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Abstract: The ammonothermal method is considered the most promising method of fabricating
bulk gallium nitride (GaN) crystals. This paper improves the ammonothermal growth model by
replacing the heater-long fixed temperature boundary with two resistance heaters and considering the
real thermal boundary outside the shell. The relationship between power values and temperatures
of dissolution and crystallization is expressed by the backpropagation (BP) neural network, and
the optimal power values for specific systems are found using the non-dominated sorting genetic
algorithm (NSGAII). Simulation results show that there are several discrepancies between updated
and simplified models. It is necessary to build an ammonothermal system model with resistance
heaters as a heat source. Then large-sized GaN crystal growth is analyzed based on the well-developed
numerical model. According to the simulation results, both the increasing rate and maximum stable
values of the metastable GaN concentration gradient are reduced for a larger-sized system, which is
caused by the inhomogeneity of heat transfer in the autoclave.

Keywords: gallium nitride; ammonothermal system; numerical model; heat source; BP neural net;
NSGAII; large-sized GaN growth

1. Introduction

With the development of semiconductor technology, gallium nitride (GaN) is becoming
increasingly popular due to its advantage of a wide bandgap, which can reach as high as
3.4 eV. Thus, it is widely used in many new fields, such as wireless charging, new-energy
vehicles, and optical masers [1,2]. Three main methods are used to grow GaN substrates:
the hydride vapor phase epitaxy (HVPE) method [3], the sodium flux method [4], and
the ammonothermal method [5]. Among them, the HVPE method is the mainstream
method for GaN wafer fabrication. However, its low crystal quality and high cost restrict
its application in bulk GaN growth. In contrast, the ammonothermal method can provide
high-quality GaN crystals at a low cost and is suitable for volume production [6].

Several groups have conducted both experimental and numerical studies on the
ammonothermal growth of bulk GaN. Zajac et al. [7] achieved a 2-inch GaN wafer with a
large curvature radius and a low TDD order in an ammonothermal autoclave. Tuomisto
et al. [8] studied the defects in bulk GaN grown using the ammonothermal method and
proposed several methods to change the defect structure. Kazuo Yoshida et al. [9] developed
a high-temperature autoclave using the acidic ammonothermal method to grow GaN
crystals. The XRC-FWHM results showed that the yielded crystals were of high quality.
Chen et al. [10–12] numerically studied the baffle and height of heaters that affect the
flow and heat transfer in an ammonothermal autoclave. Hooman Enayati et al. [13–16]
conducted a series of numerical simulations to study the flow and heat transfer in a
laterally heated cylindrical reactor, which is similar to an ammonothermal autoclave.
Masuda et al. [17] calculated the flow and thermal field in the ammonothermal autoclave
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with a funnel-shaped baffle. A chemical dissolution reaction in the porous media and
on the surface of seed crystals was first introduced by Iman Mirzaee et al. [18], who
also used the piecewise linear interface calculation (PLIC) concept to simulate the crystal
growth process. Schimmel et al. [19] studied the influence of flow and heat transfer on the
temperature measurement error based on experiments. Moreover, several companies from
Japan, the United States, and Poland have also greatly contributed to the development
of GaN growth in an acidic or basic ammonothermal system, including Ammono (basic
system), Mitsubishi Chemical Corp. (acidic system), Soraa Inc. (acidic system), SixPoint
Materials Inc. (basic system), and Asahi Kasei Corp. (acidic system) [9,20–22].

The heaters of most numerical studies by previous researchers are simplified as heater-
long fixed temperatures due to the difficulty of finding corresponding heater powers at
certain growth temperatures, which involves a problem of multi-objective optimization.
However, according to the recent research by Saskia Schimmel et al. [23], the thermal
field using heater-long fixed temperatures as heat sources has a significant deviation from
the real temperature distribution in the chamber of the ammonothermal system. In this
study, we employ resistance heaters as the heat sources in the ammonothermal numerical
model. The relationship between heater powers and the temperatures of dissolution and
crystallization is first expressed using a backpropagation (BP) neural net algorithm. Then,
the optimal power groups of the two resistance heaters are found using a non-dominated
sorting genetic algorithm (NSGAII). A multi-physics field numerical model is established
considering mass transport, which is neglected by Saskia Schimmel et al. [23]. Based on the
well-developed model, the growth of 2- and 4-inch GaN crystals is analyzed.

2. Numerical Model and Mathematical Method
2.1. Geometric Model of the Ammonothermal System

The model in this study is constructed based on the ammonothermal system used by
the Air Force Research Laboratory (Tem-Press MRA 378R). The structure and geometric
size of the autoclave are shown in Figure 1. According to our previous research [24],
a nutrient basket with a central hole is beneficial for the improvement of the growth rate.
Thus, the optimized model is used in this paper. The diameters of the nutrient basket and
central hole are 22 mm and 2 mm. The porosity of the nutrient basket is 0.6. A mineralizer
of KNH2 is adopted, which results in the retrograde solubility of GaN in supercritical
ammonia. Thus, the nutrient basket is placed in the upper half of the chamber, 12.6 mm
away from the top of the autoclave. The inner height and diameter of the chamber are
356.6 mm and 24 mm, respectively. A circular silver baffle with an 80% opening and seed
crystals are located in the middle and lower half of the chamber, respectively. The thickness
and diameter of the baffle are 1 mm and 23.4 mm. There is a 1 mm gap between the
baffle and the internal face. The distance between the baffle and the nutrient basket’s
bottom is 25.5 mm. A seed crystal with 10 mm height and 0.2 mm radius is placed in
the middle of the lower half, 83.3 mm away from the baffle. For the original model used
by previous researchers, heater-long fixed temperatures are set as the thermal boundary
(shown in Figure 1a). High- and low-temperature resistance heaters (HT heater and LT
heater) are used as heat sources in our updated model and are placed in the lower and
upper halves, respectively, with a 10 mm gap from the external surface of the autoclave
(shown in Figure 1b). The height of high-temperature heater (HT heater) is 155 mm, and the
height of low-temperature heater (LT heater) is 177 mm. The gap between them is 25.5 mm.
The autoclave is made of a nickel base alloy whose trademark is Rene 41. O represents the
original point and is located at the cross point of symmetry and the external surface of the
autoclave. The axis direction is shown in the figure. Four points’ coordinates and two lines
are marked in the figure and will be used to calculate the average external temperature in
the discussion part. The materials of the rest of the components and geometric sizes are
listed in Figure 1.
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Figure 1. Schematic diagram of the ammonothermal system (unit: mm). (a) Original simplified
model. (b) Updated model using resistance heaters as heat sources.

2.2. Governing Equations

Multi-physics fields and their couplings are calculated in the numerical simulation,
including flow, heat transfer, and diluted mass transport. The corresponding differential
equations can be acquired from [24]. Bossinesq approximation is employed for the calcula-
tion of natural convection. Dissolution and crystallization reactions occur in the nutrient
basket and on the surface of seed crystals, respectively. Expressions (1) and (2) express
the chemical reactions. According to experimental research, the maximum solubility of
metastable GaN with a mineralizer of KNH2 in ammonia is determined by temperature [25].
The maximum mass concentration is calculated by Equation (3). The mass source of the
diluted mass transport equation includes the dissolution and crystallization reactions and
is expressed with Equation (4). It can be inferred that the dissolution and crystallization
rates are determined by the chemical kinetics and supersaturation.

(KNH2 + NH3)solvent + GaNsolid → KGa(NH2)4metastable (1)

KGa(NH2)4metastable → (KNH2 + NH3)solvent + GaNsolid (2)

Cmax = ρf11.7 exp(−0.0122T)/Mmeta (3)

φc =
1
∀ [ρfκAfs(Cmax − Cf)] (4)

where Afs (SI: m2) is the surface and ∀ (SI: m3) is the volume. κ represents the chemical
reaction coefficient, and the value of 10−6 m/s is used here. Cmax (SI: mol/m3) is the
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maximum mass concentration of metastable GaN. ρf is the fluid density. Cf (SI: mol/m3)
is the mass concentration of metastable GaN. Mmeta (SI: kg/mol) is the molecular weight
of metastable GaN. φc (SI: mol/m3) is the mass source. Thus, the supersaturation of
metastable GaN can be calculated by Cf − Cmax.

All of the physical properties used in the simulation were acquired from [18].

2.3. Numerical Setup and Boundary Conditions

The simulation work was finished with the commercial software COMSOL Multi-
physics. Modules used in the calculation include non-isothermal flow, Brinkman equation,
and diluted mass transport in porous media. The Rayleigh number of the model was calcu-
lated using Equation (5). R/2 was adopted as the characteristic length. The value of the
Rayleigh number is 5.0 × 107, which is smaller than the critical value. Thus, laminar flow is
set in the flow field calculation. Boussinesq approximation was employed as the calculation
method of the flow field. Thus, volume force needed to be calculated. The volume force
term was set using Equation (6). The whole model is meshed with triangle grids. The total
numbers of elements of the basic and optimized model were about 27,571 and 28,733. Five
boundary layer grids were set near the internal surface, middle baffle, and seed crystal
surface. The time step of the quick calculation was 0.005 s. The second-order backward
difference method was applied to discretize the momentum, energy, and mass transport
equations. A tolerance error of 0.01 was applied for all the calculated variables at each time
step. The liquid ammonia was considered incompressible, and the pressure, viscosity, and
thermal capacity were set constant due to their little variation during the growth process.
The cost of the computer and time for the calculation were 8 PC cores and 200 h. To confirm
that the multi-physics fields in the autoclave reached a relatively steady state, the growth
time of 10 h was calculated by a transient calculation.

Ra =
(TH − TL)(R/2)3

υκ
(5)

F = ρref g(T − Tf) (6)

Here, Ra represents the Rayleigh number. TH is the crystallization temperature, and
TL is the dissolution temperature. R is the internal radius of the autoclave (SI: m). υ is
the dynamic viscosity (SI: N · s/m2). κ is the thermal expansion coefficient of ammonia
(SI: 1/K).

Resistance heaters were employed to supply heat sources for the updated ammonother-
mal system. The heater powers were ascertained by the BP neural net and NSGAII algo-
rithm, presented in Section 3. The bottom of the autoclave was insulated, and a convection
boundary with air was employed for the rest of the surface. The internal wall and surface
of the baffle in the chamber were set as no-slip walls. The mass source was calculated
according to the temperature and mass concentration (Equations (3) and (4)). There was
no mass flux for all the internal walls in the chamber (Equation (7)) except the surface of
the seed.

∇c = 0 (7)

2.4. BP Neural Net and NSGAII Algorithm

In this study, a BP neural network is used first to identify the relationship between
heater powers and temperatures of growth and dissolution regions. Then the non-dominated
sorting genetic algorithm (NSGAII) was adopted to find the optimal power values for
crystal growth. The commercial software MATLAB was employed to realize both of
the algorithms.

To find the optimal power values of heaters, the functional relationship was needed.
However, as is known, the ammonothermal autoclave is a complex system, including multi-
physics fields and their coupling with each other. There are many factors influencing the
temperatures in the dissolution and crystallization region, such as heater powers, boundary
conditions, component location in the chamber, and chamber size. Thus, it is not easy to
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identify the relationship between the powers and temperatures with a simple expression.
However, the BP neural network is suitable for such a case. The structure of a three-layer
BP network is shown in Figure 2. P1 and P2 (powers of the high- and low-temperature
heaters) are the two input layer nodes. ωij represents the weight values between the input
layer and hidden layer, i = 1, 2; j = 1, 2, . . . , n. T1 and T2 (the corresponding temperatures of
dissolution and crystallization regions) are the two output layer nodes. ωjk represents the
weight values between the input layer and hidden layer, j = 1, 2, . . . , n; k = 1, 2. In Figure 2,
the HT power P1 and LT power P2 represent the powers of high- and low-temperature
heaters. HT temperature T1 and LT temperature T2 represent the average external surface
temperatures in the growth and dissolution regions.

Figure 2. Structure of the three-layer BP network.

The BP neural net process mainly contains two parts: the signal’s propagation and
the output error’s backpropagation [26]. The first part is in the forward direction, which is
from the input to the output. The process can be expressed by Equation (8). The second
part is in the backward direction, which is from the output to the input. The function of
this step is to amend the weight or threshold values to force the results to approach the
target values. The error calculation and correction of weight and threshold are expressed
by Equations (9)–(13):

Tk = f(
n

∑
j=1
ωjkφ(

2

∑
i=1
ωijPi + θj) + ak), k = 1, 2 (8)

E =
1
2

P

∑
p=1

2

∑
k=1

(
Tp

k
′ − Tp

k

)2
(9)

∆ωki = η
P

∑
p=1

2

∑
k=1

(Tp
k
′ − Tp

k) · ψ
′(netk) · yi (10)

∆ak = η
P

∑
p=1

2

∑
k=1

(Tp
k
′ − Tp

k) · ψ
′(netk) (11)

∆ωij = η
P

∑
p=1

2

∑
k=1

(Tp
k
′ − Tp

k) · ψ
′(netk) · ωjk·φ′(netj) · Pi (12)

∆θj = η
P

∑
p=1

2

∑
k=1

(Tp
k
′ − Tp

k)·ψ
′(netk) · ωjk · φ′(netj) (13)

where θj and ak represent the threshold value of each layer. P is the number of the training
samples. η is an adjustment coefficient used to improve the accuracy of weight and
threshold values. ψ′ and φ′ are the functional relationships of hidden layers. netk and netj
are the middle values in the neural network.
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In order to find the optimal heater powers of the ammonothermal system, a non-
dominated sorting genetic algorithm (NSGAII) was employed. The principle of the algo-
rithm is shown in Figure 3. An initial population P1 and parent population Q1 were first
created by the random method. Then, an equal-sized population was created by crossover
and mutation. The two populations were merged, and the non-dominated sorting was
conducted by the objective function and crowd distance calculation. Candidates with
smaller front values remained, and those with bigger front values were rejected for the
next iteration. Fi represents the stochastic frontier in which candidates cannot dominate
each other. A total of N generation calculations were operated until the accuracy of the
candidates meets the requirements [27,28].

Figure 3. Schematic diagram of NSGAII.

All the candidates were sorted into several frontiers according to the non-dominated
method (Figure 3). The frontiers at the front were selected for the next generation until the
number of next generation reached N. When the next population could not accommodate all
the candidates in Fi, only part of them could be selected. To keep their uniform distribution,
they were selected by crowd distance (Equation (15)). Such steps were continued until only
one frontier was left.

The objective functions are defined by the deviation of predicted values and objective
values (shown as Equations (14) and (15)). Crowd distance is used for candidate selection
when they are in the same stochastic frontier. Its expression is shown in Equation (16).

f1 = ∆T1 = (T1 − T1
′)

2 (14)

f2 = ∆T2 = (T2 − T2
′)

2 (15)

Ck
d =

fk+1
1 − fk − 1

1

fmax
1 − fmin

1
+

fk+1
2 − fk − 1

2

fmax
2 − fmin

2
, k = 1, 2, . . . n. (16)

Here, is the crowd distance of candidate k. fmax and fmin are the maximum and
minimum objective function values in a particular stochastic frontier. n is the number of
candidates in the stochastic frontier. T1

′ and T2
′ are the target values of dissolution and

crystallization temperatures.

3. Results and Discussion
3.1. Searching for the Optimal Heater Powers

To train the neural network, datasets of heater powers and corresponding temperatures
were collected by numerical simulation. The corresponding relationship between heater
powers and temperatures is shown in Tables 1 and 2. The high-temperature heater power
values ranged from 450 W to 490 W, and the low-temperature heater power values ranged
from 300 W to 390 W. The stable external surface temperature in the crystallization region
at certain high- and low-temperature heater power values ranged from 773.5 K to 829.8 K.
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The stable external surface temperature in the dissolution region at such values ranged
from 732.3 K to 799 K.

Table 1. Crystallization temperature (unit: K) of crystallization region at different power values.

High-Temperature Heater Power (W)

Low-temperature
heater power (W)

450 460 470 480 490

300 773.5 778.9 784.7 790.2 796.4

310 776.9 781.66 788.5 794.3 800

330 784.5 790.3 796 801.7 807.5

350 792 797.84 803.6 809.3 814.9

370 799.5 805.3 811 816.7 822.4

390 807 812.7 818.4 824.5 829.8

Table 2. Dissolution temperature (unit: K) of crystallization region at different power values.

High-Temperature Heater Power (W)

Low-temperature
heater power (W)

450 460 470 480 490

300 732.3 736.3 740.3 744.5 748.3

310 738.1 742.1 746 750 754

330 749.7 753.6 757.5 761.5 765.4

350 761.2 765.1 769 772.8 776.66

370 772.5 776.4 780.2 784 787.9

390 783.8 787.6 791.45 795.5 799

Data in the tables above were used to train the neural net. There were nine neural
cells in the neural net. The number of training generations was 1000. The target error of
the model was set as 0.001. Thirteen sets of data were randomly chosen to test the model.
A comparison of real and predicted values is depicted in Figure 4a. The determination
coefficient (R2) was above 98%, indicating high model accuracy. Such accuracy satisfies the
requirement of simulation and experiment.

Figure 4. (a) Comparison of test values and predicted values. (b) Distribution of target function
values for the last generation.
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According to the ammonothermal system used in this study, the optimal dissolution
and crystallization temperatures were 798 K and 748 K, respectively. Therefore, they were
set as the target temperatures. There were 101 candidates in each generation, and a total of
1000 generations were iteratively computed and non-dominantly sorted by target function
values and crowd distance. The distribution of two target function values is shown in
Figure 4b. It can be concluded that both temperature differences can be maintained within
0.5 K. It is impossible to find a power set that makes the dissolution and crystallization
temperature errors the least at the same time. To reduce the total error, the power set that
results in similar values of target errors was selected. According to the last generation,
the powers of high- and low-temperature heaters were 300 W and 492 W, respectively.

3.2. Heat and Mass Transfer Comparison of Original and Updated Models

The heat and mass transfer processes significantly influence the GaN crystal growth.
The dissolution and crystallization reaction rates are mainly determined by temperature,
and the solute concentration gradient near the crystal surface is maintained by flow and
mass transfer in the chamber. There are apparent differences in flow, thermal, and concen-
tration fields between the simplified and updated models. Figure 5 depicts the thermal
maps of simplified and updated systems. The temperature boundaries were constant for the
simplified system, and the temperature distribution in the dissolution and crystallization
regions was more uniform. Meanwhile, for the updated system, the temperatures of the
two heaters, as well as the temperature in the chamber, were non-uniform, especially in
the top and bottom regions, which agrees with the conclusion of [23]. The temperature
distribution has a relatively distinct dividing line in the middle for the simplified system.
In contrast, the temperature transition of the updated system was smoother from the lower
half to the upper half. Figure 6 shows the average temperature curve on the external
surface of the autoclave versus growth time. The X and Y coordinates of the surfaces are
from (39, 10) to (39, 165) and from (39, 190.5) to (39, 367.5). For the original point and axis
direction, please refer to Figure 1. There is a noticeable fluctuation in temperature for the
system with resistance heaters. This is probably because of the imbalance of heat transfer
at the beginning of the growth period.

The natural convection and mass transfer were determined by the temperature dif-
ference between the lower and upper halves. Therefore, to verify our simulation result,
the stable temperature distribution on the external surface of the autoclave lateral wall
where the X coordinate was 39 mm was calculated and compared with the result in [23]
(shown as Figure 7). The variation trend of the temperature profile with resistance heaters
is almost the same as that in Figure 10 in [23], which was partly verified by temperature
measurement on the external surface of the autoclave. However, there was a slight dif-
ference at the bottom of the autoclave wall. This is mostly because of the difference in
the high-temperature heater location. In [23], the high-temperature heater was located
lower than the bottom of the chamber. Therefore, there was no temperature rise along the
vertical location at the bottom of the autoclave lateral wall. At the top of the autoclave
wall, the temperature declined more in [23], owing to the lack of insulation at the top of the
low-temperature heater. The temperature profile with resistance heaters was smooth, and
there were significant temperature differences at the bottom and top regions, which agreed
well with the conclusion of [23]. As we all know, the real temperature distribution along the
external surface of the autoclave should be continuous when it reaches a steady state. Thus,
the simulation result with resistance heaters instead of heater-long fixed temperatures is
closer to the real situation.

The flow fields of original and updated cases are depicted in Figures 8 and 9. To
clearly show the details of flow and thermal fields in the chamber, six enlarged drawings
(Part 1–Part 6) were added. The flow style in the lower half of the chamber was similar to
cases A3 and B in [23]. Apparent discrepancies in the velocity vector distribution between
the two systems were observed, especially at the top and bottom. The temperature gradient
in the upper half improved due to the convection heat loss at the top of the system. Thus,
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flow above the nutrient basket was stronger for the updated system than for the original
system. However, the flow in the lower half was weakened, as the temperature boundary
between the lower and upper half was blurrier than that in the original system. Flow
almost disappeared at the bottom of the chamber, which is unfavorable for mass transport.

Figure 5. Thermal maps of ammonothermal systems. (a) The original simplified system. (b) The
updated system with resistance heaters.

Figure 6. The average temperature variation versus growth time on the external surface of the autoclave.
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Figure 7. The temperature distribution on the external surface of the autoclave lateral wall versus
vertical position.

Figure 8. Velocity vector distribution of the ammonothermal system with heater-long fixed tempera-
ture boundary. (a) Part 1. (b) Part 2. (c) Part 3. (d) Part 4. (e) Part 5. (f) Part 6.

The hot and cool fluid exchange happened mainly in the region between the middle
baffle and the nutrient basket for the system with a heater-long fixed temperature bound-
ary. The concentration distribution in the upper half of the chamber varied smoothly at
different elevations (shown in Figure 10). However, the velocity magnitude at the region
between the middle baffle and nutrient basket was reduced when resistance heaters were
employed as heat sources. A high-concentration region at the top of the chamber (Figure 11)
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appeared as the temperature was reduced by heat loss at the head of the autoclave, which
is beneficial for the dissolution of GaN with retrograde solubility in supercritical ammonia.
The concentration level of the metastable GaN in the free flow is higher than that in the
original model. The heat and mass transfer comparison of the two ammonothermal system
models suggests that it is necessary to construct an ammonothermal system model with
resistance heaters.

Figure 9. Velocity vector distribution of the ammonothermal system with resistance heaters as the
heat source. (a) Part 1. (b) Part 2. (c) Part 3. (d) Part 4. (e) Part 5. (f) Part 6.

Figure 10. Concentration distribution of the ammonothermal system with heater-long fixed tempera-
ture boundary. (a) Part 1. (b) Part 2. (c) Part 3. (d) Part 4. (e) Part 5. (f) Part 6.



Materials 2022, 15, 4137 12 of 18

Figure 11. Concentration distribution of the ammonothermal system with resistance heaters as the
heat source. (a) Part 1. (b) Part 2. (c) Part 3. (d) Part 4. (e) Part 5. (f) Part 6.

3.3. Large-Sized GaN Crystal Growth Analysis

To research the heat and mass transfer in the chamber for large-sized crystal growth,
the 2- and 4-inch ammonothermal system models were designed and calculated in pro-
portion, respectively. The powers of heaters were calculated using the method above.
The values of power were 1210 W and 1040 W for the 2-inch autoclave and 2430 W and
2255 W for the 4-inch autoclave.

Figures 12 and 13 depict the flow fields in the chamber for the 2-inch and 4-inch
ammonothermal systems. The natural convection was strengthened with increasing size.
The velocity of central flow for a large-sized ammonothermal system was higher, which is
beneficial for mass transport. With the help of a stronger central flow, convection at the
bottom of the chamber was more fierce than that in the smaller-sized system (Figure 9).

According to research by Hooman Enayati et al. [13–16], the fundamental driver of
natural convection in the chamber is the buoyancy at the boundary layer, which is derived
from the temperature gradient on the internal surface of the autoclave near the baffle. As
there is a nutrient basket in the upper half of the chamber, the temperature gradient in
the lower half offers the main force. Figure 14 shows the temperature profile near the
internal surface in the lower half. There is a distinct temperature re-duction near the middle
baffle. The temperature (∆T) gradient around the baffle rose as the diameter of the chamber
increased. This probably resulted from the increasing inhomogeneity of heat transfer for a
larger sized system.

To analyze the growth rate of GaN in a large-sized ammonothermal system, the con-
centration distribution and gradient on the seed crystal surface need to be calculated.
Figures 15 and 16 show the concentration distribution in the chamber for 2-inch and 4-inch
systems. The inhomogeneity of the mass concentration in the nutrient basket was more
evident as the internal diameter of the autoclave increased because of the uneven temper-
ature distribution. However, with the help of stronger central flow, the metastable GaN
concentration in the growth region (lower half) was improved.
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Figure 12. Velocity distribution in the chamber for the 2-inch ammonothermal system. (a) Part 1.
(b) Part 2. (c) Part 3. (d) Part 4. (e) Part 5. (f) Part 6.

Figure 13. Velocity distribution in the chamber for the 4-inch ammonothermal system. (a) Part 1.
(b) Part 2. (c) Part 3. (d) Part 4. (e) Part 5. (f) Part 6.
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Figure 14. Temperature profile near the internal surface of the autoclave at the lower half of the
chamber. (a) Curve for the 1-inch system; (b) 2-inch system; (c) 4-inch system.

Figure 15. Metastable GaN concentration distribution in the chamber for the 2-inch ammonothermal
system. (a) Part 1. (b) Part 2. (c) Part 3. (d) Part 4. (e) Part 5. (f) Part 6.
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Figure 16. Metastable GaN concentration distribution in the chamber for the 4-inch ammonothermal
system. (a) Part 1. (b) Part 2. (c) Part 3. (d) Part 4. (e) Part 5. (f) Part 6.

The primary determining factor of growth rate is the supersaturation on the seed
crystal surface at a particular chemical kinetics coefficient. Thus, the variation in supersatu-
ration on the seed crystal surface needs more attention, and it can be calculated by transient
simulation. Figure 17 depicts the supersaturation variation versus growth time for the
three ammonothermal systems. The increasing rate and maximum value of the average
supersaturation on the seed crystal surface were reduced with increasing system size,
owing to the temperature decline in the growth region due to stronger natural convection.
This resulted in a lower crystal growth rate in a large-sized ammonothermal system.

Figure 17. Average metastable GaN supersaturation on the seed crystal surface variation versus
growth time.
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4. Conclusions

The ammonothermal system model was better developed by replacing the heater-
long fixed temperature boundary with resistance heaters and considering the real thermal
boundary conditions. A BP neural network was used to express the relationship between
heater powers and temperatures of dissolution and crystallization. The optimal power
values were found by a non-dominated sorting genetic algorithm (NSGAII), which is also
applicable for autoclave design and a quick search of heater powers when conducting
the experiment.

The simulation result was compared with that in [23] for verification. The conclusion
in this paper agrees well with that in [23], which was partly verified by measuring the
temperature at several points. With a better model, it is possible for us to better understand
the heat and mass transfer in the ammothermal system, which can not be measured and
observed directly for now. This paper supplied a new method for the lower-cost and less
time-consuming optimization of the ammonothermal system, and the method can also be
used to control the growth parameters in commercial production in the future.

A comparison of the original and updated simulations shows several differences
between heat and mass transfer. The flow of the well-developed system was stronger at
the top and weaker at the bottom. A higher concentration region appeared in the upper
part of the nutrient basket with the influence of heat loss at the head of the autoclave.
The metastable GaN concentration in the crystallization region was higher than that in the
original model. Therefore, it is necessary to conduct the simulation work with an updated
ammonothermal system model.

Based on the better-developed ammonothermal system, large-sized crystal growth was
analyzed. Models of 2-inch and 4-inch ammonothermal systems were built. Calculation
results show that the natural convection was strengthened as the size increased because
of the higher inhomogeneity of heat transfer. With the influence of stronger central flow
in the crystallization region, the metastable GaN concentration in the lower half of the
chamber was improved. However, the increasing rate and maximum stable value of
average supersaturation on the seed crystal surface were reduced owing to the temperature
decline caused by the central flow, which results in a lower growth rate for a larger-sized
ammonothermal system. Thus, it needs optimization for the large-sized system to improve
the homogeneity of heat transfer in the autoclave for a better growth environment.
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Nomenclature

ρf fluid density (kg/m3)
Cmax maximum concentration (mol/m3)
T temperature (K)
Mmeta molecular weight of the metastable species (kg/mol)
φc mass source (mol/(m3s))
Afs/∀ surface-to-volume fraction (1/m)
κ reaction rate coefficient (m/s)
c & Cf species concentration (mol/m3)
TH crystallization temperature (K)
TL dissolution temperature (K)
R internal radius of the autoclave (m)
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υ dynamic viscosity (N · s/m2)
κ thermal expansion coefficient (1/K)
Ra Rayleigh number
ω weight values
a & θ threshold values
f1 & f2 objective function
Cd crowd distance
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