
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(e.g. recurrence, progression and survival) and predictive
that would allow for prediction of the response to treat-
ment which could be subsequently applied in patient
assessment [2-5]. In reference to malignant diseases,
diagnosis at late stages generally results in poor clinical
outcome [6,7]. The intended use of a cancer biomarker
would hence be early stage diagnosis and/or prognosis.
Thus, biomarkers that would enable early disease diag-
nosis are required, together with those that would pro-
vide prognostic values in disease status and predict an
outcome of an illness prior to any treatment designed.
Novel prognostic biomarkers may also help clinicians
select an optimal therapeutic strategy for individuals,
facilitating determination of the response to a specific
treatment type. Successful introduction of biomarkers into
routine clinical practice becomes the current motive in
this research area and is expected to be beneficial to the
patients and in health care systems. Discovering bio-
markers is a multi-parameter process [8-10] and applying
them to routine practice needs a proper consideration of
multiple issues [11]. Additionally, since clinical needs
differ among various diseases, biomarker development
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including discovery, verification and validation cannot be
restricted to a single methodology. In this article, we
summarize the several challenges related to the biomarker
research, as well as the available analytical platforms in
the field of proteomics.

Review
Pipeline for biomarker development
For more than 40 years translational research in aca-
demia and industry has attempted to introduce novel
biomarkers with clinical utility to improve the manage-
ment of diseases, especially those with high social and
economic burden such as cancer. Although the analyt-
ical platforms have expanded widely, especially in the
case of Mass Spectrometry (MS), the vast majority of
the published biomarker candidates are not introduced
in the clinical practice, due to several issues. The lack of
a gold standard can be a drawback since no test with an
excellent performance is available to compare with the
potential biomarkers. A risk of a biased assessment is
thus present. Liu et al. recently addressed this issue by
proposing a mathematical formula for covariate adjust-
ment [12]. Several other causative factors have been re-
ported to clarify this discrepancy either related to the
disease background or the workflow of biomarker devel-
opment. Along these lines, several levels of variability
can be introduced starting with the disease heterogeneity
[13,14], which occurs in complex diseases. Most import-
antly, the lack of valid biomarkers is often a result of an
inadequate set up of the discovery and validation stages
[15]. For this reason, a very careful design of the bio-
marker development is required from the discovery
phase to subsequent verification and validation stages.
At the same time, concurrent knowledge of the clinical
background is needed and a clear target driven from the
main clinical needs for the study [16,17].

Clinical conceptions on the biomarkers study design
A good example to describe relevant issues on variations
observed within the same disease is Urothelial Carcinoma.
Bladder cancer (BCa) is a highly heterogeneous malig-
nancy characterized by distinct clinical characteristics and
molecular pathways [18]. Two independent molecular
mechanisms that specifically trigger different pheno-
types of urothelial carcinoma have been reported [18].
Ras/MAP kinase signaling activity is specifically in-
volved in superficial phenotypes of the disease. Alter-
ations in tumor suppressor activity of p53 and Rb and
overexpression of EGFR and ErbB2, MMP-2 and MMP-
9 are characteristic for muscle invasive phenotypes
(MIBC) [19-21]. Additional challenges regarding blad-
der cancer could be that high risk non-muscle invasive
BCa (NMIBC) tumour lesions are associated with poor
outcome [22,23] and as for the tumor classification the
histological variations that can be observed within the
same patient as the tumor progresses (intra-patient vari-
ation) [24]. These facts should be taken into account in
the study design and in terms of clinical objective. The
critical parts which have to be considered during the study
design are represented in the Figure 1. A biomarker a
priori can be applicable only for a specific context of use,
for which its performance has been assessed. In the case
of bladder cancer, a subgroup or a panel of cancer bio-
markers with diagnostic potential that could successfully
detect early stage events would be beneficial [25]. A
further aim could be the investigation of prognostic in-
dicators for treatment response. The introduction of
guidelines in the different biomarker stages has been
described as an approach of quality assessment of the
biomarkers and standards for designing and reporting
biomarker studies have been proposed [26]. For epi-
demiological studies certain requirements have been
suggested in the context of STROBE-ME project [27].
For study design and requirements of predictive bio-
markers PROBE standards have been proposed [28],
while prognostic biomarkers should be in accordance
to REMARK requirements [29].

Sample biobanking
To develop a research finding into a clinical tool with
diagnostic or prognostic value, a large number of bio-
logical samples and/or tissue specimens is required. Pre-
requisites include not only biological material resources,
but also a very well-organized preservation domain to be
retained, so called biobank. Ideally, a biobank should re-
tain maximum quality of the biological material stored
(following standardized protocols of sample handling), of
associated clinical and demographical data, and it should
be easily accessible and open to the scientific community
[30]. Figure 2 depicts a rough outline of biobanking
process [31]. An important issue is assigning a unique
ID given to a sample [32], an appropriate database struc-
ture and management system. Such systems have been
currently developed [33-35] mainly as laboratory inform-
atics management applications (LIMS) that are built to
tract samples from the initial steps of delivery.

Sample collection and treatment
General considerations regarding the variability that can
be related to the biological material that is under investi-
gation as well as the sample treatment are also present
[36,37]. Two articles published by Lescuyer et al. [38]
and Good at al. [39] respectively, address the challenges
related to the selection of the biological material for bio-
marker proteomics applications. In the article by Lescuyer
et al. [38], advantages and limitations of the different bio-
logical fluids that can be applied in proteomics strategies
in search for biomarkers are reported. The biological



Figure 1 Main components of biomarker study design include definition of clinical need, sample selection and recruitment, statistical
evaluation plan and selection of the analytical platform.
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fluids could be separated into two distinct categories,
based on their proximity to the organ of interest. For in-
stance, biological fluids such as CSF, presenting with in-
creased proximity with brain offer the opportunity for
defining disease specific biomarkers, although the collec-
tion could be in a rather invasive manner. In contrast, in
the second category belong body fluids that can be readily
available in large amounts, such as urine. The amount of
biological material, as well as the non-invasive way of col-
lection, is a major advantage for biomarker studies. The
drawback of the analysis of this type of biological fluids
could be their heterogeneous content, especially due to
the presence of several interfering compounds that are ex-
creted [38]. In the article by Lescuyer et al. the authors
also give guidance on selection of samples: especially the
inclusion of a reference group that contain both healthy
individuals, but also patients with closely related diseases
or patients presenting similar symptoms. Further, the per-
formance of the potential biomarkers should not be influ-
enced by pre-analytical factors. To clarify this issue in
every type of investigation factors such as storage condi-
tions and proteolysis, for example, should be taken into
account and reported [38]. In the follow up article by
Good et al. [39], emphasis is put on the selection of the
suitable biological fluid or ‘sample source’ as the very first
step of the study design. The authors suggest the proper
evaluation and reporting of the variability, introduced
among others by sampling treatment prior to any analysis
[39]. Variability can be limited by the application of ap-
proved standard protocols. In bladder cancer biomarker
research, urine is a preferred source of biomarkers.
Protocols for urine collection and sample processing have
been developed by European Kidney and Urine Proteomics
(EuroKUP) and Human Kidney and Urine Proteome Pro-
ject (HKUPP) (http://www.eurokup.org/node/138) [11].

Study design and evaluation of the analytical
performance
Performance parameters of the analytical platform need to
be well described and a quality control process must be in
place. Recommendations for increased consistency through
the application of standardized protocols have been already
introduced by McGuire at al. [40] and Fiedler et al. [41].
Guidance may also be gained from a recent manuscript of
assessing CE-MS platform performance [42] of the per-
formance of a biomarker is frequently defined by its sensi-
tivity and specificity. Sensitivity in this context is defined as
the percentage of the true positive results and specificity to
the percentage of true negative results. Skates et al. [43] in
their recent study noted the importance of statistical design
in biomarker studies. The aim of the above study was the
establishment of the method for estimation of the sample
size at the initial stage of biomarker development workflow
to increase the probability that the selected putative bio-
markers will pass the large scale validation in targeted
population. The study was focused on the identification of
ovarian biomarkers via proteomics approaches including
Shotgun analysis of cyst fluids and MRM assay in plasma
for discovery and verification, respectively. Therefore, a
statistical model was constructed based on the multiple pa-
rameters such as distribution of proteins in individual sam-
ple, between biological or technical replicates. According
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Figure 2 Representative workflow of the typical procedure to be followed regarding the sample biobanking. This multistep process
includes sample tracking by electronic system, as well as integration of patients clinical characteristics and demographic data. Finally, the
deposition of acquired data in public repositories is presented.
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to their model an initial cohort of 50 cases and 50 con-
trols could successfully yield a good candidate and if in-
dependent verification is applied in a 5 times bigger
cohort (250 cases/250 controls), then the chance of a
biomarker to pass into clinical validation phase could
be >90%. Along the same lines, Shariat et al. [44] re-
ported the need of a well-designed statistical evaluation
in the context of defining valid bladder cancer bio-
markers, while Behrens and colleagues proposed the
validation of bladder cancer biomarkers particularly in
prospective studies that meet epidemiological criteria
[45]. Collectively, a careful design of the study accord-
ing to the main clinical needs is required. The initial
study is probably best performed in a well phenotyped,
predefined cohort and sample handling and analysis
should be performed according to strict guidelines.
Subsequent mandatory confirmation of the results is
best achieved in a prospective multicenter study in the
population at risk [46]. Following the above suggestions
will substantially increase the possibility that a candi-
date biomarker be successfully introduced into clinical
practice [16,45].

Technical considerations regarding the analytical
set up for biomarker development
The complexity of the biological fluid may generate a
need for a combination of different techniques such as
fractionation approaches. In general, the basic require-
ments of the methodology that is selected are: simplicity
of use, robustness, high accuracy and performance [47].
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The biomarker workflow can be divided into 3 main
parts: discovery, verification and validation. Depending
on the specific aim of the study, various proteomic plat-
forms can be applied from the unbiased discovery set-
ting to the targeted quantification in the verification and
validation stages. The basic characteristics of the objec-
tives and platforms that can be employed at the different
stages are summarized in the Figure 3. Below, a tech-
nical description of the available proteomic technologies
for discovery, verification and validation stages is pre-
sented, together with certain recent applications particu-
larly in the field of clinical proteomics in the quest of
bladder cancer biomarker research.

A) Discovery of biomarkers
Identification of biomarker candidates is the first step to-
wards clinical implementation [48]. At the discovery phase,
two major approaches can be distinguished: a knowledge-
based approach wherein selection of biomarker candidates
is based on the existing molecular mechanisms underlying
the disease initiation or progression, or alternatively an
Figure 3 Schematic representation of proteomics platform applied in
untargeted MS-based approaches resulting in identification of vast number o
Candidates should to be prioritized based on their functional/ biological
conditions are complex and heterogeneous, the ultimate solution to imp
biomarkers into a panel. The biomarker panel is evaluated in the verification s
approached are most commonly applied, although moderate selectivity of an
MS-based approach like MRM can be also introduced. Along with the advanc
often decreasing, whereas the sample sets and general costs are increasing. In
large cohort study in targeted population.
unbiased approach that involves untargeted identification
of differentially expressed proteins between two analyzed
groups [48]. Currently, MS-based proteomics techniques
favor untargeted approaches in biomarker discovery that
result in a substantial increase of novel biomarker candi-
dates [49,50]. However, due to the limited number of ana-
lyzed samples, a high false discovery rate is observed and
the reported differential expression frequently are a result
of inter- or intra- individual variability. For example, 10%
of urinary proteome is unique for a particular individual
[51]. Small sample size at discovery phase leads to overesti-
mation of accuracy of biomarker performance (i.e. sensitiv-
ity and specificity) and brings the reliability of findings into
question [52]. Consequently, the confirmation of detected
differences and further investigation of the impact of re-
lated diseases on a biomarker’s performance is mandatory.
In general, the classical proteomics workflow includes

protein separation using gel-based or gel free techniques
followed by the identification by mass spectrometry.
Issues that have to be taken into account include estab-
lishment of well characterized procedures and platforms
biomarker workflow. Initial discovery phase currently relies on
f potential biomarkers. Further verification requires targeted approach.
relevance. Since the molecular changes underlying the pathological
rove the accuracy of biomarkers appears to be the combination of
tep and further tested during the validation. Currently, immune-based
tibodies represents a significant problem. Alternatively, quantitative
ements in biomarker workflow, the number of putative biomarkers is
the validation phase, biomarker performance has to be assessed in a
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along with assessment of analytical variability in addition
to the resolution being appropriate for the complexity of
the analyzed material [52]. The most common specimen
sources for biomarker discovery are body fluids (e.g.
plasma, urine and cerebrospinal fluids) that are charac-
terized by high complexity and wide dynamic range in
protein concentration. In the case of plasma, the dy-
namic range is exceeding 10 orders of magnitude [53].
Despite recent advances in the MS-based techniques,
the typical MS-based analysis covers only the dynamic
range of three to four orders of magnitude [54]. Since
the potential biomarker candidates often belong to the
low abundance proteins their detection is hampered by
the presence of the highly abundant proteins. This is es-
pecially evident in plasma where more than 95% of the
total protein content comes from only 5 abundant pro-
teins. In order to “dig the deep proteome” and increase
coverage, several methods can be applied. One of the
recommended strategies is reducing the sample com-
plexity. This approach can be applied at several stages of
the experimental workflow. Samples can be enriched for
selected subcellular fractions or for specific type of pro-
teins (based on post-translational modifications). Particu-
larly, membrane ([55,56]), secreted [57,58], nuclear matrix
[59] and phosphorylated proteins [60] and glycoproteins
[61,62] are reported as a valuable source for biomarker
identification. Moreover, in the case of plasma, depletion
of highly abundant protein like albumin and IgG is widely
applied. Several methods have been developed in order to
improve the detection of proteins in the low concentration
range. Comparison and/or evaluation of different de-
pletion methods was a subject of several studies
[63-66]. As an example Tu et al. [66] compared the
protein content from plasma samples depleted using
immunoaffinity chromatography with unfractionated
samples. Applied methods (Multiple Affinity Removal
System, Agilent Technologies, Inc.) enables removal of
7 or 14 most abundant plasma proteins. IEF-LC-MS/
MS analysis revealed enrichment for 23 low abundant
proteins in depleted fraction, which covered around 5-
6% of total protein identifications [66]. As exemplified,
even application of the depletion approach followed by
shotgun analysis did not allow the identification of the
majority of low abundance proteins. Additionally, some
issues concerning the depletion approach include: a) re-
producibility, b) co-depletion of proteins of interest, c)
requirement of higher amount of starting material or d)
removal of only selected highly abundant proteins. Al-
ternative, extensive fractionation can be performed. Re-
cently, Atanassov et al. [67] described the combination
of three separation strategies namely 1D-PAGE, pIEF
(peptide isoelectric focusing) and RP-HPLC as an ef-
fective methods for reaching deeper proteome. Authors
analyzed the nuclear extract from HeLa cells using the
single separation methods (1D-PAGE and pIEF) as well
as combined approach for the nuclear extract from
HeLa cells. Increasing number of peptide and protein
identifications were observed for the established three
dimensional workflow (56228 peptides, 5260 proteins)
in comparison to each individual approach (1D-PAGE-
LC-MS/MS: 38557 peptides, 3540 proteins; pIEF-LC-
MS/MS: 31113 peptides, 3945 proteins). Zhang et al.
utilized a mix-bed ion-exchange chromatography (mix-
ture of the strong cation and anion-exchange material) for
protein separation prior to MudPIT analysis (multidimen-
sional-protein identification technology) [68]. The work-
flow was tested using cell lysate from mammary tumor
4 T1. Using the classical MudPIT approach, 1292 proteins
were identified, whereas application of 3D workflow en-
abled identification of 3084 proteins and covered 86% of
identified proteins using classical MudPIT. Therefore, ap-
plication of additional fractionation strategy can improve
the proteome coverage. On the other hand, Zubarev et al.
recently showed that the in-depth proteomic analysis can
be performed using only one dimensional LC-MS/MS
[69]. However, optimization is necessary, including sample
preparation, chromatographic separation as well as MS
analysis. The authors report that a 4 h procedure using a
50 cm column and MS/MS analysis enabled the identifica-
tion of 37554 peptides corresponding to 4825 proteins
(1% FDR at peptide and protein level). This covers around
50% of analyzed human malignant melanoma cell line
(A375). Apparently, state-of-the-art MS-based platforms
combined with optimized analytical workflow enable
“deep” proteome coverage. Moreover, in comparison to
the multidimensional procedures, the lower initial amount
of starting material, shorter analytical time and cost-
effectiveness are advantageous. In this part of review, we
will summarize the current untargeted proteomics plat-
forms for biomarker discovery along with the recent and
representative examples of their application in bladder
cancer biomarker discovery.

Gel-based proteomics platforms for biomarker discovery
Two dimensional gel electrophoresis (2-DE) followed by
MS serves as a classical approach in analysis of differen-
tially expressed proteins [70-72]. In this method, two
separation steps are conducted namely isoelectric focus-
ing (IEF) and SDS-PAGE. First, proteins are separated
according to their charge in an immobilized pH gradient
(IPG) and subsequently based on their molecular mass in a
polyacrylamide matrix. Afterwards, protein spots are visu-
alized and the signal intensity is used for (semi)quantitative
analysis [73,74]. 2-DE enables separation of up to 10000
proteins [75] along with detection of protein isoforms
[76,77]. Particularly, analysis of post-translational modifica-
tions including phosphorylation and glycosylation is of
paramount importance, since their alteration is frequently



Frantzi et al. Clinical and Translational Medicine 2014, 3:7 Page 7 of 22
http://www.clintransmed.com/content/3/1/7
related with pathological states. However, moderate re-
producibility and limited detection for hydrophobic
proteins (such as membrane), low abundance proteins,
proteins above or below the pore size of the gel as well
as proteins beyond the pH range of the IPG strips are
shortcomings of 2-DE [78].
Difference gel electrophoresis (DIGE) is the recent ad-

vancement in traditional 2-DE [79]. In this approach
three fluorescent cyanine dyes (Cy2, Cy3, and Cy5) of
identical charge, similar molecular mass and different
fluorescent properties, are used to label the proteins be-
fore separation [79,80]. The three samples: control, case
and internal standard (combination of equal amounts of
tested samples) are pooled after labeling and separated
simultaneously. This reduces the number of gels as well
as gel-to-gel variability, which is one of the major draw-
backs of the classical approach [79,80]. Also, improved
matching and more accurate quantification are achieved
due to the presence of internal standard on all gels [80].
DIGE is more expensive and requires additional equip-
ment like fluorescent scanner, but also offers higher sen-
sitivity (0.5 fmol proteins) [80].

Gel-free proteomics
Shotgun proteomics To bypass the limitations of the
classical gel-based approach, efforts have been focused
on the development of gel-free strategies. Shotgun or
“bottom-up” proteomics is based on the analysis of na-
tive or protease derived peptides followed by sequencing
with tandem mass spectrometry (MS/MS). Keeping in
mind that the complexity of the sample is high, to im-
prove the proteome coverage extensive/multidimensional
fractionations has to be conducted prior to MS/MS ana-
lysis. Currently, different fractionation strategies are ap-
plied including mostly chromatography (ion exchange,
reverse phase etc.) [68,69], IEF [66] or combination of
these techniques [67]. This issue was described in the
introductory part in this section.
In general, the large-scale proteomic analysis by MS/

MS includes the following parts: 1) peptide ionization, 2)
separation of precursor ions based on the mass-to-
charge ratio, 3) fragmentation, 4) analysis of daughter
ions, and 5) data analysis including identification and quan-
tification [81]. Two major quantification approaches
can be employed namely: label-based (metabolic or
chemical labeling) and label-free (spectral counting and
intensity-based analysis) approaches. Both approaches
along with their advantages and limitations were exten-
sively reviewed by DeSouza et al. [82]. Briefly, peptides
from particular samples are labeled with different tags,
mixed and analyzed by MS. In metabolic labeling (e.g.
SILAC) heavy isotope amino acids are incorporated during
protein synthesis, while in chemical labeling (e.g. Isobaric
tag for relative and absolute quantification (iTRAQ),
Isotope- coded affinity tags (iCAT) are applied after tryptic
digestion. The mass shift introduced by the label is used
to distinguish components derived from the different sam-
ples. The analytical variability on quantification is reported
to significantly reduced in this experimental procedure in
comparison the label-free approach where samples are
measured separately, and differences in sample prepar-
ation as well as run-to-run variability can affect the results.
Labeling is more expensive, since it requires isotope spe-
cific labeling reagents, and may also result in the introduc-
tion of artefacts, as well as a reduced coverage and
dynamic range, due to the pooling.
Even though tandem mass spectrometry can result in

high number of protein identifications, the false positive
and false negative identifications are an inherent prob-
lem in shotgun experiments. Since shotgun proteomics
is a peptide-based approach, the false protein identifica-
tions can occur as a result of incorrect assignment of
fragmented ion spectra to peptide sequence as well as
further inferring of protein identifications. Therefore,
the false discovery rate is evaluated on peptide and pro-
tein level. Strategies to evaluate the false discovery rate
for mass spectrometry results include searching against
concatenated (chimeric database, composed from tar-
geted and decoy database) [83] or decoy database [84],
application of statistical models [85,86], or utilization of
scoring system [87]. Methods for evaluation of assign-
ment of peptides to protein sequences have been also
described [88,89]. Of note: in general estimates of FDR
are too optimistic [90], and the true FDR may be up to
10-fold higher.

CE-MS Another interesting strategy that can be used in
the biomarker discovery phase relies on analysis of the low
molecular weight proteome, also defined as “peptidome”.
For the identification of biomarkers on the peptidomics
level, capillary electrophoresis coupled to mass spectrom-
etry (CE-MS) has been widely applied [91-93]. Analytical
performance of CE-MS was described recently and several
issues including precision, stability, limits of detection, re-
producibility and intra-variability were addressed [42].
The developments and applications of this platform in
clinical proteomics were reviewed recently [94,95]. Briefly,
small proteins and peptides are separated through an elec-
tric field according to their charge and size. Currently, sep-
aration in an uncoated bare fused silica capillary column
at low pH is the best practical solution [95]. Different
capillary coatings have been proposed to improve the
analytical performance (robustness, resolution, repro-
ducibility), however due to coating instability none of
these techniques has been routinely used [96]. After elec-
trophorethical separation, analytes are ionized (mostly by
electrospray ionization (ESI) followed by MS analysis.
Two coupling approaches are generally employed:
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sheathflow and sheathless interface. In general, all
large-cohort studies are performed using the sheathflow
approach, while sheathless interfaces currently are of
limited robustness and reproducibility (as presented in
the table from [95]). Detected peptides are character-
ized by the CE migration time, signal intensity and mo-
lecular mass. For identification, different platforms
were tested e.g. CE-MALDI-TOF-TOF (Matrix-assisted
laser desorption/ionization time-of-flight mass spec-
trometry), CE-ESI-QTOF (Quadrupole time-of-flight
mass spectrometer) [97] and CE-Orbitrap [98]. The mi-
gration time in CE is dependent only on mass and the
number of basic, neutral and polar amino acids [97]. This
fact can be used to assign the peptide sequences obtained
from LC-MS/MS (Liquid Chromatography) analysis to
peptide mass that is detected by CE-MS [97].

Statistical data mining for proteomic biomarker discovery
Current proteomic approaches enable assessment of
thousands of biomarker candidates. As aforementioned,
at this stage a high false positive rate is observed [10].
Therefore, robust statistical analysis that allows the de-
termination of “true” as well as promising candidates for
further verification is of paramount importance [99].
Dakna et al. examined different statistical tests to dis-
cover valid biomarkers from proteomic data [100]. The
non-parametric Wilcoxon test was found best suited for
analysis of proteomic data: after validation in an inde-
pendent sample set the highest percentage of valid bio-
markers were detected. Additionally, the authors showed
that adjustment for multiple testing is mandatory to de-
rive potential biomarkers that can be verified in an inde-
pendent test set.
Obviously, selection of candidates should not be based

only on statistical significance, but also on the ability to
fulfill a specific clinical need [43,100]. However, poor
statistical design at the early experimental stage results
in lack of statistical power to select relevant candidates,
due to insufficient number of samples analyzed [43,100].

B) Verification of biomarkers
Verification is mandatory to evaluate the findings ob-
tained in the discovery phase. Although in discovery
phase unbiased or untargeted approaches are applied to
define a candidate or a set of candidate biomarkers, the
verification phase represents a targeted approach for fur-
ther evaluation of biomarkers sensitivity, specificity and
predictive capabilities. More importantly, the verification
is performed on the appropriate biological specimen that
may be further used in clinical practice. In general, veri-
fication studies require larger patient populations than
the discovery phase. Depending on the specific study de-
sign the analytical platform could be the same as in the
discovery phase (CE-MS based classification) or vary
with preferable assays to be either mass spectrometry
based [101,102] or protein binding assays [103].

Protein binding assays
Protein binding assays include both the traditional im-
munoaffinity based ELISA (Enzymed- linked Immuno-
sorbent assay) or other multiplex assays and Protein
microarrays [104]. The most widely used technique for
protein quantification is ELISA. The advantages of the
method are speed, sensitivity and specificity, and com-
patibility with standard clinical laboratory equipment, so
that it can be applied in clinical routine. The selectivity
depends on the antibody that is applied and furthermore
it has to be evaluated in the specimen of interest. The
additional limitation of ELISA is that it cannot provide a
simultaneous quantitative analysis of multiple potential
biomarkers. In order to obtain quantitative data via par-
allel analyses for multiple antigens, Multiplex immuno-
assays have been developed. Protein microarrays are
designed to print specific antibodies or antigens onto a
support surface, generally a slide or membrane. A single
sample is hybridized to the array. The captured antigens
or antibodies are subsequently detected [105]. Assay plat-
forms such as MULTI-ARRAY (Meso Scale Discovery),
Bio-Plex (Bio-Rad Laboratories), have been applied for
Cytokine detection, while regarding the renal injury a
panel of 7 Biomarkers based on Antibody assays has been
proposed as biomarkers with improved potential to assess
renal function [106]. A major risk in the multiplex arrays
is the increased cross-reactivity, due to the presence of
multiple antibodies, which are normally applied as a
mixture. To improve the assay specificity, Juncker and
his collaborators have developed a number of innova-
tive platforms with improved performance [107-109].
As a solution to avoid the mixing of the reagents, this
group attempted the application of glass slides in a de-
vice called “snap chip”. The antibodies are immobilized
in a multiple arrangement on a glass slide, where the sam-
ple is also applied [107]. The above group also introduced
the use of gel captured antibodies in alginate droplets to
increase the sensitivity of the detection. In this study in
2011, the assay was evaluated using 6 proteins, 3 already
reported cancer biomarkers, as well as 3 cytokines (CEA,
HER2, ENG and TNF-a, IL-8, MIP/CCL4 respectively)
[108]. A new methodology based on the co-localization of
the primary captured antibodies and the secondary detec-
tion antibodies is now proposed, namely ACM or Anti-
body Colocalization Microarray. When compared with the
classical singleplex ELISA and conventional multiplex
sandwich assays, ACM was proven to decrease the level of
cross-reactivity. However, this technique could be more
complex as it requires precision in the alignment [109].
In general, immunoassays are widely used in U.S. Food

and Drug Administration (FDA) approved devices for
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cancer biomarkers, possibly also as a result of bias of the
regulatory agencies towards conventional, but well char-
acterized technologies. Many applications are reported,
as reviewed by Fuzery et al. [8].

Mass spectrometric quantitative approaches
Apart from antibody-based technologies alternative
methods for quantitative analysis and validation of po-
tential biomarkers are quantitative MS methodologies,
including the application of scanning techniques, such
as multiple reaction monitoring (MRM) and other stable
isotope labeling-based approaches such as SISCAPA
(Stable Isotope Standards and Capture by Anti-Peptide
Antibodies). The combination of high throughput cap-
abilities of Mass Spectrometry, together with increased
specificity and sensitivity that can be compared to im-
munoassays in some cases are the main advantages that
make MS based applications very popular for quantita-
tive validation studies [110]. MRM has the great advan-
tage that an antibody is not required, but still awaits
application in a clinical setting [111].

Multiple reaction monitoring MRM is the extended
version of Selected Reaction Monitoring (SRM) [112]. The
analysis is focused only on biomolecules of specific
masses, while all others are excluded. Higher specificity is
achieved by the isolation of a specific precursor ion,
collision-induced fragmentation and the subsequent de-
tection of the specific product ion after fragmentation.
Triple quadrupole instruments are typically employed for
this approach [111,113,114]. A recent application in bio-
marker characterization in tissue specimens from patients
with colorectal carcinoma was introduced (Hyperplex
MRM). In this study a combination of a strategy for rela-
tive quantification such as iTRAQ was conducted with an
mTRAQ approach for absolute quantification. This re-
sulted in increased robustness of the MRM approach since
4 different samples were labeled simultaneously and in in-
creased validity of the quantification since relative and
total quantities of the biomarkers could be achieved [115].
Another variation of MRM methodology is a peptide
immunoaffinity enrichment technique coupled with
stable isotope dilution mass spectrometry, called SIS-
CAPA [116]. In this technique, one or more selected
tryptic peptides with unique sequences representing the
target protein, the “proteotypic” peptides, are enriched
using anti-peptide antibodies bound to Protein G. A
stable isotope dilution (SID) method is applied as an in-
ternal standard by the use of a defined quantity of
spiked stable isotope- labeled peptide of the same se-
quence in a pre-defined quantity. The relative quantifi-
cation of the peptides is indicative of the protein
concentration in the sample. In this assay, the sensitiv-
ity and specificity of antibody binding is combined to
the versatility of MS, providing several advantages com-
pared to the conventional immunoassays. Moreover, it
provides the capability of analysis of multiple analytes
in a single assay by combining antibodies in the enrich-
ment step [117-119].

Pre-treatment strategies In order to decrease the limit
of detection, different pre- treatment strategies can be
combined, like enrichment of the peptides of interest,
sample pre-fractionation and depletion of the high abun-
dance peptides. For targeted peptide enrichment, specific
anti-peptide antibodies can capture the peptides of inter-
est in the way it described above in the SISCAPA ap-
proach [120].
Many studies have reported the value of sample pre-

fractionation and/or depletion. Kuhn et al. [121] first
applied this strategy to characterize C-reactive protein in
serum of patients with rheumatoid arthritis upon deple-
tion of the 3 most abundant proteins in serum: albumin,
immunoglobulin G, and haptoglobin. Yang et al. con-
ducted two-dimensional solid-phase extraction as frac-
tionation step prior to quantification of somatropin in
plasma samples [122]. Keshishian et al. reported a 1000-
fold improvement of limit of detection (LOD) upon de-
pletion of seven high abundant plasma proteins by
strong cation exchange chromatography [123]. A range
of the values for the limit of quantification (LOQ) was
between 1 and 10 ng/ml and coefficient of variation
(CV) of 3-15% was estimated [123]. Employing the SIS-
CAPA methodology, Kuhn et al. enriched for troponin-I
and interleukin-33 in plasma samples to characterize
these proteins as cardiovascular biomarkers [124]. To as-
sess the inter-laboratory performance of immunoaffinity
enrichment coupled to MRM- MS, Kuhn et al. designed
an inter-laboratory study based on the quantification of
8 predefined peptides from S100A7, S100A8, S100A12,
and IL1RN proteins [125]. Coefficient of variation was
calculated for replicates analyzed by the same system
(intra-laboratory) and across different laboratories (inter-
laboratory) [125]. Overall inter-laboratory CV was esti-
mated below 25 at the LOQ level. Inter-laboratory CV for
immuno-MRM particularly, was calculated to be 14%,
while intra-laboratory CV for immuno-MRM was 7%, re-
spectively [125].

Data mining & statistical analysis
Depending on the quantitative approach that has been
followed, different methodologies can be followed for
peak integration, data analysis and downstream statis-
tical evaluation [126,127]. For relative quantification or
differential expression purposes, data normalization has
to be performed prior to every type of comparison. A
widely used approach especially when using label-free
proteomics is the one described by Jantos-Siwy et al.



Table 1 List of reliable protein and peptide databases

Databases for protein/Peptide data repository

Protein/Peptide
Database

Website/Link

UniProt/Swiss Prot http://www.uniprot.org/

Proteomics Identifications
Database

http://www.ebi.ac.uk/pride/

MEROPS http://merops.sanger.ac.uk/

PepBank http://pepbank.mgh.harvard.edu/

PeptideAtlas http://www.peptideatlas.org/

ProteinProspector http://prospector.ucsf.edu/prospector/
mshome.htm

MassMatrix http://www.massmatrix.net/mm-cgi/home.py
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[128], where endogenous stable and abundant peptides
are used as internal standards. Another approach is
SRMstats which can be applied to adjust for the median
of the logarithmic values of the intensities obtained by
the heavy isotope labeled peptides [129]. Variation
caused by the analytical process or sample treatment
may be corrected with the same methodology proposed
by Johnson et al. for microarrays studies [130], where
parametric and non-parametric formulas are applied,
taking into account the mean intensity and variance in
each sample [130].

C) Bioinformatics platforms in clinical proteomics
Knowledge of biological mechanisms is helpful in the in-
terpretation of proteomic results [131]. The application
of computational techniques in analysing information
associated with biomolecules on a large-scale platform
has now been firmly established as a discipline in mo-
lecular biology encompassing a wide subject area from
structural biology, genomics to gene-expression studies.
Biological data at the omics level from transcriptomics
to proteomics and metabolomic profiles are being pro-
duced at a very high rate [132,133]. For such a surge in
data, computing science has become indispensable to
biological research especially in handling large quantities
of data and probing the complex dynamics observed in
nature [134]. The main aims of bioinformatics include:

1) The organization of the data in a way to allow
researchers access existing information and to
submit new entries. Some of which include GEO
[135], ArrayExpress [136] and Human Proteinpedia
(http://www.humanproteinpedia.org/),

2) The development of new tools and resources for
data integration and analysis, for which expertise in
computational theory as well as a thorough
understanding of biology is required. Such examples
are interaction databases like IntAct, BioGrid and
databases related to diseases like OMIM, Oncomine
and metabolomics databases like HMDB.

3) The application of these tools in data analysis and
interpretation of the results based on a biological
meaningful manner, for instance web based tools like
String and Cytocape for visualisation or AmiGO,
KEGG, DAVID on the pathway level.

In particular for proteomics datasets, gene ontology
and pathway annotations, as well as patient information
should not only contain high confident data but should
also be in a well-structured architecture to provide genu-
ine data retrieval, coverage, and utility [137]. Some of the
reliable protein/peptide and biological pathway resources
used for proteomics profile processing in research and
academic firms are described in Tables 1 and 2. After
relying on annotated data sets from different databases
(Table 2), the next steps are computational approaches in
a systematic manner to analyse such integrated data.
Computational approaches also provide means for infer-
ring in silico and analysing changes in interactions and
network dynamics [138]. Some of the computational tools
for integrating proteomics datasets on a pathway level are:

1) Pathway analysis: KEGG [139], Ingenuity Pathway
Analysis (www.ingenuity.com) MetaCore
(http://host.genego.com/metacore.php)

2) Pathway mapping: Reactome [140], PathViso [141],
BioCyc plugin [142]

3) Gene Ontology analysis: ClueGO [143], BiNGO
[144], FuncAssociate [145]

4) Network analysis: GeneMania [146], DisGeNet
[147], EnrichmentMap [148], NetAtlas [149],
NetworkAnalyzer (http://med.bioinf.mpi-inf.mpg.de/
netanalyzer/index.php) [150], KUPNetViz [151]

5) Interactome mapping: iRefScape [152], MiMI [153],
PanGIA (http://prosecco.ucsd.edu/PanGIA/),
BioNetBuilder [154], Bisogenet [155], FunNetViz
(http://www.funnet.ws/)

6) Metabolomics analysis: IDEOM [156], MAVEN,
MetaCore, Beilstein, mzMatch [157]

Applications of systems biology – disease diagnosis and
treatment
Network based approaches to human diseases appear
to have enormous potential in biological and clinical
applications. To better understand the effects of cellular
mechanisms on disease progression, identifying pro-
teins and pathways that are related to disease may offer
better targets for drug development. These advances
may also lead to the selection of better and more accur-
ate biomarkers that are associated with diseases and
help with disease classification. Current systems-based
approaches focus on identifying pathways that may be
used to subtype a disease and develop treatments for

http://www.humanproteinpedia.org/
http://www.ingenuity.com
http://host.genego.com/metacore.php
http://med.bioinf.mpi-inf.mpg.de/netanalyzer/index.php
http://med.bioinf.mpi-inf.mpg.de/netanalyzer/index.php
http://prosecco.ucsd.edu/PanGIA/
http://www.funnet.ws/
http://www.uniprot.org/
http://www.ebi.ac.uk/pride/
http://merops.sanger.ac.uk/
http://pepbank.mgh.harvard.edu/
http://www.peptideatlas.org/
http://prospector.ucsf.edu/prospector/mshome.htm
http://prospector.ucsf.edu/prospector/mshome.htm
http://www.massmatrix.net/mm-cgi/home.py


Table 2 List of highly cited pathway databases for proteomic applications

Most cited repositories for biological pathways

Pathway databases Biological pathway Website/Link

Reactome KnowledgeBase Signal Transduction Pathway http://www.reactome.org

BioCarta Pathway Diagrams Signal Transduction Pathway http://www.biocarta.com/genes/index.asp

Pathway Commons Signal Transduction Pathway http://www.pathwaycommons.org/pc/

Protein ANalysis THrough Evolutionary Relationships Signal Transduction Pathway http://www.pantherdb.org

Protein Lounge Signal Transduction Pathway http://www.proteinlounge.com

WikiPathways Signal Transduction Pathway http://wikipathways.org/

Transcription Factor encyclopedia Regulatory Pathways http://www.cisreg.ca/cgi-bin/tfe/home.pl

Transcription Regulatory Regions Database Regulatory Pathways http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/

A Public Database of Transcription Factor and Regulatory Sequence
Annotation

Regulatory Pathways http://www.pazar.info/

Homo Sapiens Comprehensive Model Collection (HOCOMOCO) Regulatory Pathways http://autosome.ru/HOCOMOCO/index.php

Transcription Factor Database Regulatory Pathways http://www.gene-regulation.com/index2.html

Human Protein Reference Database Protein-Protein Interactions http://www.hprd.org/

Human Annotated and Predicted Protein Interaction Database Protein-Protein Interactions http://bio.informatics.iupui.edu/HAPPI/

Biomolecular Interaction Network Database Protein-Protein Interactions http://bond.unleashedinformatics.com/

Molecular Interaction Database Protein-Protein Interactions http://mint.bio.uniroma2.it/mint/

Biological General Repository for Interaction Datasets Protein-Protein Interactions http://thebiogrid.org/

Search Tool for the Retrieval of Interacting Genes/Proteins Protein-Protein Interactions http://string.embl.de/
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individual disease groups. Network modules have been
used to predict patient survival, metastasis, invasion,
drug response etc. [158-164]. For this purpose, a well
characterised group of samples is required related to a
disease subtype/stage, for example cancer metastasis to
search among specific networks or so called sub-
networks for potential biomarkers that enable disease
classification [165]. Additionally, systems analysis may
provide with insights in the molecular mechanisms
underlying the diseases. This may be highly valuable in
drug development by indicating correlation between
the response to a drug and the responders’ molecular
background. An example of such an approach is the
study by Chu and Chen, where a protein-interaction
network was applied to investigate drug targets related
to apoptosis [166].

D) Validation of biomarker candidates
The pivotal objective of the validation phase is to evalu-
ate the clinical utility of the biomarker candidates [9].
Validation has to be performed in an independent, suffi-
ciently large sample set also reflecting the heterogeneity
of targeted population. This is mandatory also since the
diagnostic accuracy is often generally overestimated in
the model established in training set (groups of individ-
uals used for discovery of biomarkers and development
of the model) [52]. To demonstrate the clinical utility,
validation studies have to be driven by the specific con-
text of use and targeted population, since depending on
the clinical needs the biomarker has to fulfill different re-
quirements regarding clinical performance (i.e. sensitivity
and specificity). The accuracy of individual biomarker or
biomarkers panel performance can be assessed by the
ROC (receiver operating characteristics) analysis [167].
ROC curve represents a plot of true-positive rate (sensitiv-
ity, percentage of cancer patients who tested positive for
biomarkers) versus false positive rate (FPR, percentage of
healthy subject classified as having disease). Whereas spe-
cificity is defined as 1-FPR. In this method the area under
the curve (AUC) is used as an indicator of the biomarker
performance regarding the ability to distinguish between
control and patients affected by disease. It is of paramount
importance to take into account the false positives and
false negatives in order to establish an optimal classifica-
tion threshold at desired specificity and sensitivity level.
Biomarkers utilized for screening should reveal high sensi-
tivity and, frequently even much more important, a low
level of false positives. On the other hand, specific diag-
nostic tests require high positive predictive values (PPV,
percentage of diseased patient among all positive test re-
sult). Due to the fact that sensitivity and specificity do not
provide the information about probability of disease oc-
currence, disease predictive values have to be assessed i.e.
(PPV, PPN). However, these values are dependent on dis-
ease prevalence and can only be assessed in prospective
studies [8]. Collectively, regardless of the clinical use, con-
sequences from false positive and false negative cases have
to be always considered as a benefit-to-harm ratio.

http://www.reactome.org
http://www.biocarta.com/genes/index.asp
http://www.pathwaycommons.org/pc/
http://www.pantherdb.org
http://www.proteinlounge.com
http://wikipathways.org/
http://www.cisreg.ca/cgi-bin/tfe/home.pl
http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/
http://www.pazar.info/
http://autosome.ru/HOCOMOCO/index.php
http://www.gene-regulation.com/index2.html
http://www.hprd.org/
http://bio.informatics.iupui.edu/HAPPI/
http://bond.unleashedinformatics.com/
http://mint.bio.uniroma2.it/mint/
http://thebiogrid.org/
http://string.embl.de/
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Ultimately, application of novel biomarker/biomarkers
panel has to improve the outcome. A striking example of
an unfortunate development is the prostate specific anti-
gen (PSA) test. The applicability of this test for prostate
cancer screening arose controversy in medicine [168]. It
has been claimed that decrease of mortality for prostate
cancer is the major benefit of PSA-based screening. How-
ever, Andriole et al. reported that the screening does not
reduce the number of deaths for prostate cancer after 13-
years follow up [169]. Moreover, the false-positive results
(and they represent the majority in this case) have harmful
consequences including invasive biopsy as well as follow-
ing complication, overdiagnosis and overtreatment of dis-
ease [168].
Varied challenges are encountered at the validation

stage including e.g. 1) samples quality and availability, 2)
funding and 3) requirements of regulatory agencies
[170]. Due to these facts, validation is a bottleneck in
the biomarker development process [170]. In addition,
the scientific reward in validation is moderate: validation
studies are generally rejected in high impact journals. To
also ensure robustness, validation should be performed
in a multi-center study [52], and selected cohorts have
to represent the population targeted with the biomarker.
Bearing in mind that most promising candidates have to
be tested in hundreds or even thousands of samples, val-
idation requires quantitative, robust, (multiplex) and
high throughput methodology. Not all of the platform
applicable at previous stages can fulfil these require-
ments. Therefore, changing the platform can be neces-
sary: biomarkers discovered using gel-based approach
cannot be further validated by the same techniques,
mainly due to its limited throughput. On the other hand,
CE-MS serve as a good example of a technique, which
can be applied for all biomarker development phases
[91-93]. High reproducibility, high throughput and cost-
effectiveness are reported [42]. These characteristic
along with the need for developing biomarker panels,
makes CE-MS an attractive platform for biomarker
development.
Currently, antibody-based approaches are considered

as the gold standard in clinical application, mostly since
this is a technology well known to everybody. However,
application of immunoassays is often hampered by the
lack of high-quality antibodies. Additionally, the ELISA
assay enables detection of a single antigen, a drawback
for the validation of biomarker panels. Moreover, the
low-dynamic range and high cost of development of
ELISA based assays indicate a moderate utility of this
approach in large scale validation studies. To bypass
some of the limitations multi-analyte immunoassays
have been applied [171] including planar array [172] and
micro-bead assays [173,174]. In planar array, different
antibodies are spotted on a flat surface, whereas in a
second type, antibodies are immobilized to varied micro-
beads [172]. Recently, Fu et al. [175] compared the analyt-
ical performance of five currently used multiplex immuno-
assays in the context of their application for validation of
biomarkers (particularly cytokines) in serum. The MULTI-
ARRAY (planar assay) and Bio-Plex (magnetic beads) are
characterized by better performance than other tested
multiplex assays i.e. A2 (Beckman Coulter), FAST Quant
(Whatman Schleicher & Schuell BioScience), and Flow-
Cytomix (Bender MedSystems), but this is also dependent
on analyzed biospecimens (serum or purified cytokines)
[175]. Application of multiplex assays enables high-
throughput quantitative analysis and uses less sample vol-
ume. On the other hand, development of novel multiplex
immunoassays is a challenging task. Currently, antibodies
are commonly used as capture ligands, but aptamer li-
gands (oligonucleotides) may offer an alternative novel ap-
proach [176,177]. A promising alternative are MS-based
(typically MRM) approaches, as described in details in
previous section. After establishing clinical utility (which
equals significant improvement over the current state of
the art) [16], further assessment of analytical performance
is required. In this case, the following issues have to be ad-
dressed: detection and quantification limit, precision, sta-
bility of analyte, specificity, interfering compounds etc.
This topic was covered recently by Fuzery et al. [8] and it
is beyond of the scope of this paper to review this issue in
detail.

Application of proteomics approaches in BCa
biomarker discovery
Proteomic approaches have been applied at all stages of
biomarker discovery workflow. This includes untargeted
platforms for biomarker identification (gel-based and
gel-free) [70,71,178-182] and targeted platforms for fur-
ther verification and validation of biomarker candidates
(MRM, multi-analyte assays) [106,108,115,183,184]. Add-
itionally, to improve proteome coverage and identify low
abundance protein, enrichment strategies have been also
applied e.g. immobilized metal affinity (IMAC) [179,182]
dual-lectin chromatography [185], or peptidomics ap-
proaches [92,93]. Bladder cancer is the second in inci-
dence and mortality malignancy of the genitourinary
system. At initial diagnosis, the majority of patients
(75%) exhibit non-muscle invasive cancer (pTa, pT1,
pTis), whereas the rest belongs to muscle invasive dis-
ease (pT2, pT3, pT4) [22]. The invasive phenotype re-
sults in significant decrease of the survival rate [22].
Additionally, high recurrence rate and cancer progres-
sion impose the requirement for lifelong monitoring of
patients after treatment. Up to date, the gold standard
for clinical diagnosis includes invasive cystoscopy and
non-invasive voided urine cytology with limited sensi-
tivity for detection of low grade tumors [186]. Although
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some tests have been approved by FDA (e.g. NMP-22,
BTA-TRAK, uCyt+), they seem to have no clinical util-
ity [187-189]. Therefore, there is an urgent clinical need
for application of novel non-invasive tests for early de-
tection, patient monitoring and stratification. A vast
number of potential biomarkers have been discovered
using proteomics as well as genomics approaches. The de-
tailed description of currently available bladder cancer
biomarker candidates is beyond the scope of the manu-
script and this topic was recently reviewed [190,191]. To
give an overview on the current status of BCa proteomic
biomarkers, the representative examples along with study
design and potential clinical utility are described below
and summarized in Table 3.

Gel-based proteomics
Chung et al. detected by 2-DE elevated levels of cofilin
in BCa tissues vs. control urothelium. In total, 24 sam-
ples were analyzed resulting in identification of 12 differ-
entially expressed proteins. The up-regulation of cofilin
in BCa tissue specimens was confirmed by Western Blot
and immunohistochemistry. Additionally, an antibody
specific for phosphoylated Ser-3 of cofilin revealed ele-
vated phosphorylation in BCa samples, especially in
muscle-invasive BCa. In parallel, in vitro studies showed
decreased EGF-induced migration in cofilin knock-down
T24 cells. Collectively, both expression and phosphoryl-
ation of cofilin may be involved in BCa aggressiveness
[178]. In another study, the urinary proteome was inves-
tigated in order to detect biomarkers for aggressive BCa.
Zoidakis et al. analyzed urine samples from NMIBC and
MIBC patients using enrichment by IMAC [182]. Col-
lected enriched fractions were separated using 1D-SDS
PAGE followed by in-gel digestion. Protein identification
was performed using LC-MS/MS analysis. The study re-
vealed aminopeptidase N, profilin-1 and myeloblastin as
potential biomarker candidates. Further confirmation by
Western blot or ELISA was conducted for selected pro-
teins. Aminopeptidase N found to be down-regulated in
MIBC, whereas Profilin-1 and myeloblastin were up-
regulated in invasive cancer [182]. Orenes-Pinero has
applied differential gel electrophoresis to investigate the
urinary proteome of BCa patients (n = 7, positive cy-
tology) and controls (n = 7, negative cytology) [181]. Dif-
ferentially expressed proteins were identified by peptide
mass fingerprinting using MALDI-TOF MS, including
Regenerative protein (Reg-1), cytokeratins 1, 2 and 10,
T-cell surface protein CD5 and prefoldin. Among these,
only cytokeratin 1 was down-regulated in urine from
BCa patients. Western blot analysis of eight bladder can-
cer cell line models (from non-invasive to metastatic) in-
dicated the correlation between the levels of the proteins
identified by proteomics and cancer progression. Quan-
titative analysis of urinary Reg-1 was evaluated by ELISA
(n = 80) and used for evaluation of diagnostic accuracy.
Sensitivity and specificity at the level of 0.0038 ng/mL
were 81.3% and 81.2%, respectively.

Gel-free proteomics
The shotgun approach followed by labeling or label-free
quantification has also been widely implemented in bio-
marker discovery research. Frantzi et al. described urin-
ary histone H2B and Zinc-finger 335 (NIF-1) as a
potential progression marker for BCa. Urine from benign
(n = 5), non-invasive (n = 10) and invasive cases (n = 5)
was enriched by IMAC and native peptides were analyzed
by LC-MS/MS. It total, 1845 peptides were detected (638
precursor proteins). Differential regulation of histone H2B
and NIF-1 were verified further by ELISA (urine, n = 166)
and immunohistochemistry (tissue samples, n = 32) [179].
Apart from the label-free approach, labeling techniques
have been also employed to discover biomarkers for BCa.
Kato et al. used iTRAQ labeling to compare the proteome
from bladder carcinoma urothelium (n = 6) with paired
normal tissues (n = 6) [180]. 493 proteins were identi-
fied including 15 up-regulated proteins in cancer cases
in comparison to adjacent normal samples (e.g. DDX39,
B-cell receptor-associated protein 31, chaperonin con-
taining TCP1, FK506 binding protein 4, S100 calcium
binding protein A1). Immunohistochemistry (n = 303)
was used to verify the findings for protein which have
not been previously evaluated. However, actin-related
protein 3 homolog B was not verified, since the anti-
bodies were not commercially available. This example
indicates one of the drawbacks for application immune-
based assays for protein verification: lack of specific anti-
bodies. Authors found decreased expression of DDX39
with higher cancer stage and grade. In addition, low ex-
pression level of DDX39 significantly correlates with dis-
ease progression. Further functional analysis using siRNA
assay was performed in bladder cancer cell line (T24). As
a result, an increased invasion ability of cells transfected
with si-DDX39 compared to control was observed. There-
fore, reduced expression of this protein may serve as a
biomarker to predict disease progression [180].
The search of potential biomarker candidates can be

performed also at the peptide level. Briefly, peptidomic
profiling was used for detection of urothelial carcinoma
[93] as well as for prediction of MIBC [92]. In all these
cases, biomarker panels were developed after analysis of
a training set and further validated in independent test
sets. CE-MS analysis was conducted for the discovery
and initial validation phase. In a first study, Theodorescu
et al. developed a 22 polypeptides panel for diagnosis of
urothelial carcinoma [93]. The limited specificity (73%)
was obtained in the test set (varied genitourinary disor-
ders), whereas the sensitivity remained high (100%).
Moreover, authors also advocated the application of



Table 3 Representative examples of BCa biomarker candidates identified by proteomic approaches

Biomarker identification;
Biomarker candidate/panels

Verification/Validation Regulation Potential clinical value;
Biomarker performance

Ref.

Gel-based approaches

2DE, n=24

[178]

Tissue: Western Blot ↑ in both NMIBC and MIBC; Predict cancer progression

6 normal urothelium, 9 NMIBC, 9 MIBC Immunohistochemistry, n=24
↑ phosphorylation level of cofilin in BCa
tissue samples (most prominent in MIBC).

Lack of evaluation of biomarker
performance.Cofilin For both experiments, the same material was

used as in the discovery phase.

IMAC, 1-SDS-PAGE, n=35 Western Blot

[182]

Urine: Aminopeptidase N, n=108 Aminopeptidase N
Biomarker for cancer

aggressiveness

Two pools from NMIBC, n1=9, n2=7 Myeloblastin, n=97 ↑ in MIBC

Two pools from MIBC, n3 = 9, n4=10 ELISA Myeloblastin, Profilin 1
Lack of evaluation of biomarker

performance.

Aminopeptidase N, Myeloblastin, Profilin-1, n=82 ↓ in MIBC

Profilin-1

Western Blot, 8 BCa cell line models

↑ in BCa cases, association with stage [181]

DIGE, n=14 Tissue microarray, n=292 Diagnosis, staging, outcome
prognosis

Urine: Primary urothelial cell carcinoma Detection of BCa:

7 BCa (positive cytology),
7 controls (negative cytology)

ELISA, n=80

Reg- 1

Urine: 81.3% sensitivity
32 BCa (positive cytology),

48 Controls
81.2% specificity

(negative cytology)

Gel-free approaches

ELISA, n = 166

[179]

Urine,

LC-MS/MS, n=20

Urine: For H2B: n=147,
↑ level of H2B with cancer stage

in urine and tissue samples
Prediction of disease progression,
discrimination of tumor stagesBenign (n=5), pTa, pT1 (n=10),

pT2+ (n=5)
For NIF-1: n = 158

In both groups urine from benign, NIMB (Ta, Ta)
and MIBC (T2+) were included.

histone H2B, NIF-1 ↓ level of NIF-1 with cancer stages
(not agreement with urinary level)

Lack of evaluation of biomarker
performance.

Immunohistochemistry, n=32

pTa, pT1, n=23, pT2+ n=9
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Table 3 Representative examples of BCa biomarker candidates identified by proteomic approaches (Continued)

iTRAQ, n=12

Immunohistochemistry, n=303

↑ in 4/6 BCa samples in comparison to
control (iTRAQ);

Prediction of disease progression

[180]

Tissue:

6 bladder cancer tissues (4 NMIBC, 2 MIBC)
and paired normal tissues; Inverse correlation to stage and histological

grade progression (immunohistochemistry)
Lack of evaluation of biomarker

performance.
DDX39

CE-MS, n=248 CE-MS, n=130

↓ regulated in MIBC in comparison to
NMIBC

Prediction of MIBC:

[92]
Urine: Urine, 81% sensitivity

127 BCa patients, 121 Controls
Test set: 68 NMIBC and 62 MIBC 57% specificity

4 polypeptide panel

CE-MS, n=79 CE-MS, n=366 Varied; 10 peptides ↑ in BCa;

[93]
Urine: Urine,

12 ↓ in BCa in comparison to control

Detection of BCa:

46 BCa patients, 33 Controls (Test set includes healthy controls, patients with non-malignant
and malignant urological disorders)

100 % sensitivity

22 polypeptides panel 73% specificity
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additional discriminatory panels (e.g. non-malignant dis-
ease vs. urothelial carcinoma) can increase the specificity
level [93]. In a second study, a 4 polypeptides panel
(fragments of membrane associated progesterone recep-
tor component I, uromodulin, collagen α-1 (I), Collagen
α-1 (III)) was reported by Schiffer et al. and enabled de-
tection of MIBC with sensitivity of 81%. However, lim-
ited specificity was obtained (57%) [92]. Along the same
avenue of research, reanalysis of existing and newly col-
lected BCa peptidomics data is currently under investi-
gation in our lab (n = 608 samples, 304 controls and 304
BCa patients). Several of previously detected peptides
were confirmed as well as novel potential biomarkers
were reported [95]. These data are currently rigorously
verified in large, prospectively collected cohorts in the
EU-funded BCMolMed (www.bcmolmed.org) project.
To summarize, the number of detected biomarker can-

didates depends on utilized analytical platform at bio-
marker discovery stage e.g. 2-DE enables identification
of over a dozen candidates, whereas this values can in-
creased up to hundreds for MS-based approaches. In
most cases immune-based assays were used to verify
presence of selected protein. Only for the peptidomics
markers, CE-MS was applied for all phases. However, in
most cases only initial verification of detected biomarkers
was conducted, but appropriate vigorous validation in a
sufficiently large population is still outstanding. Therefore,
in order to establish robust and accurate biomarker/panel
of biomarkers, further validation has to be performed,
driven by the clearly defined context of use and cohorts
representing the targeted population. Also, apart from the
peptidomics studies, only single proteins were used to
evaluate the diagnostic accuracy, whereas a combination
of biomarkers candidates may lead to substantial improve-
ment of biomarker performance.

Conclusions
Cancer is considered as a disease with high heterogen-
eity, increased incidence and mortality rates with a ser-
ious social and economic burden. The benefits from
application of robust and accurate biomarkers in cancer
management might result in significant improvement of
clinical outcome via detection of cancer at early stages.
An improvement in the therapeutic strategies based on
the prognosis of the treatment response is also antici-
pated [192]. Multiple advances have been achieved re-
garding the proteomic technology that can be applied in
major parts of the biomarker development: identifica-
tion, verification and validation. Along the way of recent
achievements in untargeted MS-based proteomic ap-
proaches, as well as targeted quantification proteomic
strategies, the number of potential proteomic biomarkers
has rapidly increased, as also indicated by the biomarkers
candidates related to BCa summarized in this article
[193-196]. However, this apparent progress has not trig-
gered successful implementation of novel biomarkers into
clinical practice. Therefore, as pinpointed above, critical
issues related to biomarker development should be taken
into account to raise the awareness about difficulties en-
countered in the process. Shortcomings hampering the
biomarker implementation include difficulties related
to the definition of context of use, proper study design
(selection of patients, statistical design), samples avail-
ability along with poor clinical characteristics, high
sampling variability due to the lack of application of
standardized protocol as well as the application of in-
appropriate statistics. Clinical implementation of bio-
markers is complex and requires collaborative efforts
between researchers from different fields and clinicians.
In order to facilitate the translation into clinical utility
and benefit for patients, various guidelines have been
established to guide scientists in this endeavor [11,197].
Based on the literature published, it appears that nu-

merous proteomic biomarkers do exist that will likely re-
sult in a substantial improvement of the current clinical
situation [193,194,198].
Regarding Chronic Kidney Disease (CKD), a urinary

biomarker model based on a panel of 273 peptides, as
established after CE-MS analysis has been already well
investigated in the context of early diagnosis of CKD.
Good et al. [199] first proposed the above 273 biomarker
model, reporting an AUC (area under the curve) value
of 0.96 upon independent validation in an independent
blinded cohort of 109 CKD samples and 34 urine sam-
ples from normal individuals [199]. The same perform-
ance (AUC of 0.96) was presented in a follow up study
for the same model, using a multicentric validation ap-
proach including 137 urine samples (62 CKD patients
and 75 normal controls) [200]. Importantly, Zurbig et al.
[201] further evaluated the CKD273 peptide marker
model for its diagnostic utility in a longitudinal study,
where 316 urine samples were employed, including pa-
tients with diabetes type 1 and 2 [201]. In this study, the
above model was able to predict the progression of nor-
moalbuminuria to macroalbuminuria 5 years before onset,
while the AUC value was estimated at 0.93, increased
compared to the routinely used urinary albumin whose re-
ported performance is 0.67 [201]. Finally, Andersen et al.
[202] applied the CKD273 for characterization of the
renoprotective treatment outcome in hypertensive type 2
diabetic patients treated with Ibersartan. In this study,
urine samples were collected from patients undergoing
Ibersartan treatment in two timepoints before and two
years after treatment [202]. The changes in the peptide
pattern of the treated patients are indicative of the pos-
sible utility of this model -and such proteomic biomarker
approaches in general-, in the monitoring of the patients
response to drug treatment [202]. The CKD273 classifier
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is currently been implemented in a Multicentric European
Trial, called PRIORITY where 3280 patients with diabetes
type 2 are employed.
Another CE-MS derived peptide biomarker approach

with increased potential to be implemented as a routine
test for diagnosis of cholangiocarcinoma (CC) has been
also described [203]. Due to the demanding clinical
need for early detection of cholangiocarcinoma that in-
creases the curative potential of a therapeutic treatment,
Lankisch et al. [203] first proposed a peptide classifier
as established by interpretation of CE-MS data derived
from bile proteomic analysis [203]. Two models were
presented enable to distinquish between patients with
choledocholithiasis and malignant lesions as well as be-
tween cholangiocarcinoma and primary sclerosing cholan-
gitis (PSC), a risk factor for cholangiocarcinoma. After
independent validation, the first model was found able to
distinguish between patients with gallstones and malig-
nant lesions with sensitivity of 93% and specificity of 86%,
while the second model classified PSC cases and CC cases
with a sensitivity of 84% and specificity of 78%. Following
a similar approach, Metzger et al. [204] introduced a urin-
ary based peptide classifier in a follow up study, where the
specific aim was the investigation of a non-invasive urin-
ary test for early diagnosis of cholangiocarcinoma. In this
case, an AUC value of 0,87 was reported with 83% sensi-
tivity and 79% specificity, after validation in a cohort of
123 patients [204].
Based on the literature available, it appears that clinic-

ally useful proteomic biomarkers can be identified, and
also validated, employing the technologies available
today. Hence, unravelling this potential benefit would
“only” require analysis of a sufficient number of samples
using appropriate technologies. Assuming the availability
of the required funds, the only limitation is the availabil-
ity of samples. This major problem has not successfully
been tackled by the generation of biobanks, these gener-
ally do not proved the support anticipated [197].
However, as recently also suggested Vlahou [17], com-

bining efforts and testing multiple biomarkers in the
same samples may be the most promising approach. An-
other hurdle in bringing the benefits to the patients ap-
parently are the requirements by regulatory agencies,
and cost as well as the reluctance of the public health
systems to accept novel and beneficial approaches in
medicine. Here, initiative from the relevant clinical pro-
fessional societies and patients groups may be needed in
combination with simplification and improvements of
regulatory requirements, to enable timely implementa-
tion of highly beneficial developments to improve medi-
cine and patient care.
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