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Despite association with low bone density and skeletal fractures, marrow adipose tissue 
(MAT) remains poorly understood. The marrow adipocyte originates from the mesen-
chymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and 
myocytes, among other cell types. To date, the presence of MAT has been attributed 
to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus 
negatively impacting bone formation. Here, we focus on understanding the physiology 
of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that 
alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is 
known: exercise induces bone formation, encourages growth of skeletally supportive 
tissues, inhibits bone resorption, and alters skeletal architecture through direct and 
indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less 
well studied due to the lack of reproducible quantification techniques. In recent work, 
osmium-based 3D quantification shows a robust response of MAT to both dietary 
and exercise intervention in that MAT is elevated in response to high-fat diet and can 
be suppressed following daily exercise. Exercise-induced bone formation correlates 
with suppression of MAT, such that exercise effects might be due to either calorie 
expenditure from this depot or from mechanical biasing of MSC lineage away from fat 
and toward bone, or a combination thereof. Following treatment with the anti-diabetes 
drug rosiglitazone – a PPARγ-agonist known to increase MAT and fracture risk – mice 
demonstrate a fivefold higher femur MAT volume compared to the controls. In addition 
to preventing MAT accumulation in control mice, exercise intervention significantly 
lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction 
of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone 
augmentation of MAT, exercise significantly suppresses MAT volume and induces bone 
formation. That exercise can both suppress MAT volume and increase bone quantity, 
notwithstanding the skeletal harm induced by rosiglitazone, underscores exercise 
as a powerful regulator of bone remodeling, encouraging marrow stem cells toward 
the osteogenic lineage to fulfill an adaptive need for bone formation. Thus, exercise 
represents an effective strategy to mitigate the deleterious effects of overeating and 
iatrogenic etiologies on bone and fat.

Keywords: exercise, marrow adipose tissue, quantitative image analysis, bone microarchitecture, lipid, PPARγ, 
rosiglitazone, exercise
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MARROw ADiPOSe TiSSUe

Increased marrow adipose tissue (MAT) is associated with states 
of impaired bone formation (1, 2) and dysfunctional hemat-
opoiesis (3–5), although its physiological role remains unclear. In 
humans, pathologists have noted that MAT increases in healthy 
subjects with age, beginning in the distal long bones and accruing 
proximally such that by age 25, approximately 70% of the mar-
row space is filled with MAT (4). In addition to physiologic MAT, 
which accrues with aging, this fat depot – housed within bone – is 
abundant in states of low bone density: osteoporosis (6), anorexia 
nervosa (7), skeletal unloading (8, 9), and anti-diabetes therapies 
(10), conditions that are also associated with skeletal fractures. 
Adipocytes within the marrow originate from the mesenchymal 
stem cell (MSC) pool that also gives rise to osteoblasts, chondro-
cytes, and myocytes, among other cell types (11, 12). Recent work 
suggests that increased marrow fat can also be demonstrated in the 
setting of preserved or increased bone density (high-fat feeding 
or obesity) (13–15) and, thus, challenges the premise that the rela-
tionship between MAT and bone volume is reciprocal. The MAT/
bone relationship is further complicated by the identification of 
a new population of Grem1+ MSC (16), a phenotype capable of 
differentiating into osteoblasts and chondrocytes, but not adipo-
cytes: the Grem1+ population differs from the LepR+ MSC, which 
do generate marrow adipocytes. Whether senile marrow invasion 
with adipocytes represents a later predominance of a LepR+ MSC 
population is unknown but complicates considerations as to the 
physiologic and/or pathologic role of MAT.

In the case of diet-induced obesity, marrow fat also increases 
compared to normal weight controls, but whether this contributes 
to bone fragility is unclear (17). Nevertheless, if the burden of fat 
across the marrow space is inevitable, then perhaps what’s more 
worthy of an investigation is the quality of the MAT being gener-
ated, possibly representing a direct reflection of the health of the 
surrounding bone. Importantly, the unsaturation index of MAT 
increases with aging, and thus, this feature of MAT may shed 
light on its physiology; nonetheless, unsaturation index of MAT 
is unaffected by physical activity (18). While subcutaneous white 
fat depots store excess energy and provide a clear evolutionary 
advantage during times of scarcity (19), MAT’s purpose remains 
indeterminate, harboring characteristics of both white and brown 
fat (20). WAT serves as a source of adipokines and inflamma-
tory markers that have both positive (e.g., adiponectin) (21) and 
negative (22) effects on metabolic and cardiovascular endpoints. 
Visceral abdominal fat is a distinct depot of WAT that is propor-
tionally associated with negative metabolic and cardiovascular 
morbidity (23), regenerates cortisol (24), and has been linked to 
reduced bone formation (25, 26). WAT substantially differs from 
brown adipose tissue (BAT), as defined by a panel of proteins 
that support BAT’s thermogenic role (27). MAT, by virtue of its 
specific marrow location and its adipocyte origin from at least 
LepR+ marrow MSC, is clearly demarcated from non-bone fat 
depots by higher expression of bone transcription factors (28) 
and likely represents a unique fat phenotype (29). Recently, MAT 
was noted to produce a greater proportion of adiponectin – an 
adipokine associated with improved metabolism  –  than WAT 
(30), suggesting an endocrine function for MAT as distinct 

depot, akin, but different from that of WAT. Moreover, deficiency 
of histone deacetylase 3 (Hdac3), known to play a major role 
in skeletal development and lipid metabolism, increases MAT 
volume, implicating this important transcriptional regulator in 
MAT development (31). Potentially, MAT might serve multiple 
functions, reflecting those of both white and brown fat, storing 
lipid in preexisting adipocytes, secreting adipokines, and generat-
ing heat. Exercise universally affects the metabolism of both WAT 
(32) and more recently BAT (33, 34); thus, exercise intervention 
can be harnessed as a powerful tool to query the poorly under-
stood physiology of MAT.

MeASUReMeNT AND QUANTiFiCATiON 
OF MARROw ADiPOSe TiSSUe

In order to quantify and characterize the effects of exercise 
on MAT, various analytic methods were considered. Until 
recently, qualitative measurements of MAT have relied on bone 
histology (35, 36), which is subject to site selection bias and 
cannot adequately quantify the volume of fat in the marrow. 
Nevertheless, histological techniques and fixation make possible 
in situ visualization of MAT, quantification of adipocyte size, and 
MAT’s association with the surrounding endosteum, milieu of 
cells, and secreted factors (37–39).

Recent advances in cell surface and intracellular marker 
identification and single-cell microfluidic analyses have led to 
greater resolution and high-throughput ex vivo quantification. 
Flow cytometric quantification can be used to purify adipocytes 
from the stromal vascular fraction of most fat depots (40). Early 
research with such machinery cited adipocytes as too large 
(50–200  mm) and fragile for cytometer-based purification, as 
their cytoskeleton lacks rigidity, rendering them susceptible 
to lysis; however, recent advances have been made to mitigate 
this (41). One may distinguish discrete adipocyte subpopula-
tions from other cells by utilizing internal lipid content and 
surface biomarker identification. Filtration of the marrow (pore 
size  =  150  μm) permits adequate flowthrough for adipocytes 
and smaller cellular contents. Subsequent centrifugation of the 
suspension aids in isolating adipocytes. Maintaining laminar flow 
and optimal temperatures when sorting has led to greater viability 
and precision. However, accumulation of lipid and protein content 
can adhere to the sheath tubing, thereby clogging the instrumen-
tation (42). High-binding affinity of protein to antibodies bound 
by fluorescent probes used in FACS has made the identification 
of MAT and the cells that cohabitate the marrow increasingly 
specific, though these measurements provide little information 
on adipocyte location within the marrow microenvironment.

To improve our understanding of MAT, novel imaging 
techniques have recently been developed as a means to visualize 
and quantify MAT, in situ. Although proton magnetic resonance 
spectroscopy (1H-MRS) has been used with success to quantify 
vertebral MAT in humans (43), it is more difficult to employ 
in laboratory animals (44). Magnetic resonance imaging (MRI) 
provides MAT assessment in the vertebral skeleton (45) in 
conjunction with μCT-based marrow density measurements 
(46). A volumetric method to identify, quantify, and localize 
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FigURe 1 | Overview of method for visualization and quantification of marrow adipose tissue (MAT). Osmium-stained femorae are visualized via μCT. 
Femorae (A) are rigidly aligned (B). Bone masks (C) are averaged (D). Osmium within the bone mask is quantified as volumetric (cubic millimeter) measurements of 
low (red), mid (green), and high (blue) osmium-containing regions in the femur and (e) overlaid on μCT images for viewing. 3D rendering of osmium regions (F) with 
same coloring as (e), colors slightly offset due to transparent bone mask. In (g), the femur is subdivided into three anatomical regions of interest. (H) is a pictorial 
representation of a data spreadsheet containing regional osmium measurements as osmium volume normalized to bone volume (in %).
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MAT in rodent bone has been recently developed, requiring 
osmium staining of bones and μCT imaging (47), followed by 
image analysis of osmium-bound lipid volume (in cubic mil-
limeter) relative to bone volume (see Figure 1) (13, 48). Briefly, 
femurs stripped of connective tissue are decalcified, immersed 
in osmium tetroxide, and placed in potassium dichromate 
(49). Bones are scanned using μCT imaging (resolution 
10 μm × 10 μm × 10 μm). Image processing consists of rigid 
image coalignment (Figures 1B,D, Slicer) (50), regional masking, 
allowing consistent regional measurements and superimposed 
visualizations. Additional bone masks are established in a semi-
automatic contouring of the femur. As osmium is significantly 
more dense than bone [Hounsfield units (HU)  ~  700–2000], 
HU thresholds are set to capture low osmium from 2000 to 
3000 HU, mid osmium from 3000 to 4000 HU (Figures 1E,F, 
green), and high osmium from 4000 to 5000 HU (Figures 1E,F, 
blue), and quantified accordingly (cubic millimeter). The lowest 
threshold is set above dense cortical bone (2000 HU) (51), and, 
thus, the contribution of potentially mislabeled cortical bone to 
the osmium volume is negligible (51, 52). Following quantifica-
tion, the femur is subdivided into anatomical regions wherein 
regional osmium volume is normalized to bone volume. Aligned 
bone images are then averaged across all images as a reference for 
visualization. Average images are also computed for each group 
to obtain color-coded visualizations of the osmium densities 
to allow additional visual comparison of MAT between groups 
(Figure  2). This technique provides reproducible quantifica-
tion and visualization of MAT, enabling the ability to quantify 
changes in MAT with diet, exercise, and agents that constrain 
precursor lineage allocation.

eXeRCiSe RegULATiON OF MARROw 
ADiPOSe TiSSUe iN THe SeTTiNg OF 
HigH-FAT FeeDiNg

Marrow adipose tissue volume has recently been demonstrated 
to increase during short-term, high-fat feeding in rodents relative 
to the total bone volume (13), rising more rapidly than calorie 
induction of visceral fat depot size (53). A positive association 
between obesity and MAT was noted in rodents (15) and humans 
(43). In fact, obese individuals generally present with higher bone 
density (54–62) and are unlikely to experience classical osteo-
porotic fragility fractures (63). Because MAT has been associ-
ated with states of low bone density and increased fracture risk 
(6, 8, 64), the impact of fat in the marrow likely varies depending 
on its etiology. As obesity associates with increased bone density 
and lower fracture, MAT in obesity could represent a distinct fat 
depot that supports skeletal anabolism.

The Nurse’s Health Study showed that exercise affords a mor-
bidity and mortality benefit that is independent of weight loss or 
calorie expenditure (65). One well-known effect of exercise is to 
improve bone strength, limiting the impact of postmenopausal 
osteoporosis (66). Exploring the salutary effects of exercise on 
bone and MAT in the setting of HFD, small animal models have 
been employed to address the degree of responsivity under said 
conditions. In one such experiment, 6 weeks of daily voluntary 
running exercise suppresses MAT accumulation in mice fed both 
a regular and HFD (13), in contrast to their non-exercised coun-
terparts. While HFD does not perturb trabecular bone param-
eters as compared to control, significant gains in trabecular bone 
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FigURe 2 | exercise suppresses marrow adipose tissue accumulation, despite PPARγ agonist treatment. Visualization of osmium (lipid-binder) stain by 
μCT in sagittal (top left), coronal (top right), and axial (bottom) planes in the femur of C57BL/6 mice. Visualization is performed by superimposing and averaging the 
images of each femur (n = 5 per group) and colored labeling of osmium according to Hounsfield unit (HU) density. The four experimentals are as follows: control (A), 
rosiglitazone (B), control-exercise (C), and rosiglitazone-exercise (D).
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volume and trabecular thickness are noted in tibiae of exercised 
animals. Cortical bone parameters are unaltered by HFD and 
exercise in this short-term study. Thus, the trabecular compart-
ment might be more receptive to both metabolic disarray and to 
mechanical signals from exercise than cortical bone, especially 
when challenged with elevated MAT via HFD.

eXeRCiSe RegULATiON OF MARROw 
ADiPOSe TiSSUe iN THe SeTTiNg OF 
ROSigLiTAZONe

It is accepted that elevated MAT due to PPARγ-agonist treatment in 
mice (48, 49, 67) and humans (68, 69) is due to PPARγ-induction 
of adipogenesis from marrow MSC. In vitro, rosiglitazone (PPARγ-
agonist)-treated MSCs resist mechanically stimulated adipogenesis 
when treated with a dynamic load (70). In vivo, it was previously 
hypothesized that exercise might not overcome pathologically 
induced MAT in the setting of rosiglitazone; however, interestingly, 
exercise suppresses MAT even in the face of powerful adipogenic 
biasing (via MSC) in rosiglitazone-treated mice (48). While rosigli-
tazone significantly elevates cortical porosity in proximal tibiae, 
bone quantity is unaffected in these young mice. Exercise associ-
ates with increased trabecular bone volume fraction and trabecular 
thickness in control and rosiglitazone-treated mice (48). This further 
highlights the positive impact of exercise and mechanical signals on 
healthy bone as well as bone challenged by pharmacologic agents 
shown to facilitate marrow adiposity as well as cortical porosities.

eXeRCiSe AND MeCHANiCAL 
RegULATiON OF BONe QUALiTY  
AND QUANTiTY

exercise and Musculoskeletal Mass
Of the many health benefits attributed to exercise – improved neu-
rological endpoints (71, 72), cardiovascular health (73), reduced 
inflammation (74–77), and decreased risk for chronic disease 

development, perhaps, most immediately and visually apparent 
is its ability to augment musculoskeletal mass (78–81). Exercise is 
known to encourage anabolic responses in musculoskeletal tissue 
(i.e., bone, muscle, ligament, and tendon) (82) as a consequence 
of successive bouts of musculoskeletal-loading. Indeed, skeletal 
tissue is known to adapt to meet loading demands (83), altering its 
bone remodeling strategy to sustain maximum loads. Prominent 
and varied forces are exerted across the appendicular and axial 
skeleton (84) through exercise: the musculoskeletal construct, 
thereby, acts as a conduit for transducing muscle contractive per-
turbations at the bone surface at both low frequencies (e.g., bicep 
flexion) and high frequencies (type II fast-twitch muscle). At the 
cellular level, these responses are mediated by a wide spectrum 
of mechanical stimuli of both high- and low-magnitude stresses, 
information that is internalized by cells through cytoskeletal and 
transmembrane-bound integrins linking the extracellular envi-
ronment with the genetic machinery encased within the nucleus 
(85–90). Thus, these mechanical factors transcribe osteo-, chon-
dro-, or myogenic (91) growth factors (RunX2) while deterring 
pathways conducive to adipogenesis (PPARγ) (70, 92–95). We 
now know that these signals propagate across the Wnt/β–Catenin 
transduction pathways (96), upregulating expression of genes 
that drive osteogenic (RunX2) and chondrogenic (SOX9) growth, 
while also being positioned across other complex signaling 
pathways involving other signals of interest, such as MAPK, pRB, 
FGFs, and TGF-β. The ability of mechanical stimuli to regulate 
musculoskeletal mass is likely multifactorial, occurring through 
repression of fat generation as well as bone resorptive pathways 
(97), while at the same time stimulating musculoskeletal anabo-
lism. Additionally, exercise has been shown to improve resistance 
to fracture, specifically through the separation of exercise into 
shorter regimens (98).

Skeletal Unloading
The importance of mechanical information on bone adaptation 
can also be exemplified by observing the response of muscu-
loskeletal tissue and the underlying cellular dynamics in the 
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absence of mechanical cues (99–101). Whereas exercise delivers 
large quanta of mechanical information, as a function of disuse 
(chronic bed rest, microgravity, or reduced physical activity) (102, 
103), regulation of musculoskeletal tissue homeostasis is compro-
mised, instead elevating conditions wherein muscle, tendon, and 
ligament (and fat) undergo catalysis and rapid resorption of bone. 
Together, these tissue-level responses heighten the occurrence of 
osteoporotic bone and degree of fracture risk: these outcomes 
are in direct response to lapses in mechanical input (104–107). 
Whether chronic skeletal unloading encourages a specific MAT 
phenotype remains unclear, yet, studies have definitively shown 
that extended bed rest drives an increased marrow adipogenesis 
(108). In the absence of mechanical cues, PPARγ and receptor 
activator of nuclear factor-Kappa-B ligand (RANKL), which 
promotes osteoclast-mediated bone resorption, are both elevated, 
indicating an effect that could be stemmed upon reintroduction 
of mechanical stimuli.

Mechanical effect on Bone  
and Fat Precursors
Both in vitro and in vivo studies have demonstrated that MSCs 
and early, non-committed progenitors exhibit unquestionable 
responsivity to mechanical loading (93, 109). Osteocytes (88, 
110), osteoblasts (111, 112), and pre-osteoblast MC3T3 cells (113) 
in the marrow are other known mechanosensitive cells and con-
tribute to the complex transduction of mechanical information 
driving osteogenic gene expression. While mechanical signals 
can inhibit osteoclastogenesis and subsequent bone resorption 
through direct effects on osteocyte and MSC expression of 
RANKL, it is known that mechanical effects on bone remodeling 
also involve regulation of MSC differentiation toward osteogen-
esis (93, 114, 115) facilitated by Wnt/β–Catenin signaling and 
uncommitted precursors. This is, in part, due to the plasticity of 
stem cells to differentiate specifically toward one mesenchymal 
lineage over another as dictated by environmental cues, such as 
exogenous mechanical stimuli (93), local substrate rigidity (113, 
116, 117), and regional cytokine signaling gradients (11, 118). 
These factors drive MSC and other resident marrow cells toward 
fulfilling their role in musculoskeletal homeostasis by promoting 
formation of bone and other critical tissues that support skeletal 
health in lieu of engaging pathways conducive to adipogenesis. 
Exercise not only encourages MSC proliferation but downstream 
lineages are also influenced as well: lipid droplets and adipocyte 
cell diameters are reduced while driving osteogenic potential 
through upregulated alkaline phosphatase activity (119). In vivo 
studies show decreased adipocytes and increased pre-osteoblasts 
in the marrow of running rats (38) and climbing mice (120).

Rodent studies highlight increased bone formation rates 
in response to exercise and mechanical signals via dynamic 
histomorphometry (104), including running exercise (121–124). 
These responses persist through incorporation of non-exercise 
mechanical loading interventions [low-magnitude mechanical 
signals (LMMS)], which have been demonstrated to increase 
bone formation rates in loaded tibiae of mice (125, 126). In 
consideration of the phenotypic differences in lineage subtypes 
across niches, the bone marrow-derived MSC has recently 

been suggested to have unique, focal-specific properties (127). 
Therefore, it is important to weigh the contribution of precursor 
cells and other progenitors in the presence of mature adipocytes 
or the marrow, when considering the effect mechanical stimuli 
may have on their interaction with the surrounding milieu.

Low-Magnitude Mechanical Signals effect 
on Bone and Marrow Adiposity
While physical activity presents an ideal strategy to introduce 
exogenous low-frequency, high-magnitude mechanical cues to 
musculoskeletal tissue, this approach is impractical for those 
patients with compromised bone microarchitecture (i.e., osteo-
porosis, osteopenia) (105, 109, 128–130) or muscle instability 
(131–133), populations that could benefit the most from their 
effects. Alternatively, mechanical signals delivered to the skel-
eton in the form of high-frequency, LMMS (fast-twitch muscles 
controlling balance and posture) can be introduced outside of 
the context of physical activity (134). For instance, low strain 
(<100  μs) displacements contribute more toward maintaining 
musculoskeletal health than higher magnitude strains and can 
be delivered whole-body using platforms to oscillate in the 
high-frequency domain (20–100 Hz), while maintaining a low-
magnitude (i.e., sub-gravitational) acceleration. In doing so, these 
platforms partially reintroduce the spectral content of muscle 
contraction (105, 135), thereby exerting a beneficial quotient of 
exercise without risking fracture to bone resulting from extreme 
loads prevalent in exercise. Moreover, when separated into mul-
tiple administrations, the effects of both exercise and LMMS are 
amplified (95), encouraging enhancement in the responsiveness 
of MSC. Importantly, in humans, the non-pharmacologic therapy 
LMMS prevent bone loss due to Crohn’s disease (136), in children 
recovering from various cancers (137), and in other disabling 
conditions where bone losses are apparent (138, 139).

eXeRCiSe AND THe BROwNiNg OF 
MARROw ADiPOSe TiSSUe

Upon initiation of exercise, there is an increase in uptake and 
oxidation of lipids in skeletal muscle (140). When exercise 
intensity increases, fuel selection shifts toward an increase in 
carbohydrate and decrease in fat utilization. In contrast, endur-
ance training is associated with a shift toward an enhanced 
lipid utilization (140). BAT, initially observed in hibernating 
mammals and human infants, dissipates energy in the form of 
heat through non-shivering thermogenesis (141). Inducible 
brown fat depots – beige fat – have been discovered within the 
white adipose tissue of adult humans (142). On exposure to cold 
or β-adrenergic stimulation, these beige/brite fat cells express 
high levels of mitochondrial uncoupling protein UCP1 and fat 
globules become multilocular (143), characteristics of the brown 
fat phenotype. Irisin, a muscle-derived hormone induced by 
exercise, also activates UCP1 expression and browning of white 
adipose tissue (33): coactivator PPAR-γ coactivator-1 α (PGC1-α) 
stimulates irisin, and transgenic mice overexpressing PGC1-α 
exhibit increased energy expenditure despite no changes in food 
intake or activity (33). Overall, there is evidence that fat depots 
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can alter phenotype to serve functional demands. Since exercise 
browns white adipose depots (33), it is conceivable that exercise 
might result in analogous browning of MAT. Indeed, running 
exercise increased UCP1 in bone mRNA (48). UCP1 is localized 
in the mitochondrial inner membrane of mammalian BAT and 
is, therefore, a specific marker for BAT (144). This increase in 
UCP1 with exercise may indicate a brown phenotype within 
MAT adipocytes; however, this requires further confirmation. 
Interestingly, exercise-induced increases in UCP1 expression 
may correlate with increases in irisin (33), although irisin’s role 
in exercise physiology remains unclear (145). Finally, recent work 
suggests that irisin may have direct effects on bone in addition to 
its known effect on adipocytes, and thus irisin’s role in skeletal 
health remains an area of active investigation (146–148).

CONCLUSiON

Marrow adipose tissue, housed within bone and interspersed 
with hematopoietic elements, remains a poorly understood fat 
depot, likely due to its anatomic location, rendering it inacces-
sible and thus challenging to quantify. Clinicians are particularly 
interested in the physiology of this fat depot due to its associa-
tion with low bone density states and pharmacologic agents that 
increase fracture risk. As more robust volumetric imaging and 
quantification tools emerge [e.g., osmium-μCT Ref. (13, 48)], 
precise determinations can be made regarding MAT physiology 
and relationship to bone health. Interestingly, these methodolo-
gies have pointed to an increase in MAT in the setting of high-fat 
feeding (13), without an impact on bone quantity. Additionally, 
we are now able to visualize the effect of pharmacologic PPARγ 
activation with rosiglitazone on bone and to appreciate the 
significant encroachment of marrow fat (Figure 2) as well as to 
quantify these dramatic findings. Interestingly, both regimented 
exercise and LMMS serve to counter the effects of obesity and 

potent pharmacologic agents on bone remodeling. Further, in 
evaluating the response of MAT to mechanical stimuli, we high-
light a positive effect toward normalizing bone parameters and, in 
doing so, constraining expansion of MAT across the marrow. It is 
possible that exercise serves to “brown” MAT as indicated in Ref. 
(48); however, further work is needed to establish the metabolic 
purpose of MAT in the setting of exercise. It remains unclear 
whether exercise-induced bone formation biases MSCs away from 
adipogenesis in order to recruit osteoblasts or whether alternative 
mechanisms are involved. In vitro, MSCs are highly responsive 
to mechanical signals during differentiation; indeed, mechanical 
loading slows adipogenesis (38, 92, 93, 149–151). Conversely, 
MSCs under microgravity conditions decrease osteogenic dif-
ferentiation in favor of fat formation, an event accompanied by 
elevated nuclear expression of PPARγ (152). Thus, in the setting 
of mechanical input or exercise, bone formation is increased 
and marrow fat is suppressed, highlighting a likely mechanistic 
relationship between MAT and bone in the setting of mechanical 
stimulation. Other pathways are likely involved in the exercise 
regulation of MAT: lipogenesis, lipid uptake, skeletal anabolism, 
regulation of hematopoiesis in the bone marrow, and regulation 
of adipokines and cytokines. The elucidation of these pathways 
and their role in MAT/bone regulation in the setting of exercise 
remains an area of active investigation.
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