
Understanding the Genetic Diversity of
Mycobacterium africanum Using
Phylogenetics and Population
Genomics Approaches
Muthukumar Balamurugan†, Ruma Banerjee†, Sunitha Manjari Kasibhatla, Archana Achalere
and Rajendra Joshi*

HPC—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Innovation Park, Pune,
India

A total of two lineages of Mycobacterium tuberculosis var. africanum (Maf), L5 and L6,
which are members of theMycobacterium tuberculosis complex (MTBC), are responsible
for causing tuberculosis in West Africa. Regions of difference (RDs) are usually used for
delineation of MTBC. With increased data availability, single nucleotide polymorphisms
(SNPs) promise to provide better resolution. Publicly available 380 Maf samples were
analyzed for identification of “core-cluster-specific-SNPs,” while additional 270 samples
were used for validation. RD-based methods were used for lineage-assignment, wherein
31 samples remained unidentified. The genetic diversity of Maf was estimated based on
genome-wide SNPs using phylogeny and population genomics approaches. Lineage-
based clustering (L5 and L6) was observed in the whole genome phylogeny with distinct
sub-clusters. Population stratification using both model-based and de novo approaches
supported the same observations. L6 was further delineated into three sub-lineages
(L6.1–L6.3), whereas L5 was grouped as L5.1 and L5.2 based on the occurrence of
RD711. L5.1 and L5.2 were further divided into two (L5.1.1 and L5.1.2) and four
(L5.2.1–L5.2.4) sub-clusters, respectively. Unassigned samples could be assigned to
definite lineages/sub-lineages based on clustering observed in phylogeny along with high-
confidence posterior membership scores obtained during population stratification. Based
on the (sub)-clusters delineated, “core-cluster-specific-SNPs” were derived. Synonymous
SNPs (137 in L5 and 128 in L6) were identified as biomarkers and used for validation. Few
of the cluster-specific missense variants in L5 and L6 belong to the central carbohydrate
metabolism pathway which include His6Tyr (Rv0946c), Glu255Ala (Rv1131), Ala309Gly
(Rv2454c), Val425Ala and Ser112Ala (Rv1127c), Gly198Ala (Rv3293) and Ile137Val
(Rv0363c), Thr421Ala (Rv0896), Arg442His (Rv1248c), Thr218Ile (Rv1122), and
Ser381Leu (Rv1449c), hinting at the differential growth attenuation. Genes harboring
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multiple (sub)-lineage-specific “core-cluster” SNPs such as Lys117Asn, Val447Met, and
Ala455Val (Rv0066c; icd2) present across L6, L6.1, and L5, respectively, hinting at the
association of these SNPs with selective advantage or host-adaptation. Cluster-specific
SNPs serve as additional markers along with RD-regions forMaf delineation. The identified
SNPs have the potential to provide insights into the genotype–phenotype correlation and
clues for endemicity of Maf in the African population.

Keywords: Mycobacterium africanum, population genomics, SNP, lineage, bioinformatics

1 INTRODUCTION

The genus Mycobacterium is known to cause tuberculosis (TB),
which infects ~10 million people worldwide annually (Coscolla
and Gagneux 2014; Gagneux 2018; Global Tuberculosis Report
2021). The disease burden associated with TB is enormous, and
Africa is one of the severely affected continents (Gehre et al.,
2016; Global Tuberculosis Report 2021). Human TB is caused
mainly by the organism Mycobacterium tuberculosis (M.
tuberculosis), which belongs to the Mycobacterium tuberculosis
complex (MTBC) (Gagneux 2018; Kanabalan et al., 2021). MTBC
is responsible for TB in humans and animals (Brosch et al., 2002;
Gagneux 2018). MTBC lineages have undergone specific deletion
of large sequences in their genomes, known as the region of
difference (RD), which enables delineation (Brosch et al., 2002).
Lineage-wise classification of MTBC is also enabled using
restriction fragment length polymorphism (RFLP) and PCR,
such as mycobacterial interspersed repetitive units-variable
number of tandem repeats (MIRU-VNTR) spoligotyping (Jeon
et al., 2018).

There are seven lineages of MTBC, of which lineages L1–L4
and L7 comprise the Mycobacterium tuberculosis sensu stricto
(majorly infecting humans), and L5 and L6 consist of
Mycobacterium tuberculosis var. africanum (hereafter referred
to as Maf) (Blouin et al., 2012; Firdessa et al., 2013; Riojas et al.,
2018; Gagneux 2018). Additional lineages include two recently
identified lineages, namely, L8 and L9 (Ngabonziza et al., 2020;
Coscolla et al., 2021) and other animal-adapted strains (Gagneux
2018). According to RD-based classification, L5 and L6 evolved
from their most recent ancestor that underwent RD9 deletion
(Gagneux 2018). Besides RD9 deletion, L5 has also undergone
RD711 deletion, and L6 has undergone RD7, RD8, RD10 (as also
seen in the animal-adapted strains of MTBC), and RD702
deletion (de Jong et al., 2010b). Phylogenetically, this places L5
closer to the human-adapted MTBC and L6 closer to the animal-
adapted strains (Gagneux 2018). Recent studies have further
classified L5 based on the presence and absence of RD711
(Ates et al., 2018; Coscolla et al., 2021; Comín et al., 2021).

Circulation of all MTBC lineages has been reported in Africa,
thereby suggesting the emergence of MTBC from a common
ancestor in Africa and its spread and expansion to the rest of the
world through human migration (Gagneux et al., 2006, Wirth
et al., 2008, Comas et al., 2013; Gehre et al., 2016, Rutaihwa et al.,
2019, O’Neill et al., 2019; Coscolla et al., 2021). Among the
human-associated MTBC, most of the lineages are found to be
geographically widespread. Maf (L5 and L6) is restricted,

particularly to the western region of West Africa and is
known to cause 40–50% of TB in West Africa (Chatterjee and
Pramanik 2015; Gehre et al., 2016;Winglee et al., 2016; Baya et al.,
2020). Conversely, L7–L9 are limited to East Africa (Blouin et al.,
2012; Firdessa et al., 2013; Ngabonziza et al., 2020; Coscolla et al.,
2021). The geographical restriction ofMaf infection is still elusive;
however, few studies have reported the occurrence of TB due to
Maf in other parts of the world, mostly in individuals who have
migrated from the endemic parts of Africa (Isea-Peña et al., 2012;
Comín et al., 2021). Such pathogens having adaptation to infect
specific hosts restricted to a particular geographical location are
termed as “specialists,” and this behavior may be attributed to the
strict host–pathogen interactions which are relatively
understudied (Brites and Gagneux, 2015; Asante-Poku et al.,
2016; Sriswasdi et al., 2017).

L5 and L6 are known to differ substantially from other MTBC
members in terms of genetic diversity, growth, and metabolism
(Yeboah-Manu et al., 2017). Compared toM.tuberculosis, L5 and L6
are reported to have an attenuated and slower growth in culture
along with lower bacterial load and delayed disease progression (Cá
et al., 2019; Baya et al., 2020). L6 is known to be an opportunistic
pathogen owing to mutations in genes essential for growth and
contributes toward latent TB burden in West Africa (de Jong et al.,
2005; de Jong et al., 2010a; Gehre et al., 2013; Ofori-Anyinam et al.,
2017). Similar studies for L5 genomics are limited that has been
highlighted earlier (Yeboah-Manu et al., 2017; Ates et al., 2018;
Coscolla et al., 2021; Sanoussi et al., 2021). A slower response to TB
treatment for L6 was observed when compared to other sensu stricto
lineages (Diarra et al., 2018). Identification and treatment of latent
TB are essential for reducing deaths caused by TB, as emphasized by
the “End TB Strategy” of the World Health Organization (WHO)
(Uplekar and Raviglione 2015;WHO2015a,WHO2015b; Zellweger
et al., 2020). There is a lot of interest to understand the variation of
Maf with respect to epidemiology and virulence (Asante-Poku et al.,
2016; Stucki et al., 2016; Yeboah-Manu et al., 2017; Gagneux 2018;
Ates et al., 2018; Coscolla et al., 2021). Phylogenomic distribution
studies of MTBC lineages using comparative genomics approaches
are studied extensively (Brosch et al., 2002, Gagneux et al., 2006;
Vasconcellos et al., 2010, Gehre et al., 2016; Gagneux 2018; Coscolla
et al., 2021).

Apart from long sequence polymorphisms, such as RDs and
tandem repeats, signature genome-wide single nucleotide
polymorphism (SNP)-based stratification approaches promise
to provide valuable insights into the genomic diversity and
help delineate the epidemiology of the circulating strains
(Lipworth et al., 2019; Napier et al., 2020).
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Population stratification studies based on genome-wide SNPs
enable unraveling the genetic diversity existing within bacterial
populations (Takuno et al., 2012; Lee et al., 2015; Castillo et al.,
2020). Earlier studies by Lee et al. (2015) using M.tuberculosis
pertaining to a specific geographical location provided insight
into the role of evolutionary forces that shape the pathogen
evolution vis-a-vis its environment. Hence, understanding
population stratification would aid in rapid identification of
(sub)-lineages, which is of great significance in tuberculosis
research and may help in understanding the origin and
predicting future outbreaks through the identification of rapid
diagnostic markers (MacLean et al., 2019; Singh et al., 2019). To
gain an insight into the population genetic characteristic of Maf
samples (L5 and L6), an integrative approach using de novo and
model-based clustering methods along with different population
genomics approaches have been carried out based on the
genome-wide variant profile generated with reference to
Mycobacterium tuberculosis H37Rv. The variants identified
may also have the potential to serve as robust genetic markers
for differentiation of lineages and sub-lineages and provide clues
towards host adaptation of Maf.

2 MATERIALS AND METHODS

2.1 Data Collection and Processing
Sequence data of whole-genome belonging to 572 Maf samples
were downloaded from NCBI Sequence Read Archive (SRA)
available as of December 2019, with the keyword-based search
“Mycobacterium africanum.” Samples were collected from
multiple SRA projects. Quality check was carried out for each
sample using FastQC (Andrews, 2010). Read quality >28 were
retained, and poor quality reads were trimmed by TrimGalore
(Babraham Bioinformatics, 2019). Reference mapping for allMaf
samples was carried out using BWA-MEM (version 0.7.17) with
Mycobacterium tuberculosis H37Rv (Refseq id: NC_000962.3)
genome as reference (Cole et al., 1998; Li 2013). Samples with
less than a million reads were further filtered based on read depth
(minimum DP 5X) and mapping quality (MQ > 40) criteria
(Supplementary Table S1).

SAMtools/BCFtools were used for sorting, indexing, and
merging of samples (Li 2011). Lineage identification was
performed using a RD-Analyzer (Faksri et al., 2016).
Variant calling for all samples was carried out with ploidy
as “1” using GATK HaplotypeCaller (McKenna et al., 2010).
Default parameters were used for haplotype calling, viz., base
quality score ≥10 and mapping quality ≥20. Independent runs
of CombineGVCF followed by genotype calling were carried
out for L5 and L6 samples. SNPs pertaining to the PE and PPE
regions along with phages and insertion sequences were
excluded from the analysis (Stucki et al., 2016). Variants
were further filtered to remove SNPs present in only one
sample (referred to as “singleton SNPs”), absent in >50% of
the samples along with removal of tri- and multi-allelic sites.
All SNPs were annotated using SnpEff (version 4.3t) with
Mycobacterium tuberculosis H37Rv (NC_000962.3) as the
reference annotations (Cingolani et al., 2012). SNPs were

functionally classified as per their annotations reported in
TubercuList (Lew et al., 2011). SNPs that had only a single
alternate allele across all samples referred to as “alternate
homozygous SNPs” were analyzed (Zojer et al., 2017).
Drug-resistant genes were identified from the literature, and
SNPs belonging to these genes were annotated (Gygli et al.,
2017; Ghosh et al., 2020). The variant calling format (vcf) file
pertaining to the homozygous SNPs were processed using
customized in-house generated scripts to obtain FASTA
sequences of individual samples. CD-HIT was used for
removal of identical sequences (Li and Godzik 2006).

Additional 270 Maf samples were used for validation
(Supplementary Table S2). A similar protocol for read quality
checking and reference mapping was followed as stated
previously. Variant calling for the validation set was
performed using Pilon version 1.23 (Walker et al., 2014)
(Figure 1).

2.2 Phylogenetic Analysis
A total of three datasets viz., allMaf (L5 and L6) samples (#380
termed as D1), all L6 samples (#197 termed as D2), and all L5
samples (#183 termed as D3) were analyzed independently.
Multiple sequence alignment (MSA) of the polymorphic sites of
each of these three datasets was obtained using MAFFT
(v7.450) (Katoh et al., 2002). Maximum likelihood (ML)
phylogenetic tree was generated using parallel MPI
implementation of RAxML ver. 8 (Stamatakis, 2014). The
general time reversible model of nucleotide substitution
under the gamma model of rate heterogeneity (GTRCAT)
was used with 1,000 bootstraps (Lanave et al., 1984; Gatto
et al., 2007). The trees were visualized using iTOL (Letunic and
Bork, 2019).

2.3 Population Stratification
Both model and non-model based methods were used for
analyzing the underlying population structure of Maf. For
model-based analysis, ParallelStructure (Besnier and Glover,
2013), which is an implementation of STRUCTURE tool
(Pritchard et al., 2000) capable of taking advantage of multi-
core computing architecture, was used. R version 3.4.4 and
package parallel_structure available on a 2 TB RAM Ubuntu
18.04.5 LTS server were used for running the
parallelSTRUCTURE tool. Parsimonious informative (PI)
sites were derived from multiple genome alignment using
MEGAX (Kumar et al., 2018). Linkage equilibrium was
estimated using LIAN (Haubold and Hudson 2000) with
10,000 replicates. Admixture and linkage models with
correlated allele frequencies were used for population
structure estimation. A total of ten independent simulations
of Markov chain Monte Carlo (MCMC) were used to derive the
optimal number of clusters (k) with three sets of burn-in and
burn-length (combination of 100,000–300,000;
150,000–350,000; 200,000–400,000). Optimal k was chosen
based on the Evanno method (Evanno et al., 2005) as
implemented in Structure Harvester (Earl and vonHoldt
2012). A cutoff of ≥0.05 was used for membership
assignment to a given cluster.
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2.4 De Novo Clustering Methods
Along with model-based approaches such as STRUCTURE and
phylogenetic reconstruction, de novo method, namely, K-means
clustering along with other non-model-based approaches
requiring prior information, viz., discriminant analysis of
principal components (DAPC), was also performed on the
SNP profile of Maf samples. (Jombart et al., 2010; Grünwald
and Goss, 2011, Montano et al., 2015). These methods were
implemented on SNP data with reduced dimensions using
principal component analysis (PCA).

K-means clustering was performed using PCA components
explaining 95% of the variance in the data and was analyzed on
three datasets (D1–D3) independently. To arrive at an optimal
number of clusters for each data set, two layers of optimization
were applied. First, an elbow plot was obtained, which gave the
range of the optimal number of clusters near the elbow. Further
on, classification performance measures, such as Davies Bouldin
and Silhouette indices, were calculated. The lowest value of the
Davies Bouldin index and highest value of the Silhouette index
estimate the optimal number of K-means clustering, as both the
indices complement each other.

2.5 Population Stratification Using
Discriminant Analysis of Principal
Components
As an exploratory option, a multivariate method, DAPC available in
R package adegnet, was also used to infer the genetic structure of the
Maf datasets (Jombart, 2008; Jombart et al., 2010; Grünwald and
Goss, 2011, Montano et al., 2015). The discriminant analysis (DA)
method uses populations defined a priori to maximize the genetic
variation present between groups and minimize the within-group

variation (Jombart, 2008). The dimensionality of the data is reduced
using PCA followed by assessment of different predefined groups or
clusters performed on the basis of DA components, resulting in
posterior membership probability value for each sample to a defined
cluster. These membership probability values are further analyzed to
arrive at the optimal number of clusters where the variation of
underlying data can be efficiently explained. The vcf file was read
into R by using the vcfR tool to create a vcfR object (Knaus and
Grünwald, 2017). This object was further converted into a genlight
object using the vcfR2genlight function, providing ploidy
information as “1” along with the predetermined population
information obtained using STRUCTURE output. The genlight
object retains only the “alternate homozygous SNPs” in the
dataset. PCA was performed using the glPCA function in R. The
maximum number of PCA components which explains 95% of the
cumulative variance of SNP profiles were taken into account for DA.
To avoid overfitting of the data, the optimal number of PCs required
to explain the separation of individuals into predefined groups was
achieved using the xval cross-validation function in R. DAPC was
computed using the optimal number of PCs obtained through xval
cross-validation. To obtain the number of discriminant functions to
be retained, F-statistics for DA eigenvalues was calculated. These
retained DA components define the membership probability of each
sample in the population. The scatter plots and membership
probability plots were obtained using the ggplot2 package in R
(Wickham 2016).

2.6 Estimation of Genetic Diversity for the
Clusters Obtained
Fixation index (Fst) and average pairwise nucleotide diversity
indices per site (π) was calculated in order to measure the

FIGURE 1 | Flowchart for genetic diversity analysis of Mycobacterium africanum.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8000834

Balamurugan et al. Mycobacterium africanum Lineage Diversity

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


robustness of the clusters obtained with parameters set as
“haploid” and “prokaryotes” using DnaSP ver. 6.12.03 (Rozas
et al., 2017).

2.7 Identification of Cluster-Specific Unique
Single Nucleotide Polymorphisms
Clusters/sub-populations in the given dataset were identified
using a combination of phylogenetic and population
stratification analysis. SNPs present in at least one isolate of a
cluster and absent in members across other clusters are termed
“total-cluster-specific” SNPs. “Core-cluster-specific” SNPs were
derived using “total-cluster-specific” SNPs with additional
criteria of the SNPs being present across all samples in the
cluster. The “core-subcluster-specific-SNP” was derived from
the “total-subcluster-specific-SNPs” using the same criteria of
SNP being present in all members of the sub-cluster
(Figure 2). Functional annotations were carried out using
SnpEff (Cingolani et al., 2012), Tuberculist (Lew et al., 2011),
Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al.,
2017), and BioCyc (Karp et al., 2019). Core-cluster-specific SNPs
were also analyzed in the context of previous studies (Ates et al.,
2018; Coscolla et al., 2021). Synonymous SNPs obtained for each
cluster were used as biomarkers for the identification of Maf
samples.

2.8 Validation of Cluster-Specific Single
Nucleotide Polymorphisms
Core-cluster-specific synonymous SNPs were used to validate the
(sub)-lineage identity in a validation dataset of 270 samples.
Synonymous SNPs were preferred because these are under

relatively lower selection pressure (Coll et al., 2014).
Synonymous SNPs associated with drug-resistant genes were
demarcated and validation was carried out, both including and
excluding these SNPs. An additional criterion of occurrence of
RD711 was used for validating L5 samples. The SNPs obtained for
L6 clusters were also mapped with existing growth attenuation
and expression studies (Gehre et al., 2013; Ofori-Anyinam et al.,
2017).

3 RESULTS

3.1 Reference Mapping, Filtering and
Variant Calling
Of the 572 Maf samples, 497 passed the quality check and 75
needed trimming because of poor quality. Of the 75, 18 were
discarded due to insufficient read lengths after trimming. The
remaining 554 were used for lineage identification based on
RD regions. Of these, 235 samples belonged to L6 lineage, and
173 samples were identified as belonging to L5 lineage. The
remaining 34 samples could not be identified based on RD-
regions and were termed “unidentified” (Supplementary
Table S1). Further removal of samples that did not fit the
DP and MQ criteria resulted in a total of 157 (L5), which also
harbored the RD711 deletion and 192 (L6) samples and were
used for SNP identification. Of the unidentified samples, three
were not included in the present study (termed
“intermediates”) as they were found to branch
independently between L5 and L6 samples in the
phylogenetic tree (Supplementary Table S1 and
Supplementary Figure S1). All samples, including 31
unidentified, were further subjected to variant calling, which

FIGURE 2 | Methodology for identification of core-cluster-specific SNPs. Cluster-specific-core SNPs are represented by green ovals, and cluster-specific-total
SNPs are represented by solid red boxes.
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revealed a total of 38,343 variants. Variants were filtered
according to the criteria mentioned in the Methods section,
which resulted in a total of 15,501 SNPs that were used for
downstream analysis.

3.2 Phylogenetic Analysis
Whole-genome phylogeny revealed lineage-wise (L5 and L6)
clustering of samples (Supplementary Datasheet S1). In the
L6 cluster (in particular L6.3), five unidentified samples lacked
RD702 (SRAAccession ID: ERR751293, SRR998600, SRR998602,
SRR998741, and SRR998742). Furthermore, three samples were
found to branch out independently, serving as intermediaries
between the L5 and L6 clusters, and as explained earlier, were
excluded for further analysis (Supplementary Figure S1). The
rest of the unidentified 26 samples, which lacked the RD711
region, were found to cluster along with the L5 samples.
Phylogenetic analyses of L6 samples revealed three
independent monophyletic clusters representing L6.1, L6.2,
and L6.3 sub-lineages (Figure 3). In addition, a small
monophyletic cluster (SRA Accession ID: SRR1162716,
SRR998647, and SRR998646) was found at the base of L6.1. In
the case of the L5 phylogenetic tree, six major monophyletic
clusters were observed. Seven samples (SRA Accession ID:
ERR1023216, ERR1082139, ERR751335, ERR751290,
ERR702413, ERR751343, and ERR751322) were found to

cluster as the outermost branch of the 26 unidentified samples
which lacked RD711 deletion (Figure 4).

3.3 Population Stratification Analysis Using
STRUCTURE
A set of 15,390 PI sites belonging to 380 Maf samples (dataset
D1) were obtained from the multiple genome alignment
(Table 1). Linkage disequilibrium calculated in terms of ISA
was found to be 0.15. Population structure analysis revealed an
optimal peak at k = 2 which corresponds to L5 and L6 lineages,
respectively (Figure 5A, Supplementary Table S3). A set of
7,373 SNPs for L6 (dataset D2) and 5,818 SNPs for L5 (dataset

FIGURE 3 | Phylogenetic tree of Mycobacterium africanum L6 samples
derived using the maximum likelihood method, as implemented in RAxML
based on genome-wide SNPs. Significant bootstrap values > 70% are
represented by solid gray circles.

FIGURE 4 | Phylogenetic tree of Mycobacterium africanum L5 samples
derived using the maximum likelihood method, as implemented in RAxML
based on genome-wide SNPs. Pink circles represent the six major
monophyletic clusters observed. Samples marked in light pink represent
admixed samples as reported by the STRUCTURE tool. Significant bootstrap
values >70% are represented by solid gray circles.

TABLE 1 | Details of datasets and their corresponding total number of SNPs and
PI sites used for the study.

Dataset Lineage/sub-lineage # Samples # SNPs # PI sites

D1 L5 and L6 380 15,501 15,390
D2 L6 197 7,373 7,028
D3 L5 183 5,818 5,436
Group 1 L5.1 157 4,633 4,147
Group 2 L5.2 26 1931 1,292

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8000836

Balamurugan et al. Mycobacterium africanum Lineage Diversity

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


D3), respectively, was used for the identification of PI sites
independently (Table 1). Fine-level clustering of L6 lineage
(dataset D2 with 7028 PI sites) revealed an optimal peak at k =
3 that corresponds to three independent sub-lineages viz., L6.1
(100 samples), L6.2 (30 samples), and L6.3 (67 samples)
(Figure 5B) while three samples were found to be admixed
with relatively higher membership to L6.1 and lower
membership to L6.2 (Supplementary Table S4). L5 samples
did not cluster as per the occurrence of RD711 in the absence
of prior population information. Hence, RD711 was used as a
marker to demarcate L5 lineage (Comín et al., 2021). This
resulted in two groups (Group 1 with RD711: 157 samples and
Group 2 without RD711: 26 samples), each of which was then
subjected to population stratification analysis. A total of 4,633
and 1,931 SNPs for L5.1 and L5.2, respectively, were used for
the identification of PI sites independently (Table 1). Group 1
(157 samples, 4147 PI sites) had an optimal peak at k = 2 and a
minor peak at k = 6 (Figure 5C). The membership coefficients
at k = 2 revealed that the two clusters correspond to L5.1.1 and
L5.1.2 while 16 samples were found to be admixed, of which
seven (ERR751315, ERR702407, ERR439931, ERR1023217,
ERR1082137, ERR751310, and ERR702409) were found to
share major membership to L5.1.1 and nine (ERR1023216,
ERR751290, ERR751304, ERR751305, ERR702413,
ERR751322, ERR751343, ERR1082139, and ERR751335)
were found to share major membership to L5.1.2
(Figure 5C, Supplementary Table S5).

In case of L5.1, the minor peak at k = 6 revealed five clusters
based on major membership coefficient values >0.9 with the sixth
cluster having membership coefficient ≤0.3 (L5.1.1_minor)
(Supplementary Figure S2A, Supplementary Table S6). Of
the five clusters, four subdivided L5.1.1 into L5.1.1.1 (#29
samples) with 13 admixed (12 samples having major and
minor membership to L5.1.1.1 and L5.1.1_minor cluster,
respectively, and one sample having major and minor
membership to L5.1.1.1 and L5.1.1.3, respectively), L5.1.1.2
(#36 samples) with three admixed (major and minor
membership to L5.1.1.2 and L5.1.1_minor cluster, respectively),
L5.1.1.3 (#27 samples) with one admixed (ERR1023216 having
major membership to L5.1.1.3 and minor membership to L5.1.2
and L5.1.1.4), and L5.1.1.4 (#5 samples) with one admixed
(ERR751290 having major membership coefficient to L5.1.1.4
and minor membership to L5.1.1.3). The six major
monophyletic clusters observed in case of the L5 phylogenetic
tree corroborated with the five clusters of L5.1 (L5.1.1.1–L5.1.1.4
and L5.1.2) and one cluster of L5.2, of which cluster L5.1.1.4
corresponds to the outermost branch of L5.2 samples (Figure 4).
The fifth cluster corresponds to L5.1.2 (#40 samples) with two
admixed (ERR439949 and ERR439973 having major and minor
membership coefficients to L5.1.2 and L5.1.1.4, respectively)
(Supplementary Table S6). Group 2 (26 samples, 1292 PI
sites) had an optimal peak at k = 4 which corresponds to
L5.2.1–L5.2.4 sub-lineages with one admixed sample
(Supplementary Figure S2B, Supplementary Table S7).

FIGURE 5 | (A–C) Population stratification ofMycobacterium africanum based on genome-wide SNPs [(A) population structure of 380 samples of lineages L5 and
L6 at k = 2; (B) population structure of 197 samples of lineage L6 at k = 3; (C) population structure of 157 samples of sub-lineage L5.1 at k = 2].
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3.4 Sub-Lineage Mapping With Previous
Studies
The observed L6 sub-lineages agreed with previous study (Coscolla
et al., 2021). L5 had been classified into three groups, namely, L5.1,
L5.2, and L5.3 by Coscolla et al. (2021) (Supplementary Table S8).
The further classification of the L5.1 sub-lineage proposed in this
study is in partial agreement with that reported by Coscolla et al.

(2021) (Table 2, Supplementary Table S8). L5.2 and L5.3 of
Coscolla et al. (2021) correspond to L5.2.1 and L5.2.2 (proposed in
this study). It is worth noting that members belonging to L5.2.3
and L5.2.4 (proposed in this study) remained unassigned in earlier
studies (Coscolla et al., 2021) (Supplementary Table S9). L5.2
of Ates et al. (2018) also corresponds to L5.2.1 proposed in
this study.

TABLE 2 | Comparison of L5 (sub)-lineage mapping with previous studies.

Lineage reported in
previous studies

Lineage identified in
current study using
STRUCTURE (k = 2)

Lineage identified in
current study using
STRUCTURE (k = 6)

L5.1 (Group 1) samples with RD711
L5.1.1 L5.1.1 L5.1.1.1/L5.1.1.2

L5.1.2 L5.1.1 L5.1.1.3
L5.1.3 L5.1.1 L5.1.1.3
L5.1.4 L5.1.2 L5.1.2
L5.1.5 L5.1.2 L5.1.2
NA L5.1.1 L5.1.1.4

Lineage reported in previous studies Lineage identified in the current study using STRUCTURE (k = 4)

L5.2 (Group 2) samples without RD711

L5.2 L5.2.1
L5.3 L5.2.1
NA L5.2.3 and L5.2.4

FIGURE 6 | (A–D) PCA plots ofMycobacterium africanum derived using genome-wide SNPs [(A) PCA distribution of 380 samples belonging to lineages L5 and L6;
(B) PCA distribution of 197 samples belonging to lineage L6; (C) PCA distribution of 157 samples belonging to sub-lineage L5.1; (D) PCA distribution of 26 samples
belonging to sub-lineage L5.2].
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3.5 Population Stratification Analysis Using
De Novo Clustering Methods
PCA analysis of dataset D1 (L5 and L6) (Table 1) revealed a total
of 38 PCs accounting for 95% of the total variability in the data
which was selected for further analysis (Supplementary Figure
S3). The first PC (~80% variance) differentiated D1 into L5 and
L6 lineages (Figure 6A). This agrees with the optimal value of k =
2 obtained using K-means clustering optimization methods
(Supplementary Table S10A–C). Further PCA analysis of
dataset D2 (L6) revealed three distinct sub-clusters, namely,
L6.1, L6.2, and L6.3 (Figure 6B), that find agreement with
K-means (Supplementary Figure S4, Supplementary Table
S11A–C). PCA and K-means clustering approaches of the
dataset D3 (L5) remained inconclusive. Hence, clustering of L5
samples using prior knowledge of the occurrence of RD711 was
carried out (Comín et al., 2021). Group 1 consisting of 157 L5
samples with the presence of RD711 marker, revealed two major
clusters differentiated on PC1 (~24% variance) (Figure 6C).
Taking into account the variation along PC2 (~8% variance)
six sub-clusters were obtained which partially supported the
minor peak (k = 6) obtained using STRUCTURE (Figure 6C,
Supplementary Figure S5). Of the six sub-clusters, five
corroborated with earlier reports (Coscolla et al., 2021), with
an additional sub-cluster, namely L5.1.1.4, reported exclusively in
this study (Figure 6C, Supplementary Tables S6, S8). Group 2
consisting of 26 L5 samples with the absence of RD711 marker,
revealed the presence of four distinct clusters across PC1 (~24%
variance) and PC2 (~22% variance) (Figure 6D, Supplementary
Figure S6, Supplementary Tables S7, S9). However, K-means
clustering could not resolve the L5 sub-lineages based on RD711.

3.6 Population Stratification Analysis Using
Discriminant Analysis of Principal
Components
DAPC clustering for all the datasets (D1, D2, and D3) (Table 1)
was performed on a priori clustering information obtained from
phylogeny, STRUCTURE, and PCA. Therefore, k = 2 was chosen
for DAPC analysis of dataset D1. Along PC1, theMaf samples are
differentiated into two clusters. Intra-population differentiation
for L6 was observed along the PC2 axis (Figure 6A). Based on
xval cross-validation, 5 PCs (88.7% of the total variance) and one
discriminant eigenvalue were found to explain the two distinct
clusters obtained, viz., L5 and L6 (Supplementary Figures S3, S7,
S8). The lineage-wise clusters obtained were further used for fine-
grain clustering to extract the sub-lineages present, if any.

DAPC clustering of the dataset D2 (L6) was carried out at k = 3
using 54 PCs (~95% variance), and the resulting clusters are in
agreement with that obtained from other approaches (Figure 6B,
Supplementary Figure S9). Cross-validation determined 10 PCs
(~69.44% variance) to be optimal along with two discriminant
eigenvalues that explain three distinct sub-clusters of L6, namely
L6.1, L6.2, and L6.3 (Supplementary Figures S9, S10).

Group 1 and 2 of L5 samples, viz., L5.1 (with RD711) and L5.2
(without RD711), were subjected to DAPC clustering independently
using k = 2 and k = 4, respectively. A total of 55 PCs (~95% variance)

were used for clustering L5.1, whereas 12 PCs (95% of the variance)
were used for Group 2 (Figure 6C, Supplementary Figure S5).
Cross-validation indicated 50 PCs (~94% variance) and 4 PCs
(64.94% of the total variance) to be optimal for Group1 and
Group2, respectively (Supplementary Figures S11, S12). DAPC
analysis using 50 PCs and one discriminant eigenvalue was found to
explain two distinct sub-clusters obtained for Group1, namely L5.1.1
and L5.1.2 (Supplementary Figure S13). Similarly, four optimal PCs
and two discriminant eigenvalues explained four distinct sub-
clusters for Group2, namely L5.2.1, L5.2.2, L5.2.3, and L5.2.4
(Supplementary Figure S14).

3.7 Estimation of Maf Genetic Diversity
The highest genetic differentiation was observed between L5 and
L6 lineages (Fst = 0.89). The population differentiation index for
the three L6 sub-lineages varied from 0.59–0.65 (Supplementary
Table S12). Fst between L5.1.1 and L5.1.2 was 0.46, whereas, for
the four L5.2 sub-clusters it was found ranging from 0.39–0.74. In
the case of five L5.1 sub-clusters Fst from 0.3–0.64
(Supplementary Table S12).

The whole-genome average pairwise nucleotide diversity (π)
within the L6 samples was found to be 0.06, whereas the same
within L5 samples was found to be 0.05, which supports the fact that
L6 is more genetically diverse than L5. Furthermore, π was reported
to vary between 0.076–0.18 for the L6 sub-clusters (Supplementary
Table S13). πwithin the L5.1 and L5.2 clusters were found to be 0.06
and 0.04, respectively. Within cluster variation between L5.1 and
L5.2 sub-clusters were also studied, which revealed the highest
nucleotide diversity of 0.48 for the L5.2.4 sub-cluster. Based on
the sub-optimal peak for L5.1 (k = 6) obtained in STRUCTURE, π
was calculated for each of the sub-clusters. With the removal of two
admixed samples from L5.1.2, the π reduced from 0.23 to 0.13
(Supplementary Table S13).

3.8 Identification of Core-Cluster-Specific
Single Nucleotide Polymorphisms
Total-cluster-specific SNPs identified in L5 are 5,818 which
belong to 2,553 genes. Similarly, for L6, 7,373 SNPs belonging
to 2,835 genes were identified (Table 1). Genes involved in drug
resistance are also part of this set. Drug-resistant TB is a major
challenge, and hence genes involved in drug resistance in Maf
“total-cluster-specific-SNPs” were annotated even though drug
resistance is rare in Maf as compared to M.tuberculosis
(Asante-Poku et al., 2015; Acquah et al., 2021). A total of 24
genes involved in drug resistance that contain 79 SNPs were
found to be part of L6-“total-cluster-specific” SNPs
(Supplementary Table S14). Similarly, in case of L5, 20 drug-
resistant genes containing 69 SNPs were found to be part of L5-
“total-cluster-specific” SNPs (Supplementary Table S15).

3.8.1 L6-Specific Single Nucleotide Polymorphisms
A total of 602 L6-specific SNPs were identified, of which 331 are
missense and seven are stop-gained while the rest are
synonymous and upstream SNPs (Figure 2; Table 3,
Supplementary Table S14). Population stratification analysis
of L6 samples revealed three sub-lineages L6.1, L6.2, and L6.3
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for which sub-cluster specific SNPs 123, 132, and 158 were
identified (Table 3, Supplementary Table S14). The identified
sub-cluster specific SNPs (obtained in our study) mapped onto
Maf samples of respective sub-lineage as detailed by Coscolla
et al. (2021). Coscolla et al. (2021) also reported a set of sub-
lineage specific SNPs, which remained unmapped with the “core-
cluster-specific” SNPs obtained in our study (Supplementary
Figure S15) but mapped with the “total-cluster-specific” SNPs
for the L6 dataset. This highlights the fact that the sub-lineage
specific SNPs of Coscolla et al., 2021 do not satisfy the criteria of
being present across all samples. The synonymous SNPs
identified in our study were used for the validation of sub-
lineage specificity (Supplementary Table S14).

Functional mapping of “core-cluster-specific” missense SNPs of
L6 and its sub-lineages was carried out to understand its role in
growth attenuation and adaptation to hypoxia (Gehre et al., 2013;
Ofori-Anyinam et al., 2017; Ofori-Anyinam et al., 2020) (Table 4,
Supplementary Table S16). It is interesting to note that all genes
harboring the missense mutations were found to have lower
expression in L6, which aid growth in microaerophilic
environments (Ofori-Anyinam et al., 2017).

3.8.2 L5-Specific Single Nucleotide Polymorphisms
A total of 648 SNPs were found to be unique to the L5 cluster. Of
these, 331, 7, 191, and 7 were found to be missense, stop-gained,
synonymous, and upstream SNPs, respectively. A total of

TABLE 3 | Summary of L5 and L6 (sub)cluster-specific-core SNPs.

Functional
annotation

L5 L5.1.1 L5.1.2 L5.2.1 L5.2.2 L5.2.4 L6 L6.1 L6.2 L6.3

Synonymous

Cell_wall 453 1 4 12 8 14 573 8 6 10

Conserved_hypothetical
382 2 6 4 5 13 560 8 13 13

Lipid_metabolism 255 0 1 1 5 4 289 4 4 5
Pathways 146 0 1 2 0 2 192 10 11 15
Regulatory_proteins 95 0 1 2 1 3 108 4 4 2
Metabolism_respiration 577 2 2 4 9 23 699 2 1 2

Virulence 89 0 2 0 1 2 109 2 3 1

Missense

Cell_wall 686 1 6 7 3 16 877 11 17 25

Conserved_hypothetical
686 2 2 9 8 16 885 15 12 20

Lipid_metabolism 311 0 3 2 4 4 419 7 7 7
Pathways 193 0 1 3 4 3 271 23 21 17
Regulatory_proteins 150 0 2 0 1 5 207 6 6 9
Metabolism_respiration 804 2 3 11 10 17 1,017 5 6 6

Virulence 145 0 2 1 2 3 175 3 7 3

Upstream/downstream

Cell_wall 137 0 0 2 3 6 191 2 3 8

Conserved_hypothetical
217 0 0 2 2 2 218 5 5 3

Lipid_metabolism 52 0 0 0 0 0 69 0 0 3
Pathways 47 0 0 0 1 0 52 3 2 5
Regulatory_proteins 37 0 0 0 0 0 54 1 2 1
Metabolism_respiration 137 1 3 0 3 6 193 1 1 1

Virulence 26 0 0 0 1 1 30 1 0 0

Stop gained/lost/spliced

Cell_wall 25 0 0 0 1 0 37 0 0 1

Conserved_hypothetical
40 0 1 1 0 1 55 1 0 0

Lipid_metabolism 7 0 0 0 0 1 17 0 0 0
Pathways 2 0 0 0 0 0 4 0 0 0
Regulatory_proteins 8 0 0 0 0 0 9 0 0 0
Metabolism_respiration 25 0 0 0 1 1 34 1 1 1

Virulence 5 0 0 0 0 0 8 0 0 0
Total 5,737 +

81(transcript
_variants)

11 40 63s 73 143 7,352 +
21(transcript_variants)

123 +
1(transcript_variant)

132 158
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11 core-cluster-specific SNPs were identified for the L5.1 sub-
cluster; however, none were found for the L5.2 sub-cluster
(Figure 2; Table 2, Supplementary Table S15).

It should be noted that 57 and 68 L5.2-specific SNPs
reported by Coscolla et al. (2021) and Ates et al. (2018),
respectively, are in agreement with our findings of
L5.2.1 core-cluster-specific-SNPs (#63), except 9 SNPs
belonging to PE-PPE/repeat region of Ates et al. (2018).
Additional six SNPs, identified in the current study, viz.,
Ala126Ala (Rv1558), Trp687* (Rv 2082), Ala120Val
(Rv2205c), upstream SNP −4,469 (Rv3424c), Gly236Asp
(Rv3710), and Gly81Gly (Rv3792) are also found to be
present across all L5.2 samples (as per nomenclature given
by Coscolla et al. (2021) and isolates characterized in their
study) (Supplementary Figure S16, Supplementary
Table S15).

Similarly, previously identified L5.3-specific SNPs [#62 as
reported by Coscolla et al. (2021)] are also in agreement with
our findings of core-L5.2.2-specific SNPs (#73) with an exception of
Ala189Glu (Rv0180c). Additional 12 SNPs [Tyr126* (Rv0217c),
Val174Leu (Rv0809), Ala69Glu (Rv0848), Phe249Phe (Rv0930),
Arg302Arg (Rv1188), and Cys34Phe (Rv1317c), upstream SNP
-3721 (Rv1749c), Asn372Ser (Rv2874), Gly18Asp (Rv3251c),
Asn234Asn (Rv3534c), Ser84Gly (Rv3608c), and Ile150Thr

(Rv3842c)] were reported in our study which were found to be
absent in L5.3 (#19 of the total 25 L5.3 isolates reported by Coscolla
et al. (2021)) (Supplementary Figure S16, Supplementary Table
S15). It is worth noting that no unique SNPs were found to be
present in the L5.2.4 cluster.

The synonymous SNPs for L5 (sub)lineages were used for the
validation of sub-lineage specificity (Supplementary Table S15).
Earlier reported L5 (#12 SNPs) and L6 (#10 SNPs) specific
synonymous biomarker SNPs were found to be in complete
agreement with our study (Napier et al., 2020). The Maf (sub)
lineage-specific SNPs reported in the current study were found to
be exclusive and did not show any match with the previously
reported MTBC-lineage specific SNPs listed by Napier et al.
(2020).

Functional mapping of L5-“core-cluster-specific” missense
SNPs was carried out to understand genotype-phenotype
correlation (Ofori-Anyinam et al., 2020) (Table 5,
Supplementary Table S15).

3.8.3 Validation of Cluster-Specific Single Nucleotide
Polymorphisms
Variant calling was performed for the validation dataset of 270
samples and filtered using MQ and DP. Every sample in the
validation dataset was then classified based on the presence of

TABLE 4 | Functional mapping of core-cluster-specific missense SNPs of L6 with literature support (Gehre et al., 2013; Ofori-Anyinam et al., 2017; Ofori-Anyinam et al.,
2020) functional role obtained from Mycobrowser (url: https://mycobrowser.epfl.ch/).

Lineage/sub-lineage Rv locus/gene name Functional role SNP

L6 Rv0862c Conserved hypothetical protein Asp160Glu
Rv1096 Probably involved in carbohydrate degradation Pro272Ser
Rv2241/aceE Involved in energy metabolism Ala777Thr
Rv2383c/mbtB Involved in biogenesis of siderophore mycobactins Leu978Phe
Rv2737c/recA Involved in regulation of nucleotide excision repair Gln566Pro
Rv2194/ qcrC Required during aerobic respiration for growth; may be responsible for differential energy metabolism Lys228Gln
Rv1023/eno Role in tissue re-modeling and invasion of host cells; a potential drug target (Rahi et al., 2017) Arg179Ser
Rv1240/mdh Involved in tricarboxylic acid cycle Asp253Ala
Rv0066c/icd2 Involved in tricarboxylic acid cycle Lys117Asn

L6.1 Rv3563/fadE32 Involved in lipid degradation Glu206Val
Rv0080 Conserved hypothetical protein Val31Gly
Rv2504c/scoA Involved in fatty acid degradation/synthesis Arg230Trp
Rv3223c/sigH Alternative sigma factor that plays a role in oxidative-stress response Glu151Asp
Rv0066c/icd2 Involved in tricarboxylic acid cycle Lys117Asn

Val447Met
Rv1328/glgP Phosphorylase is an important allosteric enzyme in carbohydrate metabolism Gly731Asp
Rv2112c/dop Deamidase of prokaryotic ubiquitin-like-protein Ala500Val
Rv3282 Conserved hypothetical protein Thr145Lys
Rv1178 Probably involved in cellular metabolism Arg247Arga

Rv3236c/kefB Growth attenuation Arg325His

L6.2 Rv3236c/kefB Growth attenuation Val106Ala
Rv2215 Involved in tricarboxylic acid cycle and antioxidant defense Ala338Val
Rv1121/zwf1 Involved in the pentose phosphate pathway Gln277*

L6.3 Rv1180/pks3 Potentially involved in intermediate steps for the synthesis of polyketide Pro401Thr
Rv1181/pks4 Involved in lipid metabolism Gly40Arg
Rv 2030c Conserved hypothetical protein Ser275Asn
Rv1447c/zwf2 Involved in pentose phosphate pathway Gly357Ser

aAbsent in only one isolate (SRA Accession ID: SRR1577833).
*Stop codon
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“sub-cluster specific synonymous SNP set” which helped in
lineage/sub-lineage assignment. Validation was carried out
by both including and excluding the SNPs associated with
genes involved in drug resistance and the results were found to
be consistent. Of the 270 samples in the validation dataset, 85
and 185 were identified as L5 and L6, respectively. Of the 85 L5
samples, 68 and 13 were identified as L5.1.1 and L5.1.2,
respectively. These samples were also found to harbor the
RD711 deletion as re-verified through RD-based studies. Of
the remaining four samples, one and three were classified as
L5.2.1 and L5.2.2, respectively. All the L5.2 samples lacked
RD711 deletion, as confirmed by RD-based studies. Of the 185
L6 samples, 131, 20, and 34 were identified as L6.1, L6.2, and
L6.3, respectively (Supplementary Table S2).

4 DISCUSSION AND CONCLUSION

The human-adapted MTBC exhibits a phylogeographical
evolutionary pattern, amongst which Maf samples display strong
geographic association with the West-African inhabitants (Isea-Peña
et al., 2012; Comín et al., 2021; Coscolla et al., 2021). Lineage
identification is of considerable significance in tuberculosis control,
as it helps in quick diagnosis leading to effective treatment and
prevention of potential future outbreaks (Dou et al., 2017; Napier
et al., 2020). Although extensive studies pertaining to the
differentiation of L5 and L6 have been carried out in the past,
recent reports revealed the existence of underlying sub-lineages
(Ates et al., 2018; Coscolla et al., 2021; Sanoussi et al., 2021).
Methods such as phylogeny and PCA have been used to
understand the lineage distribution of L5 and L6, with reports of
incongruous clustering of L5 (Coscolla et al., 2021). Recent studies

have also suggested clustering of L5 using “RD711” and other large
sequence polymorphisms (Comín et al., 2021; Coscolla et al., 2021,
Sanoussi et al., 2021). Taking these observations into cognizance, an
attempt was made to understand the fine-level population
stratification of Maf, especially L5 and its sub-lineages using SNPs
with the aid of model- and non-model-based clustering approaches.

Lineage-wise clustering was observed in the whole-genome
phylogenetic tree with the three samples branching independently
serving as ‘distinct intermediates’ between L5 and L6 clusters
(Supplementary Figure S1). Owing to insufficient data for
intermediate branches, these samples were excluded from further
population genomics analysis. Model-based approaches such as
STRUCTURE can be used when linkage disequilibrium is
negligible in the data. In Maf samples, we found low linkage
disequilibrium, which agrees with that reported for other MTBC
isolates (Supply et al., 2003). Population stratification ofMaf indicated
two major clusters, corresponding to L5 and L6. Lineage L6 is known
to be geographically restricted toWest Africa, whereas L5 is known to
move from West Africa to Central Africa (Coscolla et al., 2021). L6
samples clustered into three distinct sub-clusters in the phylogenetic
tree, which hints at a well-differentiated genetic structure, as is also
observed in earlier studies (Otchere et al., 2018; Coscolla et al., 2021).
These three sub-clusters were found to be independently
homogeneous populations with high Fst and moderate genetic
diversity (within members of each sub-cluster), wherein only three
sampleswere found to be admixed (SupplementaryTables S12, S13).

In case of L5, the clusters were not clearly resolved in the
phylogenetic tree, as is evident from smaller branch lengths
suggesting lower genetic differentiation. Based on the RD711
marker, L5 samples were distributed into two groups viz., L5.1 and
L5.2. The observed Fst between L5.1 and L5.2 was found to be lower
than L6 sub-clusters (Supplementary Table S12). Relatively lower

TABLE 5 | Functional mapping of core-cluster-specific missense SNPs of L5 with literature support (Ofori-Anyinam et al., 2020), and functional role obtained from
MycoBrowser (url: https://mycobrowser.epfl.ch/).

Rv locus/gene name Functional role SNP Additional
functional evidence

Rv0211/ pckA Gluconeogenesis; virulence and initiation of infection in macrophages Lys422Thr Collins et al. (2002)
Liu et al. (2003)

Rv2967c/pca Gluconeogenesis; cholesterol detoxification and lipogenesis during intracellular growth Ala926Thr —

Rv1188/pruB Proline metabolism associated with attenuated growth and adaptation to hypoxia Arg257Cys Griffin et al. (2011)
Zhang et al. (2012)
Berney and Cook (2010)
Giffin et al. (2016)

Rv1552/frdA Associated with hypoxia and microaerophilic adaptation Gly16Asp —

Rv1309/atpG Produces ATP from ADP in the electron transport chain Tyr220Ser —

Rv1307/atpH Produces ATP from ADP in the presence of a proton or sodium gradient Ser434Leu —

Rv1240/mdh Catalyzes the reversible oxidation of malate to oxaloacetate Leu326Ile —

Rv0066c/icd2 Catalyzes the conversion of isocitrate to ɑ-ketoglutarate Ala455Val —

Rv0946c/pgi Central carbohydrate metabolism His6Tyr —

Rv1131/prpC Involved in the methyl citrate cycle Glu255Ala —

Rv2454c Central carbohydrate metabolism Ala309Gly —

Rv1127c/Ppdk Catalyzes the reversible phosphorylation of pyruvate and phosphate Val425Ala and Ser112Ala —

Rv3293/Pcd Involved in L-alpha-aminoadipic acid biosynthesis Gly198Ala —
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nucleotide diversity was observed in L5.1 sub-clusters when compared
with that of L5.2 sub-clusters, which may be attributed to the fact that
fewer samples were available for L5.2. It should be mentioned that
genome-wide Fst is dependent on the number of samples studied.

The use of stringent criteria for membership assignment using
STRUCTURE helped to identify admixed samples for delineation of
clusters with high confidence. PCA andDAPC further support these
observations wherein with reduced data dimensions, the Maf
clustering remained the same as observed in STRUCTURE and
phylogeny analysis. The clusters thus identified were used to derive
“total/core-cluster-specific-SNPs” by filtering admixed samples. SNPs
belonging to genes involved in drug resistance accounted for ~1% of
the total SNP set in both lineages. They were retained as the
prevalence of drug resistance in Maf is very rare (Asante-Poku
et al., 2015; Acquah et al., 2021). The “core-sub-cluster-specific” SNPs
were derived by taking into account the “total-cluster-specific-SNPs”.
This strategy ensured the identification of exclusive SNPs for each
(sub)-cluster (Figure 2). Furthermore, the lineage-specific (L5 and
L6) synonymous SNPs identified in our study were found to be in
complete agreement with the specific biomarker SNPs reported in
earlier studies (Napier et al., 2020). The occurrence of different “core-
cluster-specific” SNPs in the same gene across different (sub)lineages
hints at the association of these SNPs towards selective advantage or
(host)-adaptation (Ofori-Anyinam et al., 2020). Few missense SNPs
that are part of “core-cluster-specific” SNP data for L5 and L6 (sub)
lineages (obtained in our study) corroborate with the deleterious
mutations observed in genes part of central carbon metabolism and
electron transport chain. This provides clues to the existing
metabolic differences in Maf (Ofori-Anyinam et al., 2020). These
missense SNPs hint towards the slow growth in L5 which may be
due to their possible role in impairing energy metabolism and its
related pathways. For instance, both pca and mdh genes carry
missense mutations in L5, the production of oxaloacetate may
hence get affected. It is interesting to note that “core-cluster-
specific” SNPs belonging to genes part of the pentose phosphate
pathway were found only in L6 and its sub-lineages. Hence, the
proposed “core-cluster-specific” non-synonymous SNPs have the
potential to be studied further to understand their specific roles
in fitness, adaptation to specific ecological niches and growth.

The synonymous “core-cluster-specific-SNPs” were used for
lineage assignment in the validation dataset, which revealed
consistent performance both by including and excluding SNPs
belonging to drug resistance–associated genes (Table 3,
Supplementary Tables S14, S15). This observation supports the
reports of sporadic occurrence of drug resistance in Maf (Acquah
et al., 2021; Asante-Poku et al., 2015). The synonymous “core-
cluster-specific-SNPs” were able to delineate previously unassigned
154 Maf samples (Supplementary Tables S1, S2). The absence of
core-SNPs in the L5.2.3 sub-cluster may be due to higher π along
with absence of monophyletic clustering. A total of seven samples
belonging to L5.2.1 were recognized as previously identified sub-
lineage L5.2 (Ates et al., 2018; Coscolla et al., 2021). However, two
samples (SRA Acc ID: ERR2383622 and ERR2383618), previously
described as NRC1 and 69, respectively (Ates et al., 2018), were
found to group distinctly into a new sub-cluster, L5.2.2, in our
study. Few Maf samples clustering with L5.2.3 and L5.2.4 in our
study remained unassigned previously (Coscolla et al., 2021).

Hence, this extensive analysis using different model-based and
de novomethods aided to understand the population stratification
within the L5 lineage. These (sub)lineage-specific SNPs can not
only serve as biomarkers for rapid identification along with the
previous barcodes developed for MTBC (Napier et al., 2020) but
also enable further delineation of Maf (L5 and L6) sub-lineages.
The “core-cluster-specific-SNPs,” when accompanied with
appropriate functional experiments, promise to enhance our
understanding of genotype–phenotype association.

This study provides an overview of the underlying genetic
diversity of the Maf samples with additional emphasis on
L5 sub-lineages. The methodology described has the
potential to be extended to studies involving all MTBC
lineages. Improved genetic diversity delineation of Maf is
possible with the availability of additional Maf whole-
genome samples and use of a suitable pan-genome or more
closely related Maf genome as reference (instead of M.
tuberculosis H37Rv). In conclusion, the identified cluster-
specific SNPs can serve as markers and help in
comprehending the “specialist” characteristics apart from
understanding the evolutionary trajectory of MTBC.

5 STANDARD BIOSECURITY AND
INSTITUTIONAL SAFETY PROCEDURES

The study only involves bioinformatics analysis of publicly available
M. africanum samples, and hence standard biosafety and
institutional safety procedures are not in the scope of the article.
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