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Introduction
Visual cortical prostheses can provide partial visual infor-
mation to implant wearers by electrically stimulating their 
remaining functional visual cortical neurons (Brindley and 
Lewin, 1968; Dobelle et al., 1974). At present, because the 
number of implantable electrodes is limited, implant wear-
ers can only “see” low-resolution pixelized images of objects 
(Dobelle et al., 1976; Normann et al., 1999). It is important 
to investigate how to design the low-resolution electrical 
stimulation to evoke the desired brain responses (Fernan-
dez et al., 2005; Morillas et al., 2007). Specifically, we need 
to learn how different two patterns of electrical stimulation 
must be to evoke two specific brain responses that allow the 
wearers to “see” two different pixelized images (Normann et 
al., 2009). The specific brain responses in the primary visual 
cortex (the implant area) evoked by the different pixelized 
images will hopefully help the design of electrical stimu-
lation patterns. However, how to obtain the specific brain 

responses to different pixelized images is still unknown.
Recent functional magnetic resonance imaging (fMRI) 

studies have shown that visual stimuli can be decoded us-
ing brain activation patterns from multiple voxels (Haynes 
and Rees, 2006; Norman et al., 2006). Previous studies have 
suggested that brain activation patterns have many potential 
applications for cortical neural prostheses (Kay and Gallant, 
2009; Smith et al., 2013). For example, a recent study has 
shown that it is possible to control a prosthetic device using 
brain activation patterns in the motor cortex (Velliste et al., 
2008). Therefore, it is hoped that brain activation patterns 
can improve the design of electrical stimulation for visual 
cortical prostheses (Figure 1). Brain responses were recorded 
while a participant viewed a “triangle”, and the brain acti-
vation pattern evoked by the “triangle” could be obtained. 
Using electrical stimulation, we could also obtain a brain ac-
tivation pattern. If the brain activation pattern evoked by the 
electrical stimulation approaches the brain activity pattern 
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evoked by the “triangle”, then the pixelized images elicited 
by the electrical stimulation may be similar to the “triangle”. 
Therefore, we hope that the brain activation patterns evoked 
by the pixelized images can be used to improve the design of 
the electrical stimulation.

The appropriate resolution of the electrical stimulation 
needs to be determined first. Implant wearers could pro-
vide some suggestions (Schmidt et al., 1996; Dobelle, 2000); 
however, because of clinical limitations, recent studies have 
investigated this issue in normal participants (Thompson et 
al., 2003; Chen et al., 2005; Chai et al., 2007; Guo et al., 2010, 
2013; Zhao et al., 2011; Chang et al., 2012; Li et al., 2012; 
Wang et al., 2014). In this study, the resolution of electrical 
stimulation was determined as 10 × 10 based on the behav-
ioral performances of normal participants, and the tech-
nological feasibility of the electrode array. Five volunteers 
participated in an independent behavioural experiment to 
address whether the 10 × 10 pixelized images could be rec-
ognized. The high recognition accuracies (the average recog-
nition accuracy = 89%) of the 18 pixelized images suggested 
that useful visual information could be received. Moreover, 
we have already successfully produced the 10 × 10 electrode 
array, and have performed a preliminary implantation ex-
periment (Chen et al., 2010). 

Participants and Methods
Participants 
Six volunteers, consisting of three females and three males 
aged 24 ± 4 years, participated in the fMRI experiment. All 
participants had normal or corrected-to-normal visual acui-
ty. All of the participants gave written informed consent and 
were compensated for their time. The study was approved 
by the Committee for the Protection of Human Subjects at 
Dartmouth College in the United States.

Stimuli and image processing
Three categories were used in this study: English letters, vi-
sual acuity charts and simple shapes. There were six different 
pixelized images in each category: the English letters were C, 
Q, U, B, M and E (the abbreviation of our institution); the 
visual acuity charts included three different orientations of 
the letters C and E; and the simple shapes were upright/in-
verted images of a triangle, a T shape, and horizontal/verti-
cal images of a rectangle. A total of 18 pixelized images were 

used in this study.
An image-processing model was designed to convert the 

original image into a pixelized image. To substantially sim-
plify the pixelized image, we only chose those pixels that 
were related to the basic structure of the original image (Fig-
ure 2). The pixelized image was generated according to the 
following steps: (1) Overlap the original image onto the 10 × 
10 pixel array. (2) Obtain the blocking image according to 
the overlapping image. (3) Calculate the pixel value γ as

i = 1, 2, 3… 10; j = 1, 2, 3… 10
Here, ωi,j (i th row and j th column in the 10 × 10 pixel array) 
is the area covered by the original image, and ω0 is the area 
of each pixel in the 10 × 10 pixel array. (4) Select the pixels 
with the value “1” to form the pixelized image. (5) Remove 
the grid from the pixelized image, and set the background to 
a uniform grey level.

An independent group of five volunteers participated in 
the behavioural experiments to address if the 18 pixelized 
images can be recognized. The high recognition accuracies 
(average recognition accuracy = 89%) of the 18 pixelized 
images suggested that useful visual information could be 
received. 

MRI acquisition
All brain images were acquired on a 3.0-T Philips scanner 
(Philips, Andover, MA, USA) at the Dartmouth Brain Im-
aging Center in the United States. An echo planar imaging 
sequence was used to acquire functional images (repetition 
time = 2,000 ms, echo time = 35 ms, voxel size = 3 mm × 3 
mm × 3 mm, 35 slices). Magnetization prepared rapid gra-
dient-echo (MPRAGE) was used to acquire the anatomical 
T1 images at the end of the experiment for each participant 
(repetition time = 2,000 ms, echo time = 3.7 ms, voxel size = 
1 mm × 1 mm × 1 mm, 156 slices).

Experimental design
There were seven scanning runs for each participant. Each 
run included eighteen 12-second stimulus blocks interleaved 
with eighteen 12-second fixation blocks. The total duration 
was 7 minutes 24 seconds, including a 12-second fixation 
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Figure 2 The image-processing model 
for generating pixelized images. 
The original image was overlapped onto a 
10 × 10 pixel array to obtain the overlap-
ping image. The pixel value was calculat-
ed based on the blocking image that was 
obtained from the overlapping image. Fi-
nally, we selected the pixels with the value 
“1” to form the pixelized image. 

Pixel array

Original image Overlapping image Blocking image Pixelized image Stimulus
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Figure 3 Illustration of how the 
functional magnetic resonance imaging 
(fMRI) data could be analyzed using 
multi-voxel pattern analysis (MVPA) in 
this study. 
(A) Brain responses were recorded while 
participants viewed pixelized images. 
The 100 selected voxels in the region of 
interest were included in the classification 
analysis. (B) The fMRI time series were 
decomposed into discrete brain activation 
patterns that correspond to the pattern of 
activity across the selected voxels at a par-
ticular point in time. Each brain activa-
tion pattern was labeled according to the 
corresponding pixelized image. The brain 
activation patterns were divided into a 
training set and a testing set. (C) Brain 
activation patterns from the training set 
were used to train a classifier function 
that could map between brain activation 
patterns and pixelized images. (D) The 
trained classifier was used to predict the 
pixelized image from the test set. 

Figure 4 The brain activation patterns to pixelized images of “C” and “Q” from one 27-year-old male participant. 
The brain activation pattern was obtained using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.

Figure 1 Illustration of the approach to improve 
the electrical stimulation design.
The brain activation pattern evoked by the “triangle” 
can be obtained using functional magnetic resonance 
imaging (fMRI) recoding. Using electrical stimula-
tion, a brain activation pattern can also be obtained. 
If the brain activation pattern evoked by the electri-
cal stimulation approaches the brain activity pattern 
evoked by the “triangle” (blue solid line), then the 
pixelized images elicited by the electrical stimulation 
may be similar to the “triangle” (blue dotted line). 
Therefore, hopefully the brain activation patterns 
evoked by the pixelized images can be used to im-
prove the design of the electrical stimulation (green 
line). In this study, we used fMRI to obtain the brain 
activation patterns and multi-voxel pattern analysis 
to test whether they were specific (red frame).

Pixelized image

Phosphene pattern

fMRI decoding

Electrical stimulation

Brain activity pattern

Brain activity pattern

ApproachSimilar
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block at the beginning of the run. Each of the eighteen stim-
ulus blocks contained only one pixelized image, which was 
repeatedly presented for 500 ms followed by a blank screen 
for 500 ms. The stimuli were presented in the scanner via an 
LCD projector (Panasonic, Newark, NJ, USA) (Panasonic 
PT-D4000U, 1,024 × 768 pixels resolution) using Psychtool-
box (Brainard 1997).

MRI data pre-processing
AFNI (Analysis of Functional Neuro Images, http://afni.
nimh.nih.gov/afni) was used for data pre-processing. The 
functional images were motion corrected to the image ac-
quired closest to the anatomical image and spatial smooth-
ing was applied with a 4-mm full width at half maximum 
filter (FWHM). The anatomical T1 images were aligned to 
the functional images. 

The primary visual cortex in both hemispheres was local-
ized as the region of interest (ROI). A mask of Brodmann 
area 17 (N27 template) was aligned to the functional images 
of each participant to obtain the anatomical landmark of 
BA17. In each anatomical landmark of BA17, the ROI was 
defined using Stimuli Blocks > Fixation Blocks (P < 0.0001 
uncorrected). The size of the ROI was restricted to 100 vox-
els. Bold average signals were extracted for each participant 
and were then averaged.

Multi-voxel pattern analysis (MVPA)
MVPA was performed using PyMVPA (Python Multi-voxel 
pattern analysis, http://www.pymvpa.org). First, the pre-pro-
cessed fMRI data were normalized (z-score) and block-aver-
aged. Second, we tested the specificity of the brain activation 
patterns that were evoked by the different pixelized images 
using linear support vector machines (SVMs). Classification 
training and testing was performed using a leave-one-scan-
out cross-validation procedure. 

In this study, shown as Figure 3, MVPA was performed 
according to the following steps: (1) Brain responses were 
recorded while the participant viewed pixelized images. 

The 100 voxels in the ROI were included in the MVPA. (2) 
The fMRI time series were decomposed into discrete brain 
activation patterns that correspond to the pattern of activ-
ity across the selected voxels at a particular point in time. 
Each brain activation pattern was labeled according to the 
corresponding pixelized image. (3) The brain activation pat-
terns were divided into a training set and a testing set. Brain 
activation patterns from the training set were used to train 
a classifier. According to the leave-one-scan-out cross-vali-
dation procedure, one independent part of the dataset was 
selected to test, while the other parts constituted the training 
dataset. This procedure was repeated till all parts had served 
as the testing dataset once. In this study, there were seven 
independent parts for each pixelized image. (4) The trained 
classifier was used to predict the pixelized image from the 
test set. Classification accuracies were calculated for each 
participant and were then averaged.

Results
Brain responses to pixelized images
There were stronger responses to pixelized images than fixa-
tion images in the primary visual cortex, and there were no 
significant differences between the average brain activities 
to different pixelized images. Figure 4 shows the brain ac-
tivation pattern to two different pixelized images from one 
participant. These average brain activation patterns to 18 
different pixelized images across all participants will be sent 
to the classifier. MVPA was used to test if these brain activa-
tion patterns (100 voxels) to different pixelized images were 
specific. 

Classification accuracies to brain activation patterns
The classifier was trained and tested with 6 pixelized images 
(classes) in each category. We calculated the average classifica-
tion accuracies for the three categories: it was 0.37 for English 
letter, 0.35 for visual acuity charts and 0.36 for simple shapes. 
To address if there were specific brain activation patterns to 
different pixelized images, we tested if the classification accu-
racy was above chance level. Chance level is what would be 
obtained if the classifier performed at random. In our study, 
we trained and tested the classifier with 6 pixelized images, 
so it was a 6-classes classification. The chance level for an 
N-classes classification is 1/N, so in our study, the chance 
level was 1/6, 0.167. Using a t-test analysis, we found that the 
classification accuracies were significantly above chance level 
(English letters: t(5) = 2.562, P < 0.05; visual acuity charts: t(5) 
= 3.527, P < 0.05; simple shapes: t(5) = 2.610, P < 0.05), which 
means that specific brain activation patterns to different pix-
elized images in each category can be obtained in the primary 
visual cortex. 

Classification accuracies of three categories
Moreover, the classification accuracy for all the 18 pixelized 
images was calculated. We trained and tested the classifier 
with 18 pixelized images, so it was an 18-classes classifica-
tion, and the chance level was 1/18, 0.05. The results from 
MVPA showing classification accuracy was 0.25, which 

Figure 5 Classification accuracy for pixelized images from three 
categories. 
The average classification accuracy was 0.37 for English letters (    ), 
0.35 for visual acuity charts (     ) and 0.36 for simple shapes (     ). The 
chance level was 0.167 (black line). The classification accuracies were 
significantly above chance level.
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was significantly above chance level (t(5) = 2.736, P < 0.05), 
meaning that specific brain activation patterns to different 
pixelized images across three categories can be obtained in 
the primary visual cortex (Figure 5). 

Discussion
In this study, we conducted an fMRI experiment to inves-
tigate the brain activation patterns to 18 different pixelized 
images. There were 100 voxels in the brain activation pattern 
which were selected from the primary visual cortex. Using 
MVPA, the results suggested that the 18 brain activation 
patterns evoked by the 18 different pixelized images were 
specific. Previous studies have suggested that a similar retina 
encoder can improve the design of electrical stimulation 
patterns in retina prostheses (Zrenner, 2002; Eckmiller et al., 
2005). A recent study of motor cortical prostheses has shown 
that it is possible to control a prosthetic device using brain 
activation patterns in the motor cortex (Velliste et al., 2008). 
It is hoped that the specific brain activation patterns evoked 
by the different pixelized images can improve the design of 
electrical stimulation for visual cortical prostheses.

First, the specific brain activation patterns can be used 
as the “aim” of the electrical stimulation. For visual cor-
tical prostheses, if the brain activation pattern evoked by 
the electrical stimulation approaches the brain activity 
pattern evoked by the “specific target”, then the pixelized 
images elicited by the electrical stimulation may be similar 
to the “specific target”. By adjusting the parameters of the 
electrical stimulation to make the brain activation patterns 
evoked by the electrical stimulation more similar to the 
“aim”, we hope to improve the design of electrical stimula-
tion. Moreover, combined with the correlation coefficient 
between the electrical stimulation and the brain responses, 
the specific brain activation patterns can also be used as the 
parameters of the electrical stimulation. Furthermore, pre-
vious studies on retinal prostheses have shown that decod-
ing specific visual targets from local field potentials in the 
brain can evaluate the efficiency of electrical stimulation 
(Cottaris and Elfar, 2009). In such an approach, we plan to 
decode brain activation patterns at a later visual processing 
stage, such as extrastriate visual cortical area V2, to evaluate 
the efficiency of electrical stimulation for visual cortical 
prostheses.

For visual cortical prostheses, a previous study suggested 
a retina-like encoder to aid in electrical stimulation design 
(Martínez et al., 2005). This encoder takes a previous lo-
calization of every phosphene in the visual field, and then 
computes the list of electrodes to be activated according the 
“desired pixelized images” (Morillas et al., 2007). However, 
the relationship between visual space and cortical space is 
non-linear and non-conformal (Warren et al., 2001), so it 
is hard to accurately remap visual space onto cortical space. 
Even if the list of electrodes can be obtained, it is still hard 
to design the stimulus levels that will be delivered to each 
implanted cortical electrode, because there are overlapping 
localizations of phosphenes in the visual field (Normann 
et al., 2001). The relationship between “the whole and the 

parts” in the primary visual cortex is still unclear, so the 
“desired pixelized images” are not linear additives of the 
phosphenes. Therefore, in our study, we hope that the brain 
responses evoked by the “desired pixelized images” will 
improve the design of electrical stimulation. This method 
does not need to suffer the non-linear and non-conformal 
problem; the brain activation patterns are directly used. 
The brain activation patterns contain the activation value 
of each voxel that can be used as the parameters of stimu-
lus levels. Furthermore, a previous fMRI study suggested 
that there is a common model of brain activation patterns 
between participants (Haxby et al., 2011), so the common 
brain activation patterns between normal participants are 
hoped to be directly used to design the electrical stimula-
tion, which would reduce the training time of the implant 
wearers.

In this study, there were 100 voxels in the brain activation 
pattern which were selected from the primary visual cortex. 
The location of each voxel would be the implant area for 
each electrode. A previous fMRI study of the orientation and 
color suggested that 4 mm kernel smoothing systematical-
ly provided a significant increase in classification accuracy 
compared to no smoothing (3 mm), and over-fit smoothing 
(6 mm) (Ruiz et al., 2012). This result suggests that if we 
want to obtain two different brain responses in the primary 
visual cortex, it is better to smooth at the size of each voxel in 
the brain activation patterns. Thus, the size of each voxel was 
smoothed to 4 mm × 4 mm × 4 mm in this study. Our re-
sults showed that there were stronger responses to pixelized 
images than fixation images in the primary visual cortex, 
and that there were no significant differences between the 
average brain activities to different pixelized images. These 
results suggested that the pixelized images of different ob-
ject categories might follow the same early visual processing 
path, which is consistent with previous studies (Guo et al., 
2010, 2013). Their results showed that both pixelized images 
of faces and non-faces evoked similar N170 components in 
the early visual area, which suggests that pixelized images of 
different object categories might trigger the same visual cog-
nitive processes. 

A previous study suggested that the first step in developing 
a visual prosthetic for blind humans is to develop an animal 
model, and that humans should be used in entirely non-
invasive procedures to test some of the basic assumptions 
(Schiller and Tehovnik, 2008). Since our results suggested 
that specific brain activation patterns to different pixelized 
images can be obtained in humans, we will carry out this 
fMRI experiment in animals in the future.

In this article, we conducted an fMRI experiment on pix-
elized images. MVPA was used to test if the brain activation 
patterns to different pixelized images were specific. The 
results showed that the classification accuracies of brain 
activation patterns to different pixelized images were signifi-
cantly above chance level. Our results suggest that specific 
brain activation patterns to different pixelized images can 
be obtained in the primary visual cortex. The specific brain 
responses evoked by the different pixelized images are hoped 
to be used in the design of electrical stimulation patterns.
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