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ABSTRACT
Rainforest canopies, home to one of themost complex and diverse terrestrial arthropod
communities, are threatened by conversion of rainforest into agricultural production
systems. However, little is known about how predatory arthropod communities
respond to such conversion. To address this, we compared canopy spider (Araneae)
communities from lowland rainforest with those from three agricultural systems
in Jambi Province, Sumatra, Indonesia, i.e., jungle rubber (rubber agroforest) and
monoculture plantations of rubber and oil palm. Using canopy fogging, we collected
10,676 spider specimens belonging to 36 families and 445morphospecies. The fourmost
abundant families (SalticidaeN = 2,043, OonopidaeN = 1,878, TheridiidaeN = 1,533
and Clubionidae N = 1,188) together comprised 62.2% of total individuals, while the
four most speciose families, Salticidae (S = 87), Theridiidae (S = 83), Araneidae (S
= 48) and Thomisidae (S = 39), contained 57.8% of all morphospecies identified. In
lowland rainforest, average abundance, biomass and species richness of canopy spiders
was at least twice as high as in rubber or oil palmplantations, with jungle rubber showing
similar abundances as rainforest, and intermediate biomass and richness. Community
composition of spiders was similar in rainforest and jungle rubber, but differed from
rubber and oil palm, which also differed from each other. Canonical Correspondence
Analysis showed that canopy openness, aboveground tree biomass and tree density
together explained 18.2% of the variation in spider communities at family level. On
a morphospecies level, vascular plant species richness and tree density significantly
affected the community composition but explained only 6.8% of the variance. While
abundance, biomass and diversity of spiders declined strongly with the conversion
of rainforest into monoculture plantations of rubber and oil palm, we also found
that a large proportion of the rainforest spider community can thrive in extensive
agroforestry systems such as jungle rubber. Despite being very different from rainforest,
the canopy spider communities in rubber and oil palm plantations may still play a vital
role in the biological control of canopy herbivore species, thus contributing important
ecosystem services. The components of tree and palm canopy structure identified
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as major determinants of canopy spider communities may aid in decision-making
processes toward establishing cash-crop plantation management systems which foster
herbivore control by spiders.

Subjects Biodiversity, Conservation Biology, Ecology, Entomology
Keywords Agriculture, Deforestation, Cash crops, Land use change, Southeast Asia, Araneae,
Jambi, Biodiversity, Indonesia, EFForTS

INTRODUCTION
Tropical rainforests are among the most diverse terrestrial ecosystems and provide many
ecosystem services, such as weather regulation and carbon storage at local, regional and
global scales (Sodhi et al., 2010; Böhnert et al., 2016; Codato et al., 2019; Milheiras & Mace,
2019). Worldwide, they are under threat due to extraction of timber and minerals, as well
as conversion into agricultural land-use systems, such as cattle farms and production of
soy beans and palm oil (Rudel & Roper, 1997; Sodhi et al., 2004; Grau, Gasparri & Aide,
2005; Renó et al., 2011; Barber et al., 2014; Vijay et al., 2016). Deforestation rates are very
concerning in Southeast Asia (Koh &Wilcove, 2008), particularly Indonesia, which in 2012
experienced the highest deforestation rates worldwide (Margono et al., 2014). Among the
large islands of Indonesia, Sumatra has experienced the highest deforestation rates in
the last decades (Miettinen, Shi & Liew, 2011; Margono et al., 2014) but has recently been
surpassed by Kalimantan (BPS, 2019). A potential cause is that the Sumatran lowlands are
already largely converted to non-forest land-use systems, such as agriculture, settlements
and mining, while this process is at an earlier stage in Kalimantan. In Jambi Province,
Sumatra, plantations and non-forest shrub land (61.8%) cover more than twice the area
of primary and secondary rainforest (29.7%) (Melati, 2017).

Rubber and oil palm cash crops have become an increasingly dominant factor in overall
Indonesian agricultural output over the last decades (BPS, 2019). In Jambi Province, rubber
and oil palm plantations covered almost 670,000 and 500,000 ha in 2017, respectively,
equaling the area of remaining rainforest (BPS, 2018). Most remnant rainforests are
located in the mountainous west of the province and in some mountainous national parks
such as Bukit Duabelas and Bukit Tiga Puluh, with only small patches of rainforest in the
lowlands.

Recent studies show that transformation of lowland rainforest into monocultures
of rubber and oil palm leads to substantial losses in abundance, and functional and
taxonomic diversity as well as compositional shifts across a wide range of animal and plant
groups (Barnes et al., 2014; Mumme et al., 2015; Böhnert et al., 2016; Prabowo et al., 2016;
Rembold et al., 2017; Paoletti et al., 2018; Potapov et al., 2020). Large mammals are the most
conspicuous faunal group affected by rainforest loss (Nyhus & Tilson, 2004), but the most
severe consequences of rainforest transformation are associated with arthropods, which
contribute the overwhelming majority of terrestrial animal species (Hamilton et al., 2010;
May, 2010) and biomass (Bar On, Phillips & Milo, 2018). Tropical rainforest canopies are
inhabited by one of the most diverse arthropod faunas (Dial et al., 2006; Basset et al., 2012;
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Floren, Wetzel & Staab, 2014), which are particularly susceptible to the conversion into
plantation systems such as rubber and oil palm due to direct habitat loss (Turner & Foster,
2009; Fayle et al., 2010).

Spiders (Araneae) are among the top predators in the arthropod foodweb, feedingmainly
on insects and occasionally other arthropods (Nelson & Jackson, 2011). Some spiders are
also known to consume larger prey, such as earthworms (Nyffeler et al., 2017), small skinks
(Shine & Tamayo, 2016), and even small amphibians, birds and mammals (Nyffeler &
Vetter, 2018; Babangenge et al., 2019). It is estimated that 400–800 million tons of prey
are killed by the global spider community each year (Nyffeler & Birkhofer, 2017). Many
spiders are web-builders while others are free hunters, which sets them apart ecologically
from other major arthropod predator groups, such as centipedes and predatory beetles,
and allows analysis of data according to basic ecological and biological characteristics.
In addition to their role as predators, spiders are prey to a number of invertebrates and
vertebrates, notably other spiders, parasitoid wasps, lizards and birds (Wise, 1993). As such,
spider abundance and diversity may have major effects on their environment, including
the decomposer system (Wise et al., 1999; El-Nabawy et al., 2016) and agricultural pests
(Suenaga & Hamamura, 2015; Rana et al., 2016). Tropical rainforest conversion to rubber
and oil palm plantationsmay thus have cascading top-down and bottom-up effects through
the entire food web, and is likely to shape ecosystem functions and services of the converted
ecosystems (Potapov et al., 2020).

Here, we studied canopy spider abundance, biomass, richness and community
composition across a land-use gradient from tropical lowland rainforest via ‘‘jungle
rubber’’ (rubber agroforest;Gouyon, de Foresta & Levang, 1993) to monocultures of rubber
and oil palm in Jambi Province, Sumatra, Indonesia (Drescher et al., 2016). Based on
previous studies on other taxa at our study sites, including ants (Nazarreta et al., 2020;
Kreider et al., 2021), salticid spiders (Junggebauer et al., 2021) and parasitoid wasps (Azhar
et al., 2022) we hypothesized that (1) canopy spider abundance, biomass and richness
declines from rainforest to jungle rubber to rubber to oil palm monocultures. We further
hypothesized that (2) the community composition of canopy spiders differs among each
of the land-use systems, with the exception of rainforest and jungle rubber, which we
hypothesized to be similar due to comparable structural complexity of the canopies. Lastly,
using a large dataset of environmental variables, we hypothesized that (3) changes in the
structure of canopy spider communities are driven by changes in habitat structure and
associated changes in climatic factors such as temperature and relative humidity.

MATERIALS & METHODS
Sampling
The study was carried out within and surrounding two rainforest reserves in Jambi
Province, Sumatra: the Bukit Duabelas National Park (S 01◦59′41.4′′, E 102◦45′08.5′′) and
Harapan Rainforest (S 02◦09′52.9′′, E 103◦22′04.0′′) (Fig. S1). The area surrounding these
two reserves is dominated by agroforestry systems, predominantly cash crop monocultures
of rubber and oil palm (Drescher et al., 2016), but also jungle rubber, an agroforestry

Ramos et al. (2022), PeerJ, DOI 10.7717/peerj.13898 3/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.13898#supp-2
http://dx.doi.org/10.7717/peerj.13898


system in which rubber trees are planted in successively degraded rainforest (Gouyon, de
Foresta & Levang, 1993; Rembold et al., 2017). Canopy arthropods were sampled from three
target canopies in each of eight research plots per land-use system, i.e., lowland rainforest,
jungle rubber, rubber and oil palm (Drescher et al., 2016, Fig. S2). Using the Swingtec SN50
fogger, we applied 50 mL DECIS 25 (Bayer Crop Science; active ingredient deltamethrin,
25 g/L) dissolved in four liters petroleum white oil to each of the target canopies within
the first hour after sunrise to avoid turbulences during the day. The three target canopies
were randomly chosen to represent overall canopy structure in the plots, i.e., canopy
gaps and fallen trees were avoided. Underneath each target canopy, 16 collection traps
measuring 1 m × 1 m were suspended from ropes attached to height-adjustable tent
poles; each trap was fitted with a plastic bottle containing 100 mL of 96% EtOH (Fig.
S3). Two hours after fogging, the collection traps of each target canopy were collected
and stored at −20 ◦C for future use. Arthropods of all three sampled target canopies
were later determined to order. The study was conducted based on Collection Permit No.
S.710/KKH-2/2013 issued by the Ministry of Forestry (PHKA) based on recommendation
No. 2122/IPH.1/KS.02/X/2013 by the Indonesian Institute of Sciences (LIPI), and export
permit SK.61/KSDAE/SET/KSA.2/3/2019 issued by the Directorate General of Nature
Resources and Ecosystem Conservation (KSDAE) based on LIPI recommendation B-
1885/IPH.1/KS.02.04/ VII/2017.

Identification
From the three collected samples per plot, only the first two collected samples per plot
were chosen to form the basis of this study due to the immense workload of morphological
spider identification. Spiders from the first two samples per plot were identified to family
and, if possible, to genus and morphospecies level using available literature (Jocqué
& Dippenaar-Schoeman, 2007; Murphy & Roberts, 2015; Deeleman-Reinhold, 2001; Koh
& Bay, 2019), the World Spider Catalog (https://wsc.nmbe.ch/) and the arachnological
reference collections at the Zoological Museum in Hamburg (ZMH)). All spider
morphospecies are documented pictorially in the Araneae section of the Ecotaxonomy
database (http://ecotaxonomy.org/taxa/424669). The samples forming the basis of our study
are continued to be used as reference material to identify further spider collections within
the EFForTS project. Upon completion of spider identification, a collection of reference
material will be deposited at the Museum Zoologicum Bogoriense at the Indonesian
Institute of Science, LIPI.

Biomass calculation
We measured the body length and body width of 15 randomly selected spider individuals
per plot, including juveniles, to the nearest tenth of a millimeter using a ZEISS Stemi 2000
with fitted micrometer. The average spider body length and width per plot was used to
calculate individual spider body mass based on taxon-specific allometric regression for
tropical spiders (Sohlström et al., 2018), and the combined abundance of all spiders per
square meter per plot was used to calculate total spider biomass per square meter per plot.
All calculations, equations and raw data related to canopy spider biomass are given in the
Supplements and the online data repository GRO (see data availability statement).
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Environmental variables
A set of environmental variables measured in the framework of the EFForTS project
(EFForTS: Ecological and Socioeconomic Functions of Tropical Lowland Rainforest
Transformation Systems; https://www.uni-goettingen.de/de/310995.html; Drescher et al.,
2016) was used to explain canopy spider community composition in the four land-use
systems. Measured in each plot, these variables included (1) mean canopy air temperature
(◦C) and (2)mean relative humidity (%),measured daily with a thermohygrometer (Galltec
Mela, Bondorf, Germany) at 2 m height between April 2013 to March 2016 (Meijide et
al., 2018), (3) canopy openness (%), measured with a spherical densitometer four times
in each plot and then used as one average value (Drescher et al., 2016), (4) aboveground
tree biomass [Mg/ha], calculated using diameter of trees, palms and lianas with diameter
at breast height ≥ 10 cm and an allometric equation (Kotowska et al., 2015), (5) vascular
plant species richness and (6) tree density based on 5 m × 5 m sub-plots where all tress
with a diameter at breast height≥ 10 cm were measured and identified [N/ha] (Rembold et
al., 2017) and (7) mean stand structural complexity index, based on a Focus terrestrial laser
scanner (Faro Technologies Inc., Lake Mary, USA) on a tripod at 1.3 m height (SSC; Zemp
et al., 2019). Canonical Correspondence Analysis (CCA) was used to visualize the influence
of environmental variables on canopy spider communities at both the morphospecies
and family level. CCA was performed using vegan (Oksanen et al., 2019) in R (R Core
Team, 2019). The final model was constructed using forward selection (vegan::ordir2step,
direction = forward, permutations = 999) from the above environmental variables and
community data. R2 and variance partitioning were adjusted (Borcard, Gillet & Legendre,
2018) for the number of explanatory variables (vegan::RsquareAdj). CCA and forward
selection were done separately for family and morphospecies community matrices.

Statistical analyses
Statistical analyses were performed using R (v. 3.6.2., R Core Team, 2019) and visualized
using ggplot2 (Wickham, 2016). Rank abundance curves were compared (vegan::radfit) and
plotted (Hartke, 2019; https://github.com/tamarahartke/RankAbund) An exploratory data
analysis was performed to ensure the data met underlying assumptions of the statistical
tests (Zuur, Ieno & Elphick, 2010). The response variables abundance and biomass were
analyzed using a generalized linear model (glm) with Gaussian error distribution and
log link function (stats::glm). Response variables morphospecies richness and inverse
Simpson Index 1/D (calculated using vegan::diversity; Oksanen et al., 2019) were analyzed
using linear models (stats::lm). Initial models for all response variables included land use
(rainforest, jungle rubber, rubber, oil palm), landscape (Bukit Duabelas, Harapan), and
their interaction as fixed factors. Models were simplified in a stepwise manner discarding
factors which did not significantly improve the fit of themodel to find theminimal adequate
model for each response variable. Model fit was checked using DHARMa (Hartig, 2022)
after which multiple comparisons were made using pairwise t -tests with Holm corrections
(multcomp::glht; Hothorn, Bretz & Westfall, 2008). Beta diversity was partitioned into
turnover, nestedness and overall beta diversity using Sørensen pairwise dissimilarities
(Baselga et al., 2018). Each partition was used for non-metric multidimensional scaling
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(NMDS, vegan::metaMDS), and multivariate analysis of variance (MANOVA, Wilk’s
lambda) was used to test how well land use and landscape predicted the variability
in NMDS scores; pair-wise contrasts were false discovery rate adjusted (Benjamini &
Hochberg, 1995).

RESULTS
In total, we collected 10,679 spider individuals from 32 research plots across four land-use
systems. Of these, we determined 7,786 adult and subadult individuals to 36 families and
445 morphospecies (images of canopy spider families in Fig. S4, 1–36). Not all individuals
could be determined to genus due to lack of relevant identification literature and a high
proportion of undescribed species in putative new genera. Subadult individuals without
fully developed sexual organs are usually not covered in identification keys, but wematched
them with identified morphospecies based on general morphology whenever possible. The
remaining 2,893 individuals could not be assigned to morphospecies because they were
juveniles, however, they were determined to family based on general diagnostic features
and thus included in the abundance (and biomass) analysis.

Overall, almost half of the specimens belonged to only four spider families (Salticidae,
2,043; Oonopidae, 1,878; Theridiidae, 1,533; Clubionidae, 1,188). Similarly, four families
contributed 57.8% of all morphospecies: (Salticidae, 87; Theridiidae, 83; Araneidae,
48; Thomisidae, 39). More than half of all spider families comprised less than five
morphospecies and less than 10% of all specimens identified. Of the 445 morphospecies
recorded, 72 were exclusively found in the Bukit Duabelas landscape and 100 exclusively
in the Harapan landscape (Fig. S5A). A total of 199 morphospecies (45%) were exclusively
found in lowland rainforest and jungle rubber, while only 54 morphospecies (12%) were
exclusively found in monoculture plantations of rubber or oil palm (Fig. S5B).

Abundance, biomass and alpha diversity
When ranked by abundances, the number of canopy spider morphospecies and their
abundances were lower in monocultures of rubber and oil palm than in rainforest and
jungle rubber (Fig. 1). Themodels describing the shapes of the curves in theWhittaker plots
significantly differed between rainforest and jungle rubber on one hand, and monocultures
of rubber and oil palm on the other (Tukey’s HSD, all four T <−2.6, P <0.03). On average,
canopy spiders in rainforest and jungle rubber were almost twice as abundant as in rubber
plantations, and almost three times as abundant as in oil palm plantations, with the effect
of land use being highly significant (glm; F3,27= 14.8, P < 0.001; Fig. 2). Landscape also
significantly affected canopy spider abundance (glm; F1,26= 7.1, P = 0.01), but there was
no significant interaction between the factors land use and landscape. Similar to abundance,
canopy spider biomass was significantly affected by land use (glm; F3,28= 8.2, P < 0.001),
in that biomass in rainforest was more than twice as high as in rubber and almost four
times as high as in oil palm, and biomass in jungle rubber intermediate (Fig. 3). Landscape
did not significantly affect canopy spider biomass.

Canopy spider morphospecies richness was significantly affected by land use (glm;
F3,28= 22.9, P < 0.001) but not by landscape. On average, canopy spider morphospecies
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Figure 1 Rank abundance curves of 445 canopy spider morphospecies across four land-use systems in
Jambi, Sumatra, Indonesia. F, lowland rainforest; J, jungle rubber; R, rubber monoculture; O, oil palm
plantation.

Full-size DOI: 10.7717/peerj.13898/fig-1

richness in rainforest (100.1 ± 21.4; mean ± SD) exceeded that in rubber (49.1 ± 11.4)
and oil palm plantations (43.6 ± 10.7) by more than a factor of two, with jungle rubber
being intermediate (87.9 ± 19.9; Fig. 4). By contrast, the inverse Simpson index was only
marginally predicted by land use (glm; F3,28= 2.8, P = 0.06) and not by landscape (glm;
F1,27= 2.8, P > 0.09).

Community composition and beta diversity
The interaction between land use and landscape explained 82.1% of the total variance
(Wilk’s λ= 0.179, F3,15= 3.2, P < 0.001) in canopy spider community composition, or
overall beta diversity (land use: Wilk’s λ= 0.001, F3,15 = 40.8, P < 0.001; landscape:
Wilk’s λ= 0.163, F1,5= 20.5, P < 0.001). Overall, spider communities from rainforest and
jungle rubber canopies were similar but differed from communities in rubber and oil palm
monocultures, which in turn differed significantly from each other (Fig. 5). This pattern
was mostly driven by turnover, which contributed almost the entire overall beta diversity,
while nestedness contributed only marginally (Fig. 6). Consequently, an ordination of
the two beta diversity partitions showed high resemblance of overall beta diversity with
turnover (Fig. S6A), but not with nestedness (Fig. S6B). Both turnover and nestedness
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Figure 2 Canopy spider abundance [N/m2] in four land-use systems in Jambi, Sumatra, Indonesia. F,
lowland rainforest; J, jungle rubber; R, rubber monoculture; O, oil palm plantation. Different letters indi-
cate significant differences between land-use systems as indicated by Tukey’s HSD (P < 0.05; dots= data
points, bars=means, boxes= 95% C.I., violins= density).

Full-size DOI: 10.7717/peerj.13898/fig-2

overlapped between rainforest and jungle rubber, but were different from rubber and oil
palm, which in turn overlapped.

Influence of environmental variables
At family level, only three of the seven environmental variables significantly contributed
to the model, canopy openness (R2

adj= 0.14, F = 5.95, P = 0.001), aboveground biomass
(R2

adj= 0.18, F = 2.63, P = 0.001) and number of tree species per hectare (R2
adj= 0.21,

F = 1.88, P = 0.012). Increased canopy openness was associated with rubber and oil palm
plantations, while trees per hectare and aboveground biomass were associated with jungle
rubber and rainforest. The first three CCA axes (CCA1: χ2

= 0.12, F = 6.80, P = 0.001;
CCA2: χ2

= 0.05, F = 2.90, P = 0.003; CCA3: χ2
= 0.02, F = 1.35, P = 0.14) together

explained 20.8% of the variation in the data (CCA1 = 12.8%, CCA2 = 5.4%, CCA3 =
2.5%). Centroids of most canopy spider families clustered close to the center of the CCA
graph and correlated little with the environmental variables, however Deinopidae and
Selenopidae correlated closely with aboveground biomass and rainforest, and Liocranidae
correlated closely with canopy openness and rubber and oil palm plantations (Fig. 7A). At
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Figure 3 Pirate plots of canopy spider biomass in four land-use systems in Jambi, Sumatra, Indone-
sia. F, lowland rainforest; J, jungle rubber; R, rubber monoculture; O, oil palm plantation. Different letters
indicate significant differences between land-use systems as indicated by Tukey’s HSD (P < 0.05; dots=
data points, bars=means, boxes= 95% C.I., violins= density).

Full-size DOI: 10.7717/peerj.13898/fig-3

morphospecies level, only the environmental variables plant species richness (R2
adj= 0.05,

F = 2.64, P = 0.001) and number of tree species per hectare (R 2
adj=0.06, F = 1.54,

P = 0.002) significantly contributed to the model. The two CCA axes (CCA1: χ2
=

0.47, F = 2.73, P = 0.001; CCA2: χ2
= 0.25, F = 1.49, P = 0.002) together explained

6.8% of the variation in the data (CC1 = 4.4%, CCA2 = 2.4%). Similar to the family
level CCA, most morphospecies clustered around the center of the ordination. The 39
morphospecies with scores >1.5 along the first axis belonged to the families Theridiidae
(eight), Araneidae, Salticidae and Thomisidae (five each), Corinnidae and Uloboridae
(three each), Gnaphosidae (two), and Clubionidae, Deinopidae, Linyphiidae, Liocranidae,
Psechridae, Scytodidae, Sparassidae and Tetragnathidae (one each) (Fig. 7B). The greatest
number of morphospecies was associated with rainforest and jungle rubber, few with
rubber plantations, and none with oil palm plantations.
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Figure 4 Canopy spider morphospecies richness in four land-use systems in Jambi, Sumatra, Indone-
sia. F, lowland rainforest; J, jungle rubber; R, rubber monoculture; O, oil palm plantation. Dfferent letters
indicate significant differences between land-use systems as indicated by Tukey’s HSD (P < 0.05; dots=
data points, bars=means, boxes= 95% C.I., violins= density).

Full-size DOI: 10.7717/peerj.13898/fig-4

DISCUSSION
We investigated the effect of lowland rainforest conversion into jungle rubber, rubber
and oil palm monoculture plantations on abundance, biomass, richness and community
composition of canopy spiders in Sumatra, Indonesia. The study provided novel insight into
the responses of one of the most important invertebrate predators to the transformation
of lowland rainforest into agroforest systems and intensively managed monoculture
plantations in one of the least studied biodiversity hotspots on this planet, the tropical
region of Southeast Asia (Myers et al., 2000).

Abundance, biomass and alpha diversity
Abundance, biomass andmorphospecies richness in plantations of rubber and oil palmwere
significantly lower than in rainforest and jungle rubber, confirming our first hypothesis
and supporting previous studies on arthropod diversity in these land uses, including
ants (Nazarreta et al., 2020; Kreider et al., 2021), butterflies (Panjaitan et al., 2020), salticid
spiders (Junggebauer et al., 2021) and parasitoid wasps (Azhar et al., 2022). The decrease in
canopy spider abundance from rainforest to plantation systems also parallels findings of
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Figure 5 Non-metric multi-dimensional scaling (NMDS) of canopy spider community composition (=
overall beta diversity) in four land-use systems and two landscapes in Jambi, Sumatra. green= rainfor-
est, blue= jungle rubber, yellow= rubber and red= oil palm; B, Bukit Duabelas landscape; H, Harapan
landscape; F, lowland rainforest; J, jungle rubber; R, rubber monoculture; O, oil palm plantation.

Full-size DOI: 10.7717/peerj.13898/fig-5

earlier studies on canopy spiders in other biomes, such as old vs. young forests in eastern
Europe (Otto & Floren, 2007) and secondary forest vs. rubber plantations in southwest
China (Zheng & Yang, 2015). However, the average abundance of canopy spiders varies
wildly between the few studies available. We collected 15.1 ind. m −2 (all individuals) and
10.8 ind. m −2 (identified individuals) in lowland rainforest in Sumatra. By comparison,
between 0.97 and 14.6 ind. m−2 of canopy spiders were sampled in old-growth rainforests
in Sulawesi (Russel-Smith & Stork, 1994), 5.8 ind. m−2 in montane forests in Tanzania
(Sørensen, 2004) and ca. 30 ind. m−2 in secondary forests in southwest China (Zheng &
Yang, 2015). The differences might be due to different fogging methods, but likely also
reflect different densities of canopy spiders in various forests across the tropical/subtropical
zone. The uniform decline in the abundance of canopy spiders with the conversion of
forest into plantation systems reported by Zheng & Yang (2015) and in our study indicates
increased risk of local extinction of spider species in plantations (Ceballos, Ehrlich & Dirzo,
2017; Hallmann et al., 2017; Sánchez-Bayo & Wyckhuys, 2019). This may compromise the
role of spiders as antagonists of herbivore prey species, ultimately threatening ecosystem
functioning (Soliveres et al., 2016; Dislich et al., 2017).
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Figure 6 Overall beta diversity of canopy spiders (top) and the relative contributions of its partitions
turnover (mid) and nestedness (bottom) in four land-use systems. (green= rainforest, blue= jungle
rubber, yellow= rubber and red= oil palm; B, Bukit Duabelas landscape; H, Harapan landscape; F, Low-
land Rainforest; J, Jungle Rubber; R, Rubber monoculture; O, oilpalm plantation).

Full-size DOI: 10.7717/peerj.13898/fig-6

Canopy spider biomass differences between land-use systems mirror the differences of
abundances between the land-use systems, and suggest that the contribution of spiders to
ecosystem functions and services in rainforest and jungle rubber are at least twice as high
as in monocultures of rubber and oil palm (Boudreau, Dickie & Kerr, 1991; Barnes et al. ,
2017; Sohlström et al., 2018). This likely is related to the fact that total aboveground tree
biomass in rainforest is more than twice that in jungle rubber, and more than four times
that in rubber and oil palm (Kotowska et al., 2015).

Canopy spider morphospecies richness in rubber and oil palm plantations was less than
half that in rainforest. This loss in morphospecies richness with the conversion of rainforest
into monoculture plantation systems is similar to patterns reported from southeast China,
where rubber plantations had 42.6–50.0% fewer canopy spider morphospecies than
secondary forest (Zheng & Yang, 2015). Similar differences have also been found between
natural and young managed forests in Europe (Otto & Floren, 2007). Overall, our data
provide further support that conversion of natural or secondary forests into agricultural
systems results in strong losses of species and overall biodiversity decline (Sala et al., 2000;

Ramos et al. (2022), PeerJ, DOI 10.7717/peerj.13898 12/27

https://peerj.com
https://doi.org/10.7717/peerj.13898/fig-6
http://dx.doi.org/10.7717/peerj.13898


Figure 7 Canonical Correspondence Analysis (CCA) of canopy spider community composition of four
tropical land-use systems in Jambi, Sumatra, Indonesia. (A) Family level (N = 36) and (B) morphos-
pecies level (N = 446) (F, rainforest; J, jungle rubber; R, rubber; O, oil palm).Only environmental factors
significantly contributing to spider community composition are given. Plus symbols are individual fami-
lies in (A), and individual morphospecies in (B).

Full-size DOI: 10.7717/peerj.13898/fig-7

Sodhi et al., 2004; Steffan-Dewenter et al., 2007; Mumme et al., 2015; Newbold et al., 2015;
Grass et al., 2020; Potapov et al., 2020).

Spider species in monoculture plantations were a subset of those found in rainforest,
comprising species resilient against the transformation process and the changed
environmental conditions in plantations. These findings are in line with earlier studies
on other arthropod groups including canopy ants (Hymenoptera: Formicidae) (Nazarreta
et al., 2020; Kreider et al., 2021), butterflies (Panjaitan et al., 2020), salticid spiders
(Junggebauer et al., 2021) and parasitoid wasps (Azhar et al., 2022). Nazarreta et al. (2020)
found that the conversion of rainforest into jungle rubber results in moderate species loss,
suggesting that the majority of canopy ant species are resilient against moderate changes in
land use. Presumably, the same is true for spider species of certain families, e.g., Salticidae,
Theridiidae and Oonopidae, which reach similar diversity in rainforest and jungle rubber.
The strong decline in the richness of spiders, as well as other canopy arthropod taxa such
as ants (Nazarreta et al., 2020), with conversion of rainforest into monoculture plantations
of rubber and oil palm suggests that intensification of land use may critically compromise
ecosystem functions and services provided by canopy arthropod predators and omnivores
(Power, 2010; Junggebauer et al., 2021).

Community composition and beta diversity
Similar to abundance and species richness, canopy spider community composition was
affected by land use and landscape. Rainforest and jungle rubber communities were similar,
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but differed strongly from those of oil palm and rubber plantations, confirming our second
hypothesis. Shifts in community composition associated with land-use changes have been
investigated in a wide range of tropical arthropods including ground spiders (Potapov et
al., 2020), jumping spiders (Junggebauer et al., 2021), ants (Nazarreta et al., 2020; Kreider et
al., 2021), butterflies (Panjaitan et al., 2020), pseudoscorpions (Liebke et al., 2021), salticid
spiders (Junggebauer et al., 2021) and parasitoid wasps (Azhar et al., 2022). Generally,
within in each of these taxa, a number of generalist species tolerate increased disturbance
and the harsher environmental conditions in plantations. For spiders this suggests that
certain species tolerate disturbances in plantations as long as essential habitat requirements
are met, such as structural elements to allow attachment of webs (Halaj, Ross & Moldenke,
2000; Jiménez-Valverde & Lobo, 2007; Ávila et al., 2017; Ganser et al., 2017; Rao, 2017).

By contrast, a range of spiders predominantly occur in tropical rainforests compared to a
variety of disturbed habitats as shown for Aporosa yunnanensis forests compared to rubber-
tea mixture and rubber plantations (Zheng et al., 2017), firewood plantations compared
to grasslands and cultivated wetlands (Chen & Tso, 2004), old growth forests compared to
younger re-forested areas (Floren & Linsenmair, 2001; Floren & Deeleman-Reinhold, 2005)
and rainforest compared to rubber and oil palm plantations (Potapov et al., 2019; Potapov
et al., 2020). Although sampling methodologies differed between these studies, only few
families, including web-building Araneidae, Theridiidae and Tetragnathidae, and the free
hunting Corinnidae, Salticidae, Sparassidae and Thomisidae, contributed most to overall
spider abundance and species richness (61–94%). Similarly, these families also contributed
most to total abundance (57%) and richness (59%) of spiders in rainforest in our study,
and even more to the overall abundance (63% and 68%) and richness (74% and 72%) in
rubber and oil palm plantations. Differences in relative abundance and species richness
between rainforest and plantations indicate different sensitivities of spider families to
disturbance. A total of 14 families, including Anapidae, Ctenidae and Deinopidae, were
present in our rainforest samples but absent in rubber and oil palm plantations, suggesting
that species of these families are particularly sensitive to disturbance and the altered abiotic
and biotic conditions in plantation systems.

Influence of environmental variables
Three of the seven studied environmental variables affected the spider community structure
at family or morphospecies level, supporting our third hypothesis. At the family level,
changes in canopy openness, aboveground tree biomass and tree density contributed to the
shift in spider communities from rainforest to monoculture plantations. Canopy structure
and tree diversity have been identified previously as drivers of canopy spider communities.
Floren & Deeleman-Reinhold (2005) found reduced spider diversity in disturbed isolated
forest patches with more open canopies compared to less disturbed regenerated forest,
while Jiménez-Valverde & Lobo (2007) found that richness of orb-weavers (Araneidae)
and crab spiders (Thomisidae) correlate closely with shrub canopy and ground herb
cover, i.e., vegetation complexity. In our study, canopy openness was closely associated
with oil palm and rubber plantations, which are generally characterized by lower canopy
complexity compared to rainforest and jungle rubber (Zheng & Yang, 2015; Drescher et
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al., 2016; Zemp et al., 2019). Our results indicate that reduced complexity detrimentally
affected a wide range of spider taxa, but may also favor specialist species benefitting
from associated increase in temperature and light, e.g., by facilitating hunting of prey
via optical cues (Fayle et al., 2010; Ganser et al., 2017). In fact Liocranidae, predominantly
comprising surface-hunting species known to prefer open habitats (Deeleman-Reinhold,
2001), flourished in plantations.

Aboveground biomass, which increases with plant species richness, vegetation cover,
height and age of trees (Vogel et al., 2019), was identified as predictor for spider community
composition in our study. Similar studies have found spiders communities to be negatively
affected by low tree density (Barton et al., 2017) and to benefit from high tree species
richness and height (Schuldt et al., 2011). Further, Floren et al. (2011) found spider
communities in southeast Asia to benefit from tree age, suggesting that older trees support a
wider range of spider species. Results of our study indicate that in particular the net-casting
Deinopidae and the ambush hunting Selenopidae, which only occurred in rainforest,
benefit from high aboveground biomass as also suggested by Deeleman-Reinhold (2001)
and Floren et al. (2011). Potentially, the specific hunting technique used by these spiders
combined with a greater degree of habitat specialization contributed to their high sensitivity
to rainforest conversion.

At the morphospecies level, spider community structure only correlated closely with
plant diversity-associated variables (plant species richness and number of tree species
per hectare) and the variation in species distribution was not well explained by the
studied environmental variables (combined explanatory power of first two CCA axes
6.9%, compared to 18.2% at family level). Presumably, stochastic processes play a more
pronounced role in structuring spider communities at morphospecies level than at the level
of families. The close correlation with plant diversity-associated variables likely reflects the
fact that habitat preferences at morphospecies level are more specific than at family level.
Plant species richness is known to be an important driver of predator arthropods such as ants
or spiders in both temperate and tropical forest ecosystems (Schuldt et al., 2011; Drescher
et al., 2016; Matevski & Schuldt, 2021). Samu et al. (2014) found 26% of the variation in
spider assemblages to be explained by tree species composition and showed certain spider
species to be associated with specific tree species in temperate forests. Similarly, Schuldt et
al. (2011) found certain spiders species to be associated with individual tree species even
in forests with high tree diversity. Canopy spider diversity also has been found to closely
correlate with vegetation complexity and other plant variables in tropical forests (Zheng
& Yang, 2015). Despite being the most prominent variables explaining spider community
composition at morphospecies level, plant diversity-associated variables only explained a
small proportion of the variability in our spider communities suggesting that other factors
are likely to be more important for structuring spider communities at species level. In
addition to other environmental variables, interactions with other species, including prey
and predators, inter-specific competition and intra-guild interactions, may contribute
to the local assemblage of spider species (Sih, Englund & Wooster, 1998; Mooney, 2007;
Mestre et al., 2013). Elucidating the role of these interactions for canopy spider community
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composition is difficult to infer and requires experimental studies in the field, which are
difficult to establish in tropical forest ecosystems.

CONCLUSIONS
Overall, the results showed that canopy spider communities in oil palm and rubber
plantations are less abundant, contain lower biomass and are less diverse compared to the
more natural ecosystems rainforest and jungle rubber. Notably, species composition of
spider communities was similar in rainforest and jungle rubber, and differed strongly from
that in oil palm and rubber plantations, with the latter also differing from one other. At
family level, aboveground biomass, number of trees per hectare and canopy openness were
identified as major environmental factors determining spider community composition,
while at species level the most important factors were plant richness and number of trees
per hectare. The results highlight the importance of rainforest for the conservation of
canopy spider communities, as only a subset of the community can tolerate the harsh
environmental conditions and disturbances in monoculture plantations. Similar diversity
and community composition in rainforest and jungle rubber highlights that the majority
of spiders tolerates moderate disturbances and decline in trees species indicating that
agroforest systems may contribute substantially to the conservation of tropical canopy
spider communities.
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