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Abstract

Seed size is a key determinant of evolutionary fitness in plants and is a trait that often undergoes tremendous changes
during crop domestication. Seed size is most often quantitatively inherited, and it has been shown that Sw4.1 is one of the
most significant quantitative trait loci (QTLs) underlying the evolution of seed size in the genus Solanum—especially in
species related to the cultivated tomato. Using a combination of genetic, developmental, molecular, and transgenic
techniques, we have pinpointed the cause of the Sw4.1 QTL to a gene encoding an ABC transporter gene. This gene exerts
its control on seed size, not through the maternal plant, but rather via gene expression in the developing zygote.
Phenotypic effects of allelic variation at Sw4.1 are manifested early in seed development at stages corresponding to the
rapid deposition of starch and lipids into the endospermic cells. Through synteny, we have identified the Arabidopsis Sw4.1
ortholog. Mutagenesis has revealed that this ortholog is associated with seed length variation and fatty acid deposition in
seeds, raising the possibility that the ABC transporter may modulate seed size variation in other species. Transcription
studies show that the ABC transporter gene is expressed not only in seeds, but also in other tissues (leaves and roots) and,
thus, may perform functions in parts of the plants other than developing seeds. Cloning and characterization of the Sw4.1
QTL gives new insight into how plants change seed during evolution and may open future opportunities for modulating
seed size in crop plants for human purposes.
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Introduction

Seeds represent the vehicle by which plants vie for evolutionary

success. A key feature of seeds is their size, which in turn is one of

the most variable traits in the plant kingdom. Seeds range in

weight from less than 1 microgram in the Coral-root orchid

(Corallorhiza maculate) to more than 10 kg in the Coco-de-mer palm

(Lodoicea maldivica). This large range can be observed not only

among taxa, but also within taxa. For example, contained in the

genus Solanum are a set of 9 cross compatible species closely related

to the tomato. Despite their close taxonomic affinities, these

species show a 10-fold range in seed size suggesting a rapid rate of

evolutionary change (Figure 1).

Why plants vary so much in seed size is not known. However,

evolutionists and ecologists have long noted this great variation

and hypothesized its importance in adaptation. In terms of

survival, there are both risks and benefits for a species to increase

(or decrease) seed size. Because maternal resources are limited, a

species has to ‘‘decide’’ whether to invest energy into a few large

seeds or many small seeds [1,2]. Intra- and interspecific studies of

offspring fitness in plant communities have demonstrated that

plants producing a small number of large seeds often have higher

tolerance to drought [3], herbivory [4], shading [5], and nutrient-

deficient soils [6]. However, plants producing a large number of

small seeds exhibit superior colonization abilities with the

advantage of dispersal due to the abundance of seeds and higher

likelihood to escape from predation [7,8].

Scientific interest in seed size relates not only to its importance

in evolution, but also to crop domestication. Crops domesticated

for consumption of their seeds (e.g. soybean, wheat, sunflower)

often produce seeds significantly larger than their wild ancestors

[9–12]. It is likely that early humans consciously selected for larger

seeds in an effort to increase yield and improve harvest efficiency.

However, seed size also increased during domestication in crops

not harvested for their edible seed. For example, domesticated

tomatoes produce seeds up to several fold larger than their wild

ancestors (Figure 1) [13]. Likewise cultivated squash (Cucurbita pepo)

produce seed more than two fold larger than their wild counter

parts [14]. Why seed size increased during domestication in crops

not consumed for their seeds is unclear. However, it has been

conjectured that seed size increased in these species due to indirect

selection for greater seedling vigor and germination uniformity

under field production [15].

Despite the importance of seed size in plant evolution and crop

domestication, relatively little is known about the genetic and

molecular processes underlying natural variation in seed size. Most

of our knowledge comes from quantitative trait mapping studies

which have revealed a fairly large number of QTL affecting seed

size in a variety of plants – e.g. Arabidopsis [16], rice [17–22],

soybean [23,24], sunflower [11,25–28]. However, most of these
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studies have not gone beyond the mapping stage and hence

provide little insight into the developmental and molecular

mechanisms underpinning seed size variation. The exception is

rice where three seed size QTLs have been recently cloned. These

encode a previously unknown RING-type E3 ubiquitin ligase [29],

a putative transmembrane protein [30], and deletion of a gene of

unknown function [17].

Tomato is one of the few species not domesticated for edible

seeds, where extensive QTL mapping for seed size has been

conducted. Over the past 25 years, mapping studies involving

crosses between the cultivated tomato and related wild species have

revealed approximately 20 QTLs which account for most seed size

variation [13,31–34]. Different subsets of these QTLs were

identified in different studies. However, a common feature of all

studies was that a major QTL on chromosome 4 (referred to as Seed

weight 4.1 or Sw4.1) invariably accounted for a large portion of the

genetic variation for seed size. Sw4.1 is responsible for up to 25% of

the total phenotypic variation in segregating populations and up to

54% of the seed weight variation in crosses between nearly isogenic

lines [13]. The conservation of Sw4.1 across tomato species, and its

potential role in the evolution and domestication of cultivated

tomato, makes Sw4.1 a prime candidate for characterization and

cloning. Thus the objective of this study was to uncover the genetic,

developmental and molecular mechanisms underlying modulation

of seed size by the Sw4.1 QTL.

Results/Discussion

Sw4.1 Controls Seed Weight through Zygotic Effects
The size or weight of a seed can potentially be affected by the

genotype of three different plant parts/tissues: a) the female plant

bearing the fruit which contains the developing seed and contributes

the testa; b) the triploid endosperm which nourishes the developing

embryo and c) the diploid embryo. A maternal effect would be

caused by a substantial contribution of the maternal genotype from

the testa (a) and/or endosperm (b) to the seed development, while a

zygotic effect would be attributed to the equal contribution of

maternal and paternal genotypes from the zygote (c).

To differentiate maternal from zygotic effects, a reciprocal cross

experiment was conducted using a pair of nearly isogenic lines

(NILs) (see Material and Methods). In Cross 1, an inbred line

homozygous for a ‘‘large-seed’’ (L/L) allele from S. lycopersicum was

used as the female in a cross with a nearly isogenic line (NIL)

homozygous for the ‘‘small-seed’’ (S/S) allele from S. pimpinellifo-

lium. In Cross 2, the reciprocal cross was performed using the S/S

as the female parent. For Cross 1, the F1 seed would develop on a

maternal plant of the L/L genotype, whereas with Cross 2, the

seed would develop on a maternal plant of the S/S genotype. If

Sw4.1 exerts its effect on seed weight through the maternal parent,

F1 seed from Cross 1 should be significantly larger than F1 seed

from Cross 2. The results from these experiments revealed that

reciprocal crosses result in seed indistinguishable in weight:

3.07 mg (Cross 1) versus 3.10 mg (Cross 2) (P = 0.99). Whereas

self-pollination of the same parents, L/L and S/S, resulted in seeds

weighting 3.34 mg and 2.63 mg respectively (P,0.005).

The equivalency in seed weight for the reciprocal F1s suggests that

Sw4.1 does not influence seed weight through any significant effect

exerted by the genotype of the maternal environment (i.e., fruit). It

should be noted that reciprocal crosses would result in triploid

endosperm with different parental allelic dosage (L/L/S versus L/S/

S). Such differences in allelic dosage might also cause differences in

seed weight between seed produced from reciprocal crosses. The fact

that no such differences were observed suggests that the genotype of

the developing embryo is most likely the major point of control in the

differential seed weight associated with Sw4.1 alleles.

Additive Interaction of the L and S Alleles
By comparing the seed weight values of the self-pollinated L/L

and S/S NILs, it was estimated that the additive gene effect of Sw4.1

is approximately 0.36 mg [(LL-SS)/2]. As a result, it is estimated that

the genetic effect of a single ‘‘large-seed’’ (L) allele is to increase seed

weight by 14% – a value very similar to what was reported previously

[33]. Using these same parental values, as well as data from the F1

seed lots, it was also possible to calculate the degree of dominance (d/

a or k) for interaction of the L and S alleles. It is thus estimated that

Figure 1. Phylogenetic relationships of species in the genus
Solanum most closely related to the cultivated tomato. Numbers
at nodes indicates bootstrap values. Modified from Spooner et al. [55]
and Peralta et al. [56].
doi:10.1371/journal.pgen.1000347.g001

Author Summary

Given fixed resources, plants have a choice whether to
produce many small seeds or a few large seeds. In terms of
reproductive fitness, there are costs and benefits to both
strategies. As a result, plant species vary more than
100,000-fold in both seed size and seed output. The
current study focuses on understanding the molecular and
developmental basis of a single genetic locus (or
quantitative trait locus) that determines seed size between
the cultivated tomato and its wild relatives. We show that
the cause of size variation can be traced to a gene
encoding an ABC transporter protein. The gene apparently
exercises its control on seed size through expression in the
developing seeds and not the mother plant that nurtures
those seeds. A comparison with the model plant
Arabidopsis thaliana suggests that the ABC transporter
identified in tomato may also control seed size in other
plants, opening research opportunities for understanding
plant adaptation and for potentially modulating seed size
in crop plants for human purposes.

ABC Transporter Gene Modulates Tomato Seed Size
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the alleles interact in a largely additive manner (d/a = 20.21). This

result suggests that the change in seed size affected by the two alleles

is not due to a loss-of-function (e.g. deletion) at the locus, in which

case a dominant-recessive gene action would be observed. This result

is consistent with results from the gene expression experiments to be

presented later.

Timing of Sw4.1 Effects during Seed Development
In an effort to identify the time during development at which

Sw4.1 alleles modulate seed size, a comparative developmental study

was conducted on the large-seeded (L/L) NIL and small-seeded (S/S)

NIL. Fruit size was also measured to determine whether Sw4.1 may

also affect this character. Developmental plots for the two NILs are

shown in Figure 2. No differences were observed for the NILs with

respect to fruit size at any time during development. It is therefore

concluded that Sw4.1 alleles specifically modulate changes in seed

size, and that these changes are not the indirect effect of modulations

in fruit size. These results are consistent with the earlier showing that

the Sw4.1 effect on seed size is exerted largely through the genotype

of the zygote and not the maternal plant.

Beginning at 10 days after pollination (DAP), seed size (as

measured by width and length) was consistently greater for the L/L

NIL than for the S/S NIL. For example, seeds from the L/L NIL

were on average 23% longer than those of the S/S NIL at 15 DAP

(P = 0.008, Figure 2). At maturity, seeds of the L/L NIL were 17%

longer than seeds of the S/S NIL (P = 0.001). Overall, L/L NIL

showed the greatest change in seed size, relative to the S/S NIL, in

the period from 10 DAP to 15 DAP, suggesting that Sw4.1 exerts

its largest differentiating effect during this early period of seed

development. In an effort to determine the stage of embryo

development corresponding to this critical period, paraffin cross

sections were prepared from seeds at 10, 15 and 20 DAP.

Microscopic examinations of the sections revealed that the

embryos are globular at 10 DAP and torpedo-shape to curving

at 15 DAP. These stages are similar to those previously reported

by Lersten [35] and correspond to the initiation of rapid

deposition of starch and lipids into the endospermic cells.

Sw4.1 Exerts Equal Effects on the Size of Both the Embryo
and Endosperm but Does Not Affect Seed Viability or
Germination Rate

An examination of sections of mature seed from the L/L and S/

S NILs revealed that the L/L NIL produces seed that are increased

with respect to the size of both the embryo (P = 0.014) and

endosperm (P = 0.002) relative to those of the S/S NIL. However,

no difference was observed between the two NILs with respect to

the ratio of endosperm to embryo (P = 0.956). In both NILs the

embryo accounts for the largest portion of the total seed with an

embryo:endosperm ratio of 4:1. These results suggest that Sw4.1

modulates changes in the amount of both embryo and endosperm

tissue during seed development.

Germination tests of the L/L and S/S NILs revealed that both

give rise to highly viable seed (germination rates of 97%63.1

versus 96.3%62.1, respectively). Therefore, while Sw4.1 affects

seed size, it appears to have no detectable affect on seed viability as

measured by germination percentage. Another way to characterize

Figure 2. Plots for developmental changes in fruit length, seed width and seed length for the L/L and S/S NILs. Bars indicate the
standard errors.
doi:10.1371/journal.pgen.1000347.g002

ABC Transporter Gene Modulates Tomato Seed Size
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seed viability is by germination rate. Germination rate is defined as

the speed of germination, which is often associated with seedling

vigor [36]. When the L/L and S/S NILs were subjected to

germination rate tests, no difference was observed (P = 0.106).

However, since these tests were done under laboratory conditions,

we cannot rule out the possibility that allelic variation at Sw4.1

does affect seed germination under natural or field conditions.

High-Resolution Mapping of Sw4.1
A high-resolution genetic mapping study was conducted in an

effort to establish the molecular basis for Sw4.1. This study was

facilitated by the availability of the L/L and S/S NILs from which

large F2 mapping populations could be derived. The first such F2

population was screened with the markers CT50 and T891 which

flank the Sw4.1 QTL (Figure 3A). DNA from individuals showing

recombination between these two markers was further screened by

an additional 23 markers within the region, allowing the Sw4.1 QTL

to be resolved to an 11 cM interval between markers T877 to TG2

(Figure 3B). Within this interval the highest LOD score was observed

for marker CT97, 53% of the variation in seed weight was associated

with this marker. To further resolve the position of Sw4.1, 140

additional individuals, derived from a F2-heterozygous individual,

were then screened for all markers (including 9 additional markers)

in the 11 cM interval. From this mapping, Sw4.1 was further

resolved to a 7 cM interval between marker T877 and T725

(Figure 3C). Within this interval, seed weight showed the strongest

association with marker S1. The position of Sw4.1 was further

delimited to a 2.4 cM interval (between markers ST4 and T725) by

the screening of an additional 1,000 progeny (Figure 3D). The S1

marker again showed the strongest association with seed weight

explaining 41% of the seed weight variation.

The S1 marker was then used to isolate and sequence a 130 kb

BAC (LE_HBa0077O05) from the Sw4.1 region of chromosome 4.

The markers SS4 and ST4, derived from the end sequence of this

BAC, were subsequently used to screen an additional 9,000 F2 plants

and identify 25 recombinants within the BAC interval. However,

sufficient seed for analysis was obtained for only 13 of the

recombinant individuals. The R2-plot for the seed weight association

among the 13 recombinants indicated that the cause of the Sw4.1

QTL resides within the central portion of this BAC (Figure 3E). To

gain further precision on the location of Sw4.1 within the BAC, selfed

progenies from 10 selected recombinants were examined. These

individuals contained crossovers between markers SSR1S2 and G18

(,73 kb apart) - where the maximum marker association with seed

weight was localized by fine mapping (Figure 3E, 4). A comparison of

seed weight from homozygous recombinant and non-recombinant

progeny allowed positioning of the Sw4.1 QTL relative to the

crossover point in each stock (Table 1, Figure 4).

Two independent crossover events (05T427-200 and 06T662-

255) delineated the cause of the Sw4.1 QTL to a 38 kb interval

extending from markers dABC20665 to S106 indel1 (Table 1,

Figure 4). The exact position of the crossover in each of these

recombinant stocks was established by PCR sequencing through

the crossover boundary region for each stock. As a result, the cause

of the Sw4.1 QTL could be further narrowed to a smaller, 23 kb

interval (Figure 4). Based on annotation, this 23 kb interval

contains a single gene encoding a putative ATP binding cassette

(ABC) transporter protein (gene 11 in Figure 4).

Identifying the Arabidopsis Ortholog to the Sw4.1 ABC
Transporter Gene

ABC transporters represent a super family of ATP-binding

cassette proteins found in a wide range of species [37]. They are

used in transmembrane transport of diverse substances – including

peptides, sugars, lipids, heavy metal chelates, polysaccharides,

alkaloids, steroids, inorganic acids and glutathione conjugates [38–

42]. The Arabidopsis genome contains at least 129 ABC

transporter-like genes, and a number have already been

investigated with regards to function [43]. As an aid to annotation

of the tomato ABC transporter gene, and in the hope of gaining

possible insights into its function, an effort was made to determine

which of these Arabidopsis ABC transporter gene(s) might be

orthologous to the tomato gene associated with Sw4.1.

Synteny has proven a very powerful method for establishing

orthology [44]. A Reciprocal Best Match (RBC) approach [45]

was thus used to identify microsyntenic genomic region(s) between

Arabidopsis and tomato for the Sw4.1 region. With this approach,

an effort was made to identify the putative orthologs of the 12

genes annotated in the tomato BAC containing the ABC

transporter gene (Table S1). As a result, three microsyntenic

blocks were identified in Arabidopsis – two blocks located on

chromosome 5 and one on chromosome 4 (Figure 5). Only the

syntenic block on chromosome 4 contains an ABC transporter

(At4g39850) (Figure 5). It is therefore concluded that the

Arabidopsis ABC transporter gene At4g39850 is orthologous to

the tomato ABC transporter associated with Sw4.1. It is worth

noting that At4g39850 is located at the same chromosomal

position as a QTL associated with variation in both seed length

and width in a cross between Arabidopsis ecotypes, raising the

possibility that this gene may also underlie natural variation in

seed size in this species [16,46].

Sequence alignment of Arabidopsis At4g39850 cDNA with the

genomic sequences of both the L allele (S. lycopersicum) and S allele

(S. pimpinellifolium) allowed the prediction of intron and exon

boundaries in the tomato gene (Figure 6). It also allowed

prediction of the full-length tomato ABC transporter protein,

which is characterized by 4 functional domains, two of which are

ATP-binding cassette (ABC) or nucleotide binding folds (NBFs)

and two of which are hydrophobic integral membrane domains

(TMDs) (Figure 6) [43]. While both the length of coding region

and the intron positions are highly conserved between the tomato

and Arabidopsis orthologs, the introns are more variable in length

and are generally longer in tomato than Arabidopsis (data not

shown).

Several T-DNA insertion mutants have been isolated for the

Arabidopsis ortholog At4g39850. Some of these mutants affected

seed size [47]. However, the Arabidopsis mutants were associated

with an increase in seed size, whereas in tomato the RNAi

transgenics produced smaller seeds. Another difference between

Arabidopsis and tomato, is that some of the Arabidopsis mutants

also affected seed germination, whereas no germination effects

were observed for Sw4.1 in tomato. Further, one of the mutants

(cts-2) produced seeds with significant higher levels of fatty acids.

These results led to the suggestion that the Arabidopsis ABC

transporter protein might be involved, not only in lipid

metabolism during germination, but also in lipid accumulation

during seed development – possibly explaining why the mutants

produced larger seeds [47]. In this regard, it is worth noting that in

tomato the Sw4.1 QTL produces its largest effects during the

stages of seed development associated with lipid deposition (see

previous section, Figure 2). Thus, it is possible that the tomato

ABC transporter gene modulates seed size by controlling the

accumulation of lipids during seed development.

Testing the Effects of the ABC Transporter Gene on Seed
Size via RNAi Transformation Experiments

Transformation experiments were used to test whether the ABC

transporter gene has the ability to modulate seed size. This gene is

ABC Transporter Gene Modulates Tomato Seed Size
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Figure 3. High resolution mapping of Sw4.1 QTL on tomato chromosome 4. (A) TA2080 S/S NIL showing the introgression region from S.
pimpinellifolium containing Sw4.1 QTL (shaded). (B) Sw4.1 mapping of F2-population of 150 individuals (TA209 – L/L NIL6TA2080 – S/S NIL) within a
48 cM region. (C) Sw4.1 mapping within a 11 cM region from 140 individuals from a F2 heterozygous individual (98T342-95). (D) Sw4.1 mapping
within a 2.4 cM region from recombinants selected from 1,000 seeds from F2 heterozygous individuals. The S1 marker was then used to isolate and
sequence the 130 kb BAC clone LE_HBa0077O05. (E) Sw4.1 mapping within the ,130 kb BAC LE_HBa0077O05 from recombinants selected from
9,000 seeds from F2 heterozygous individuals. The numbers between markers represent the number of crossover events in each interval.
doi:10.1371/journal.pgen.1000347.g003

ABC Transporter Gene Modulates Tomato Seed Size

PLoS Genetics | www.plosgenetics.org 5 January 2009 | Volume 5 | Issue 1 | e1000347



T
a

b
le

1
.

P
ro

g
e

n
y

an
al

ys
is

o
f

1
0

h
e

te
ro

zy
g

o
u

s
in

d
iv

id
u

al
s

w
it

h
re

co
m

b
in

at
io

n
w

it
h

in
th

e
B

A
C

.

F
3

re
co

m
b

in
a

n
t

p
e

d
ig

re
e

R
e

co
m

b
in

a
n

t/
n

o
n

-r
e

co
m

b
in

a
n

t
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
n

S
W

E
(m

g
)

O
n

e
ta

il
t-

te
st

P
v

a
lu

e

0
5

T
3

2
1

-3
1

0
7

T
5

4
2

R
3

3
3

3
3

3
3

3
3

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
5

2
.3

3
8

N
R

.
R

0
.1

0
5

N
R

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

6
2

.5
5

2

0
5

T
3

2
4

-4
8

4
0

7
T

5
4

3
R

3
3

3
3

3
3

3
3

3
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

6
2

.4
1

9
R

.
N

R
0

.0
3

9

N
R

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

6
1

.9
9

2

0
5

T
6

2
0

-2
1

5
0

7
T

5
4

4
R

3
3

3
3

3
3

3
3

3
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

6
3

.1
2

1
R

.
N

R
0

.0
1

1

N
R

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

5
2

.5

0
6

T
6

6
1

-2
5

5
0

7
T

5
4

0
R

1
1

1
1

1
3

3
3

3
3

3
3

3
3

3
3

3
3

1
1

1
1

1
1

6
2

.4
5

8
N

R
.

R
0

.0
0

4

N
R

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

5
3

.0
7

5

0
5

T
4

3
9

-1
5

0
0

7
T

5
4

1
R

3
3

3
3

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

6
2

.6
6

4
N

R
.

R
0

.2
1

N
R

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

6
2

.7
9

5

0
6

T
6

4
2

-5
7

0
7

T
5

3
9

R
1

1
1

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
1

1
7

2
.7

2
5

N
R

.
R

0
.0

1

N
R

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

6
3

.0
7

2

0
5

T
4

1
0

-3
4

9
0

7
T

5
4

5
R

3
3

3
3

3
3

3
3

3
3

1
1

1
1

1
1

1
1

1
1

1
1

1
1

7
2

.9
1

9
N

R
.

R
0

.4
2

N
R

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

7
2

.9
5

6

0
4

T
9

5
2

-3
0

7
0

7
T

5
4

6
R

3
3

3
3

3
3

3
3

3
3

1
1

1
1

1
1

1
1

1
1

1
1

1
1

6
2

.7
7

6
R

.
N

R
0

.0
0

1

N
R

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

5
1

.8
9

1

0
5

T
3

2
2

-1
3

0
7

T
5

4
7

R
3

3
3

3
3

3
3

3
3

3
1

1
1

1
1

1
1

1
1

1
1

1
1

1
4

2
.9

4
2

R
.

N
R

0
.0

0
3

N
R

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
2

.4
9

7

0
5

T
4

2
7

-2
0

0
0

7
T

5
4

8
R

3
3

3
3

3
3

3
3

3
3

3
3

3
3

1
1

1
1

1
1

1
1

1
1

6
2

.8
4

R
.

N
R

0
.0

0
1

N
R

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

4
2

.0
9

5

X
X

X
X

X
X

X

‘‘1
’’

in
d

ic
at

e
s

h
o

m
o

zy
g

o
u

s
fo

r
co

rr
e

sp
o

n
d

in
g

m
ar

ke
r

fr
o

m
L/

L
N

IL
.

‘‘3
’’

in
d

ic
at

e
s

h
o

m
o

zy
g

o
u

s
fo

r
co

rr
e

sp
o

n
d

in
g

m
ar

ke
r

fr
o

m
S/

S
N

IL
.

SW
E

=
se

e
d

w
e

ig
h

t.
In

it
al

ic
an

d
b

o
ld

is
th

e
re

g
io

n
in

d
ic

at
e

d
b

y
th

e
o

n
e

-t
ai

l
t-

te
st

o
f

e
it

h
e

r
re

co
m

b
in

an
t

ve
rs

u
s

n
o

n
-r

e
co

m
b

in
an

t
(R

.
N

R
)

o
r

n
o

n
-r

e
co

m
b

in
an

t
ve

rs
u

s
re

co
m

b
in

an
t

(N
R

.
R

)
fo

r
th

e
p

o
si

ti
o

n
in

g
o

f
th

e
Sw

4.
1

Q
T

L.
Sh

o
w

n
at

b
o

tt
o

m
(X

)
is

th
e

co
n

se
n

su
s

re
g

io
n

fo
r

th
e

lo
ca

ti
o

n
o

f
Sw

4.
1

b
as

e
d

o
n

p
ro

g
e

n
y

te
st

s
fr

o
m

al
l

1
0

re
co

m
b

in
an

ts
.

M
ar

ke
r

A
=

ST
4

;
B

=
G

1
;

C
=

d
S4

2
2

0
;

D
=

SS
R

1
S2

;
E

=
S1

;
F

=
3

U
T

R
;

G
=

U
N

K
1

;
H

=
S2

7
;

I=
S3

8
;

J
=

S4
1

;
K

=
SS

R
2

S2
;

L
=

S4
7

;
M

=
A

B
C

2
1

3
7

5
;

N
=

d
A

B
C

2
0

6
6

5
;

O
=

SS
1

;
P

=
G

1
3

-2
;

Q
=

G
1

4
-1

;
R

=
G

1
6

;
S

=
S1

0
6

in
d

e
l1

;
T

=
S1

0
6

in
d

e
l2

;
U

=
G

1
8

;
V

=
SS

4
;

W
=

SS
7

;
X

=
T

7
2

5
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

g
e

n
.1

0
0

0
3

4
7

.t
0

0
1

ABC Transporter Gene Modulates Tomato Seed Size

PLoS Genetics | www.plosgenetics.org 6 January 2009 | Volume 5 | Issue 1 | e1000347



quite long (due to many introns) – spanning more than 20 kb from

the start to stop codon (Figure 6).

The large size of the gene, absence of efficient enzymatic sites for

cloning and lack of a full-length cDNA, precluded complementation

analysis with the full-length genomic copy of the gene. Therefore, a

gene silencing approach, via RNAi hairpin formation, was employed

as an alternative strategy for testing the potential role of the ABC

transporter gene in determining seed size.

Efficient post-transcriptional silencing has been reported when

39UTR regions are targeted for RNAi machinery [48,49]. Hence,

a 278 bp fragment from the 39UTR of the ABC transporter gene

was inserted in the pHELLSGATE2 (Invitrogen) binary vector,

the pSP13-1 construct (Figure S1). Sequence specificity was

assessed by blasting the 278 bp fragment against the tomato

unigene database in the SGN website (www.sgn.cornell.edu). The

retrieval of a unique unigene that corresponds to this ABC

transporter gene suggests this sequence is specific to this gene and

therefore there would present a low risk to silence other genes in

the same ABC transporter family. This construct was transformed

into both the L/L and S/S NILs. Multiple independent T0 and

non-transgenic controls were then analyzed for both NIL sets. L/L

transformants were highly fertile, yet produced seeds weighing on

average 38% less than those from the non-transgenic controls

(P = 0.03, Table 2). S/S transformants also produced smaller seed

(11% less heavy) than the non-transgenic controls, however the

statistical difference did not quite reach statistical significance

(P = 0.09, Table 2). It is worth noting that transformation/

complementation with two other genes from the BAC (annexin

and a gene of unknown function – genes number 6 and 7,

respectively, in Figure 4) did not show statistical difference

between transgenic and non-transgenic plants (data not shown).

The transformation experiments thus appear to corroborate the

results from high-resolution mapping – both pointing to the ABC

transporter gene as the cause of the Sw4.1 QTL.

Allelic Polymorphisms in the ABC Transporter Gene
Comparing the sequence of the L and S allele, within the 23 kb

Sw4.1 interval, revealed 79 SNPs and single indels located in

introns, 10 in the promoter region and 6 in exons (Figure S2). In

the exons, 2 non-synonymous changes were observed (Figure 6).

Either of these might be causal to the phenotypic effects rendered

by the L and S alleles. However, neither substitution is located in a

conserved functional domain (e.g. nucleotide binding folds or

hydrophobic integral membrane domains) (Figure 6). Among the

Figure 4. Results from progeny testing of key recombinants to delineate the position of Sw4.1 in BAC. Shaded area indicates where
Sw4.1 QTL is assigned in each recombinant based on progeny tests (see Table 1). Cumulative results pinpointed Sw4.1 to 38 kb interval. Sequencing
of two key flanking recombinants (05T427-200 and 06T661-255) further delineated Sw4.1 to a 23 kb interval containing single gene in BAC (gene 11,
ABC transporter) (bottom).
doi:10.1371/journal.pgen.1000347.g004
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polymorphisms in non-coding regions, a few are worth mentioning

as possible causal candidates for the Sw4.1 QTL. One is a 12 nt

indel approximately 1.5 kb upstream in the 59 promoter and the

second, a 24 nt indel in the first intron (Figure 6). Either of these

indels might cause a change in expression – as could the many

other small nucleotide differences observed in non-coding regions

of the two alleles.

Expression of ABC Transporter Gene during Seed
Development

In an effort to determine the expression pattern of the ABC

transporter gene, and especially whether the L and S allele differ in

regulation/expression during seed development, a set of semi-

Figure 6. Annotation of tomato ABC transporter gene associated with Sw4.1 QTL. Exons are shown in red. Conserved functional domains
are shown in blue, ATP-binding cassette (ABC) or nucleotide binding folds (NBFs), and green, hydrophobic integral membrane domains (TMDs).
doi:10.1371/journal.pgen.1000347.g006

Figure 5. Relationship of genes in tomato BAC containing Sw4.1 and corresponding syntenic regions in Arabidopsis genome.
doi:10.1371/journal.pgen.1000347.g005

Table 2. Summary of transgenic silencing of ABC transporter
gene in L/L and S/S NILs based on RNA interference.

NIL
Plant Transgenic Status N

Seed Weight
(mean6SE – mg) P value

L/L Transgenic 10 2.01660.345 0.031

Non-transgenic 3 3.23560.522

S/S Transgenic 10 2.26260.495 0.093

Non-transgenic 2 2.52960.132

doi:10.1371/journal.pgen.1000347.t002
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quantitative RT-PCR experiments were conducted. The first

experiment revealed that this gene is expressed at high levels in

seeds, and lower levels in shoots and roots (Figure 7A). High

expression of the ABC transporter gene in developing seeds is

further evidence that this gene is the cause of the Sw4.1 QTL. The

subsequent experiment compared expression of the ABC trans-

porter gene in both the L and S NILs at 10, 15 and 20 DAP – the

time when the major change in seed size is observed (see previous

section) (Figure 7B). Two conclusions can be drawn from this

second experiment. First, the ABC gene is expressed in both the L

and S NILs – ruling out a loss-of-function as the cause of seed size

variation associated with Sw4.1. Second, the failure to detect any

major change in expression of the ABC transporter gene between

the L and S NILs during seed development would seem to rule out

a gross change in the regulation as the cause of the Sw4.1 QTL

(Figure 7B). However, we cannot exclude the possibility of a

difference in translational/post-translational regulation or small

changes in spatial or temporal regulation as the cause of QTL

effect. For example, in tomato it was previously shown that a

modest change in the timing of allele expression can cause major

QTL effects on fruit size [50].

Conclusions
The results presented herein point to natural variation in an ABC

transporter gene as a major cause of the change in seed size that

differentiates the cultivated tomato from related wild species. While

prior studies in a number of plants have reported the effects of

induced mutations on seed size, this example is among the few in

which the cause of changes in seed size in nature populations has

been pinpointed. Further, the ortholog to this gene in Arabidopsis

has been identified through homology/synteny. Results from QTL

mapping and mutagenesis studies are consistent with this gene also

playing a role in determining seed size in Arabidopsis. However,

further studies are required to clearly establish whether this ABC

transporter gene operates in a similar manner in both tomato and

Arabidopsis. Also, it remains to be established whether variation in

ABC transporter genes is a major cause of seed size variation in

natural populations of Arabidopsis or other plant species. Having

identified the cause of the Sw4.1 QTL in tomato may open he door

to addressing these questions in the future.

Materials and Methods

Plant Material and Genetic Markers
Two Solanum lycopersicum nearly isogenic lines (NILs), with

alternative alleles at the Sw4.1 locus, were the origin of all genetic

stocks used in this study. TA209 carries the large-seeded (S.

lycopersicum) allele at Sw4.1 locus. TA2080 is isogenic with TA209,

but carries a 55–84 cM segment of chromosome 4 of S.

pimpinellifolium LA1589 (Figure 3A) containing the small-seeded

allele of Sw4.1 [13,33]. TA2080 was developed via marker assisted

selection during 5 sequential backcrosses of LA1589 into TA209

followed by a single selfing generation (BC5S1). An F2 population,

segregating for Sw4.1, was then developed from a cross between

TA209 and TA2080. A derived, shorter introgression NIL,

derived from TA2080, was used for the reciprocal cross

Figure 7. RNA expression studies of tomato ABC transporter gene. (A) Comparison of expression in seeds, leaves and roots using semi-
quantitative RT-PCR. Actin gene used as a comparative control. (B) Semi-quantitative RT-PCR of ABC transporter gene during seed development
comparing L/L and S/S NILs.
doi:10.1371/journal.pgen.1000347.g007
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experiments. Likewise, the S/S NIL (TA3820) used for transfor-

mation experiments was also a shorter derivative of TA2080.

Detailed description of the construction of both derived subNILs

can be found in Orsi [46]. The sequence of all markers used in this

study can be found in Table S2.

Reciprocal Cross and Gene Action Experiments
Plants were grown in pots in the greenhouse in 12 randomized

blocks. Each block was comprised of the following Sw4.1

genotypes and type of pollination: L/L: selfing, S/S: selfing, L/S:

selfing; L/L: used as the female in crosses to S/S, S/S: used the

female in crosses to L/L. Each plant was either selfed or crossed

manually. At maturity, 5 normal fruit (no blossom end rot, non-

parthenocarpic) were harvested from each plant and the seed

extracted. The fruit were weighed and the average weight per fruit

was recorded. From a pool of seeds from 5 fruits, 50 healthy seeds

were randomly sampled. From these, an average seed weight was

calculated for each plant. A comparison of the least squares means

was performed using the adjustment for multiple comparisons

Tukey-Kramer (SAS enterprise guide 3.0).

Developmental Analyses
Effects of Sw4.1 on seed development and fruit size: Ten pairs of

L/L and S/S NIL plants were grown in the greenhouse. Two to three

fruits were harvest from each plant at each of the following stages:

anthesis (0 days after pollination –DAP), 5 DAP, 10 DAP, 15 DAP,

20 DAP, 25 DAP, 30 DAP, 35 DAP and 40 DAP. Because of the

microscopic size of ovule and developing seeds, it was not possible to

collect mass (weight) data. Instead, all traits were recorded as spatial

metrics (e.g., length, width). Both fruit and seed were scanned using a

HP ScanJet (1200 dpi). Length and width measurements were then

extracted from the images using the software Tomato Analyzer

Version v.1.2 [51]. A second independent experiment, of identical

design, was then conducted. However, based on results from the first

experiment, fruit were collected only at 10 DAP, 15 DAP and 20

DAP – periods associated with most rapid changes in seed

development. For the verification of seed developmental stages,

seeds from 10, 15 and 20 DAP were fixed, dehydrated and

embedded in paraplast (Sigma) as described by [52].

Role of Sw4.1 in determining the proportion of embryo to

endosperm in mature seed: Five pairs of L/L and S/S individuals

were grown in the greenhouse. Five mature fruits were harvested

from each individual and the seeds extracted. A random sample of

10 normal seeds was then drawn from each individual. Each

individual seed was then dissected longitudinally into halves and

the images digitalized under a dissecting scope (ZeissStemi 2000-

CS attached to 3CCD camera MTI) using the software Scion

Image (www.scioncorp.com). The areas of the entire seed, embryo

and endosperm were manually delineated and measured using the

software ImageJ 1.31 v (http://rsb.info.nih.gov/ij/).

Seed Germination and Viability Experiments
Ten pairs of L/L and S/S individuals were grown in the

greenhouse. One hundred normal seeds from a pool of 10 fruits of

each genotype were germinated in Petri dishes on filter paper

saturated with distilled water. The seeds were scanned prior to the

germination process for seed length measurement (Tomato Analyzer

v.1.2). The number of germinated seed was recorded on a daily basis

until no additional seed germination was obtained. For these

experiments, a seed was considered germinated once the root tip had

emerged. Tests of heterogeneity on the number of germinated seeds

at days 3, 4 and 5 (when the majority of seed germination was

observed for all the genotypes) were performed for the detection of

possible differences in germination rate between NILs (Minitab 15).

Progeny Testing of Selected Recombinants
The genetic stocks used for the progeny analysis were derived

from sub-NILs selected from each selected recombinant within the

BAC (Figure 4). Ten homozygous recombinant and ten homozy-

gous non-recombinant individuals were selected, via marker

analysis, from selfed seed of selected recombinants (Table 1,

Figure 4). The selected progeny were grown in a completely

randomized design in the greenhouse. From each plant, seeds

were extracted from 5 fruits and pooled. From each pool, 50

normal seeds were randomly selected and weighed. For each

family, statistical comparisons for seed weight were made between

the 10 recombinant and 10 non-recombinant progeny from each

family using a one-tailed t-test (Minitab 15) (Table 1).

BAC Annotation and Comparison with the Arabidopsis
Genome

BAC LE_HBa0077O05, isolated with marker probe S1, was

annotated using the automated annotation tools developed by

SGN and refined manually through BLAST searches against EST

libraries (Solanaceae, coffee, Arabidopsis). Arabidopsis genes,

putatively orthologous to genes in the tomato BAC, were identified

using the Best Reciprocal Matches (RBM) in BLAST comparisons

[45]. Based on these putative orthologs, it was possible to identify

region in the Arabidopsis genome showing conserved microsyn-

teny with the Sw4.1 region of tomato chromosome 4.

Sequencing of Sw4.1 Interval from S. pimpinellifolium and
Annotation of Polymorphisms between S. lycopersicum
and S. pimpinellifolium

A 38 kb segment, delimited by markers dABC20665 and

S106indel1 and known from progeny analyses to encompass the

Sw4.1 QTL, was also sequenced via PCR from the genome of S.

pimpinellifolium LA1589 – the small-seeded parent of the original

mapping population. The objective of the sequencing was to identify

polymorphisms that might be causal to the Sw4.1 QTL. Sequence

analysis was performed with DNASTAR Lasergene software and

alignments with BioEdit version 7.0.9.0 using ClustalW.

Sequencing Tecombinants in the 38 kb Sw4.1 Interval to
Pinpoint the Exact Crossover Points

In order to further narrow the Sw4.1 interval, PCR-based

sequencing was performed on the two recombinant individuals

that define the left (05T427-200) and right (06T661-255) side of

the 38 kb interval. By sequencing across the exact crossover point

in each recombinant, it was possible to narrow the location of the

Sw4.1 QTL to a 23 kb interval (Figure 4).

Transformation Experiments
RNAi transgene construction. A 278 bp fragment from the

39UTR of the ABC transporter gene orthologous to At4g39850

was inserted in the binary vector pHellsGate 2 (Invitrogen) [53] for

the generation of a hairpin construct for the RNAi mechanism

induction and gene silencing in L/L and S/S NILs. The schematic

representation of plasmid construction is shown in Figure S1. The

pHELLSGATE vector was designed such that a single PCR

product from primers with the appropriate attB1 and attB2 sites

would be recombined into it simultaneously to form the two arms

of the hairpin [53]. The recovery of successful recombination

(insertion) of both arms of the hairpin was ensured by ccdB genes,

which were replaced by the arm sequences (ABC transporter

fragment). CcdB gene is lethal in standard E. coli strains such as

DH5a, strain that was used for plasmid cloning. The intron

retention was ensured by the chloramphenicol-resistance gene

ABC Transporter Gene Modulates Tomato Seed Size
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(CAM) within the intron. The successful insertion for both arms of

the hairpin was confirmed by sequencing analysis (data not

shown). Recombinant pHELLSGATE constructs, called pSP13-1,

were sent for transformation (Plant Science Initiative, University of

Nebraska) for the direct transformation into Agrobacterium for

transformation into the L/L and S/S NILs.
Experimental design and statistics. Transgenic analysis of

the T0 generation: 10 transgenic L/L NILs, 3 non-transgenic L/L

NILs, 10 transgenic S/S NILs and 2 non-transgenic S/S NILs were

grown in greenhouse in a random design. Classification of plants

as transgenic or non-transgenic was based on the amplification of

the insert-vector using the primers AttB1-ABC and XhoI insert-

vector for the sense insertion (403 bp) and Att1B1-ABC and XbaI

insert-vector for the anti-sense insertion (400 bp). RNA levels for

the ABC transporter gene were not measured in seeds from T0

plants since this would have precluded seed size measurements

from the same plants. For efficient RNAi mechanism induction,

both arms of the hairpin must be present as well as the intronic

sequence. Therefore, amplification of both XbaI and XhoI were

required for the assignment of transgenic plants. As a positive

control for PCR amplification, S85 primers were included in each

reaction. S85 amplifies 800 bp from the ABC transporter

promoter region, which would be present in transgenic and non-

transgenic plants. Five fruits of each plant were harvested and the

seeds were extracted. 50–100 seeds were randomly selected from

each pool and weighed. One tail t-tests, comparing transgenic and

non-transgenic plants were then performed using Minitab 15.

Analysis of ABC Transport Gene Transcript
Experimental design. Ten L/L NIL and ten S/S NIL

individuals were paired and grown in greenhouse. Each flower was

manually pollinated and the date of pollination noted. Seeds from

fruits 10, 15 and 20 DAP were removed and immediately frozen in

liquid nitrogen. Seeds at these stages were pooled from 5 healthy

plants for the RNA extraction. Frozen seeds were ground to a fine

powder in liquid nitrogen and total RNA was isolated using Trizol

reagent (Invitrogen). The concentration of total RNA from each

sample was determined from 1006 diluted solution using

spectrophotometry. One microgram of total RNA from each

sample was treated with RNase-free DNaseI (amplification grade,

Invitrogen). First-strand cDNA was synthesized by reverse

transcription with oligo(dT)16 primer following manufacturer’s

protocol (Invitrogen). Another set of plants was grown and the

procedure repeated as an independent experiment for replicate.

Semi-quantitative RT-PCR. ABC transporter transcript

levels were detected by using semi-quantitative RT-PCR. The

primers used for the amplification are S53R (59 GGGAAGA-

CGAACCAAATGAA 39) and ABCp35R (59 CGGGAACTAG-

GCGCTATACA 39). These primers were designed based on the

39end and 39UTR of the gene. BLAST search against A. thaliana

non-redundant database in NCBI and tomato EST database in

SGN (www.sgn.cornell.edu) confirmed the uniqueness of this

sequence and specificity to this ABC transporter gene. The

internal control was actin TOM52 [54]. For the semi-quantitative

approach, from a total reaction of 100 ul, 10 ul were collected at

the end of each one of these cycles: 25, 28, 30, 32, 34 and 35.

Supporting Information

Figure S1 Diagram of pSP13-1 construct used for RNAi based

gene silencing of ABC transporter gene in transgenic experiments.

Found at: doi:10.1371/journal.pgen.1000347.s001 (0.75 MB TIF)

Figure S2 Detailed alignment of L and S alleles showing all

polymorphisms in the 23 kb region encompassing the Sw4.1 QTL.

Found at: doi:10.1371/journal.pgen.1000347.s002 (7.55 MB TIF)

Table S1 Annotation of the 12 genes contained in the tomato

BAC LE_HBa0077O05.

Found at: doi:10.1371/journal.pgen.1000347.s003 (0.04 MB

DOC)

Table S2 Markers for S. lycopersicum and S. pimpinellifolium: marker

type, primer sequence, restriction enzyme and fragment size.

Found at: doi:10.1371/journal.pgen.1000347.s004 (0.15 MB

DOC)
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