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Transient receptor potential (TRP) channels are polymodal channels capable of sensing
environmental stimuli, which are widely expressed on the plasma membrane of cells and
play an essential role in the physiological or pathological processes of cells as sensors. TRPs
often form functional homo- or heterotetramers that act as cation channels to flow Na+ and
Ca2+, change membrane potential and [Ca2+]i (cytosolic [Ca2+]), and change protein
expression levels, channel attributes, and regulatory factors. Under normal circumstances,
various TRP channels respond to intracellular and extracellular stimuli such as temperature,
pH, osmotic pressure, chemicals, cytokines, and cell damage and depletion of Ca2+ reserves.
As cation transport channels and physical and chemical stimulation receptors, TRPs play an
important role in regulating secretion, interfering with cell proliferation, and affecting neural
activity in these glands and their adenocarcinoma cells. Many studies have proved that TRPs
are widely distributed in the pancreas, adrenal gland, and other glands. This article reviews the
specific regulatory mechanisms of various TRP channels in some common glands (pancreas,
salivary gland, lacrimal gland, adrenal gland, mammary gland, gallbladder, and sweat gland).
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INTRODUCTION

Endocrine gland-related diseases, though rare, remain a significant threat. Take the islets as an
example, pancreatitis can contribute to diabetes and pancreatic cancer, and the existing treatment
options, such as radiotherapy and surgery, are ineffective (Kleeff et al., 2017; Hart and Conwell,
2020). In addition, the cases of pancreatic ductal adenocarcinoma (PDAC) are on the rise year by
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year, and the fatality rate is very high because most cases are
found in the late stage. For non-early-stage patients, existing
systemic therapy, radiotherapy, and cytotoxic therapy are not
complete cures (Park et al., 2021). In this regard, regulation of
TRPs can help regulate the microenvironment of pancreatic cells
and improve the possibility of a specific therapy.

On the other hand, standard treatments for salivary and
lacrimal gland-associated Sjögren’s syndrome (pSS) include anti-
inflammatory drugs, steroids, hormones, immunosuppressants,
and biotherapy (Ramos-Casals et al., 2020). Primary adrenal
insufficiency or hyperplasia is also often treated with hormone
replacement therapy to mimic normal secretion. Nevertheless, the
death rate among primary adrenal insufficiency patients continues
increasing (El-Maouche et al., 2017; Barthel et al., 2019). For
hidradenitis suppurativa (acne inversa), surgical, laser, and
antibiotic treatments are often inadequate, new drug targets are
needed, and patients are often associated with a range of endocrine
diseases such as obesity, diabetes, and metabolic syndrome (Saunte
and Jemec, 2017; Sabat et al., 2020).

Moreover, studies have proved that COVID-19 is associated
with secretory gland diseases such as diabetes, adrenal
insufficiency, and mumps (De-Madaria and Capurso, 2021;
Fisher et al., 2021; Zhou et al., 2021). Patients with diabetes,
obesity, and primary adrenal insufficiency infected with COVID-
19 will have more severe damage to the endocrine glands,
resulting in a poor prognosis and the possibility of chronic
inflammation, significantly increasing hospitalization, severe
illness, and mortality rates (Marazuela et al., 2020; Zhou et al.,
2021). In contrast, COVID-19 can induce diabetic onset in
patients with hyperglycemia and induce secondary adrenal
insufficiency. In addition, the hormone therapy previously
used in patients with endocrine diseases should be changed
accordingly after COVID-19 infection (Lisco et al., 2021).
Here, the TRP channels are also noteworthy as potential drug
targets for endocrine glands.

DEVELOPMENT AND CLASSIFICATION OF
TRP CHANNELS

TRP channels have been gradually discovered and studied in the
past few decades. The TRP channel was initially named after the
photo-transducted channels in Drosophila melanogaster, which is
blind to constant bright light (Cosens and Manning, 1969;
Hardie, 2011; Samanta et al., 2018). Various TRPs discovered
later were classified according to differences in amino acid
sequence and topological structure, including seven families in
total: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin),
TRPA (ankyrin), TRPP (polycystic), TRPML (mucolipin), and
TRPN (Drosophila NOMPC) (Hardie, 2011; Li, 2017; Samanta
et al., 2018). And then there is TRPY, which was just discovered in
yeast and named after it (Amini et al., 2021). Among them,
TRPC, TRPV, TRPM, and TRPA are group1 of TRP channels,
which have high similarities with drosophila TRP channels. TRPP
and TRPML are group 2 of TRP channels, which have distal
relevance to drosophila TRP channels. Group1 and 2 are different
in the transmembrane domain (Li, 2017; Samanta et al., 2018).

Due to its homology with drosophila TRP sequence, TRPCs
were first discovered and had seven members, divided into four
subgroups: TRPC1, TRPC2 (a pseudogene in mammals),
TRPC3\6\7, and TRPC4\5. TRPCs can be activated by gated
receptors, storage operations, and mechanical stimuli to
participate in cell regulation (Wes et al., 1995; Vazquez et al.,
2004; Ong et al., 2016). TRPVs are named after the activation of
TRPV1 by capsaicin in sensory neurons (Caterina et al., 1999). In
addition, vanillin and vanillic acid in plants can also activate
TRPVs (Li, 2017). TRPVs have six members, divided into two
subgroups: TRPV1-4 and TRPV5\6. TRPV1-4 are
thermosensitive nonselective nociceptors, which are related to
neural plasticity (Satheesh et al., 2016). TRPV5\6 are epithelial
channels with high calcium selectivity (Li, 2017). Mammalian
TRPMs have eight members divided into four subgroups
according to sequence homology: M1\3, M2\8, M4\5, and
M6\7. Some TRPMs are distributed in the intima of cells, and
their activation patterns, cation selectivity, and tissue distribution
vary significantly among different TRPMs members (Kraft and
Harteneck, 2005; Li, 2017; Samanta et al., 2018). TRPM is mostly
cloned from cancer tissues and is related to tumor genesis,
proliferation, and differentiation. They are involved in
temperature sensing, Mg2+ homeostasis regulation, and taste
conduction (Kraft and Harteneck, 2005; Samanta et al., 2018).
TRPA1, the only member of the TRPA family in mammals, is an
anchor-like transmembrane protein capable of sensing chemical
damage (Zygmunt and Hogestatt, 2014).

For TRPPs, it was found in polycystic kidney disease with the
pathogenic locus of autosomal dominant and it had three
members: TRPP1-3. TRPPs are composed of intact membrane
proteins (Hughes et al., 1995; Mochizuki et al., 1996; Samanta
et al., 2018). TRPMLs also has three members: TRPML1-3; TRP
channels with the most negligible molecular weight, are
associated with vesicle transport (Colletti and Kiselyov, 2011;
Flores and Garcia-Anoveros, 2011; Wang et al., 2014;
Venkatachalam et al., 2015). However, TRPNs do not encode
in mammals, and they are related to mechanical sensory
transduction in nematodes, flies, and zebrafish (Lee et al.,
2010). It is worth mentioning that TRPs affect sensory
function and the development of (inherited) diseases. In
addition to cancers and diabetes, TRPs are often involved in
heart, bone, kidney, brain, skin, eyes, and nerve diseases. TRPs are
also related to the sensory transduction of chronic pain (Julius,
2013; Li, 2017; Samanta et al., 2018). Since TRPs are primarily on
the surface of cells, they have also been studied as targets for drugs
such as analgesics (Moran, 2018; Koivisto et al., 2022). The
following review focuses on the research mechanism and drug
progress of TRP channels in the pancreas, salivary gland, lacrimal
gland, adrenal gland, mammary gland, gallbladder, and sweat
gland (Figure 1).

TRP CHANNELS IN THE PANCREAS

TRPC Channels
As a component of the store-operated Ca2+ (SOC) channels, TRPC
channels, primarily located in the plasma membrane, can be
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activated by G protein-coupled receptors (GPRs), protein kinases,
or mechanical stimulation to form non-selective Ca2+ osmotic
channels, mediating Ca2+ and some monovalent ions influx, and
promoting cell depolarization (Chen et al., 2020; Lopez et al., 2020).
In the pancreas, TRPC1, TRPC3, and TRPC4 have promoted
insulin secretion by β cells. In rat β cells, TRPC1 and Orai1 are
coupled to form cationic channels that mediate Ca2+ influx and are
regulated by stromal interaction molecule 1(STIM1) (Islam, 2011;
Najder et al., 2018; Islam, 2020). STIM1 gates TRPC1 through
intermolecular interactions (Islam, 2011; Islam, 2020). In addition,
TRPC1 is phosphorylated by protein kinase C-α (PKCα) to
promote glucose-induced insulin secretion (Xu et al., 2019).
Under normal circumstances, TRPC3 is activated by G protein-
coupled receptor 40 (GPR40) in rat andmouse β cells. In rat β cells,
Activated TRPC3 enhanced insulin secretion via phospholipase C,
PKC, and GPR40, leading to membrane depolarization and Ca2+

influx (Hayes et al., 2013). The high expression level of TRPC3/
TRPC6 induces pancreatic α and β cells proliferation via insulin-
related transcription factor pancreatic and duodenal homeobox 1
(PDX-1) (Hayes et al., 2013). TRPC4 was expressed in rat and
mouse islet β cells and insulinoma cells. In βTC3 cells, intracellular
Ca2+ depletion activates TRPC4, which generates a cationic current
that stimulates membrane oscillation and promotes Ca2+ influx,
thereby increasing insulin secretion (Roe et al., 1998; Islam, 2020).
Leptin, the activator of TRPC4, phosphorylates TRPC4 by
phosphoinositide 3-kinase. Similarly, in INS-1 cells, protein
histidine phosphatase 1 phosphorylates TRPC4, which also
translocates K-ATP channels to the plasma membrane typically
and promotes insulin secretion (Park et al., 2013; Srivastava et al.,
2018).

In addition, in the case of PDAC, TRPC1, TRPC3, and TRPC6
may also be activated by mechanical stimuli to aggravate the disease.

In the PDAC pressure microenvironment, TRPC1 transmits the
mechanical signal that mediates the activation and migration of
pancreatic stellate cells (PSCs) and induces chemotaxis in
neutrophils. Furthermore, it was predicted that it cooperated with
TRPM7 and TRPV4 to promote the progress of PDAC (Lindemann
et al., 2015; Fels et al., 2016; Najder et al., 2018). In the pathological
condition of PDAC, activated TRPC3 and KCa3.1 (Ca

2+-dependent
K+ 3.1) channels in the PDACmatrix jointly promote the migration
and taxis of PSCs, and the over-activation of PSCs to produce
excessive extracellular matrix proteins is the leading cause of
pancreatic cancer fibrosis. Moreover, in the hypoxic tumor
microenvironment of PDAC, TRPC6 is not only richly expressed
in PSCs but also can be activated by hypoxia, thus promoting the
secretion of migration factors, which may also worsen the disease
progression, which is also related to its ability to control Ca2+ influx
(Nielsen et al., 2017; Storck et al., 2017; Najder et al., 2018).

TRPV Channels
TRPVs are also predominantly expressed in islet β cells. Among
them, TRPV2 and TRPV4 also have similar insulin-secreting
effects as mentioned above (Islam, 2011; Uchida and Tominaga,
2011; Sawatani et al., 2019). However, TRPV1 transmitting neural
sensation does not directly promote insulin secretion, and the role
of TRPV5 and TRPV6 in islet remains to be studied. TRPV1 was
expressed in INS-1E cells (Fagelskiold et al., 2012). Although
TRPV1 does not directly affect glucose-induced insulin
secretion in mouse β cells (Diaz-Garcia et al., 2014), it is
expressed in sensory nerve fibers of the mouse pancreas, and its
locus is associated with the risk of autoimmune diabetes (Razavi
et al., 2006; Najder et al., 2018). During insulin release, TRPV1 is
activated to promote the release of calcitonin-gene-related peptide
(CGRP) and substance P (SP) by neurons, and the concentration of

FIGURE 1 | Schematic illustration of the tissue-distribution of TRP channels and their putative roles in human glands.
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CGRP and SP are balanced with glucose concentration by
regulating insulin concentration (Zhong et al., 2019). In
nonobese diabetic mice, neuronal failure to release CGRP and
SP due to TRPV1 mutations lead to physiological dysfunction of β
cells, resulting in insulin resistance and β cell stress (Razavi et al.,
2006; Najder et al., 2018; Zhong et al., 2019). In addition, glucagon-
like peptide 1 (GLP-1) can also enhance insulin secretion, but
different from the above-mentioned TRP channels, TRPV1 in the
ileum is activated by capsaicin, which increases GLP-1 secretion
and leads to increased pancreatic insulin secretion (Wang et al.,
2012); however, this interpretation should be treated with caution.
Although TRPV1 is typically excited by capsaicin, whether TRPV1
promotes insulin secretion has been highly controversial (Zhong
et al., 2019). Notably, TRPV1 also expresses and mediates
inflammation and pain sensation in afferents of acute
pancreatitis, in coordination with TRPA1. It is possible that
they regulate [Ca2+]i and increase the release of inflammatory
and pain mediators (Schwartz et al., 2011; Schwartz et al., 2013).

Ca2+ permeable TRPV2 is expressed in mouse insulinoma
MIN6 cells and β cells (Islam, 2011). When unstimulated, TRPV2
is distributed in the cytoplasm, mainly in the endoplasmic
reticulum (Uchida and Tominaga, 2011). Under high glucose
conditions, insulin binds with its β cell receptor,
phosphatidylinositol 3 kinase (PI3K), to stimulate the
translocation of TRPV2 from the cytoplasm to membrane,
which increases [Ca2+]i, accelerates insulin secretion, and
stimulates β cell growth (Hisanaga et al., 2009; Aoyagi et al.,
2010; Uchida and Tominaga, 2011). In addition, the osmotic
swelling of cells during high glucose also activates TRPV2 to
depolarize cells and increase glucose-induced insulin secretion
(Sawatani et al., 2019). It was also reported that the antiaging gene
Klotho translocated TRPV2 in MIN-6 (Lin and Sun, 2012).

As a permeable Ca2+ channel, TRPV4 is expressed in human
pancreatic non-β cells and, like TRPV2, is a thermosensitive osmotic
and mechanical sensor; it is also activated by the swelling of cells
stimulated by glucose (Islam, 2011; Uchida and Tominaga, 2011;
Marabita and Islam, 2017). Moreover, in mouse β cells, TRPV4 can
be activated by sensing mechanical membrane changes induced by
human islet amyloid polypeptide, which affect [Ca2+]i and promote
insulin secretion (Casas et al., 2008). In addition, the activation of
TRPV4 also promotes insulin secretion in INS-1E cells, and
extracellular signal-regulated kinase may be involved in this
process (Skrzypski et al., 2013; Billert et al., 2017).

TRPV5/6 are the epithelial Ca2+ permeable channels. TRPV5
exists in secretory granules of β cells, but its effect on secretion is
unknown. TRPV6 is expressed in the exocrine acinar of the
pancreas, especially in human and mouse islet α cells
(Hoenderop et al., 2003; Marabita and Islam, 2017). In INS-1
cells, TRPV6 regulates calcium ions to influence insulin mRNA
expression and cell proliferation, but does not seem to affect
insulin secretion (Skrzypski et al., 2015). Pathologically, TRPV6
overexpression in the cytoplasm of pancreatic cancer cells
promotes the migration of cancer tissues (Song et al., 2018).

TRPM Channels
TRPMs are also expressed in the pancreas. In addition to being
activated by their activators, TRPM2, TRPM4, and TRPM5 can

also be triggered by the influx of Ca2+ to participate in membrane
depolarization, and TRPM2, TRPM7, and TRPM8 are involved in
the progression of pancreatic adenocarcinoma (Islam, 2011;
Uchida and Tominaga, 2011; Yee et al., 2012a; Uchida et al.,
2017; Islam, 2020). TRPM2 is also engaged in β cell apoptosis in
animals other than humans. TRPM2 was found to express in
mouse and human β cells and rat INS-1 cells. TRPM2 was
activated by ADP ribose (ADPR), Nicotinamide adenine
dinucleotide (NAD+) concentration, and reactive oxygen
species (ROS) to mediate Ca2+ influx and depolarization to
regulate glucose-dependent insulin secretion (Pi et al., 2007;
Du et al., 2009; Leloup et al., 2009; Islam, 2011; Islam, 2020).
Particularly, TRPM2 is a calcium-permeable thermosensitive
channel. Before being activated by ADPR, extracellular Ca2+

must be combined with the calcium sensor in the TRPM2
channel, which reflects the leading role of Ca2+ (McHugh
et al., 2003; Csanady and Torocsik, 2009; Du et al., 2009). At a
high glucose concentration, besides essential ADPR and Ca2+,
other activators of TRPM2 include arachidonic acid produced by
glucose metabolism, PKA-dependent cyclic adenosine
monophosphate (cAMP), intestinal incretin hormone GLP-1,
and physical second messenger “heat” (Togashi et al., 2006;
Islam, 2011; Yosida et al., 2014). Growth hormone-releasing
peptides Ghrelin and epinephrine inhibit TRPM2 by inhibiting
cAMP, thus inhibiting insulin secretion (Yosida et al., 2014;
Islam, 2020).

Moreover, TRPM2 was associated with β cell apoptosis. In the
case of oxidative stress induced by free fatty acids or cytokines,
TRPM2 is activated by ROS, which promotes mitochondrial
destruction and leads to apoptosis. Still, human β cells resist
such apoptosis (Wehage et al., 2002; Scharenberg, 2009; Li et al.,
2017a; Islam, 2020). In addition, TRPM2 is distributed on the
lysosomal membrane, gating Ca2+ and Zn2+ and affecting the
externalization of phosphatidylserine (Mirnikjoo et al., 2009; Li
et al., 2017a). In the case of pathological PADC, TRPM2 of
neutrophils in tumor stroma may also be activated by ROS
(Uchida and Tominaga, 2011; Faouzi and Penner, 2014).

TRPM3 has the permeability of Na+, Zn2+, and Ca2+, and has a
strong absorption effect on Zn2+. In pancreatic β cells such as
INS-1 cells, TRPM3, which is activated by pregnenolone sulfate
(PregS), mediates Ca2+, Zn2+ influx, and induces the biosynthesis
of zinc finger transcription factor Egr-1, thereby promoting
glucose-induced insulin synthesis and release (Wagner et al.,
2008; Colsoul et al., 2011; Mendez-Resendiz et al., 2020).
Although the effect of TRPM3 is rapid and reversible, it does
not participate in Ca2+ signaling in β cells, probably because PregS
depolarizes with Na+ current and thus activates voltage-gated
calcium channels (Islam, 2020). In addition to PregS, TRPM3 is
also regulated by phosphatidylinositol 4,5-biphosphate (PIP2)
and heat (Badheka et al., 2015).

Both TRPM4 and TRPM5 are intracellular Ca2+ dependent,
and they are activated by increased [Ca2+]i during insulin release
(Colsoul et al., 2010; Uchida and Tominaga, 2011). Unlike
TRPM2, TRPM4/5 are not Ca2+ permeable, but monovalent
cation channels. Activated by Ca2+ influx, TRPM4/5 depolarize
the membrane through Na + action and open voltage-gated
calcium channels, thereby increasing glucose-induced insulin
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secretion (Islam, 2011; Uchida and Tominaga, 2011). In addition
to being activated by [Ca2+]i, TRPM4/5 can also be activated by
PKC, leading to membrane depolarization and increasing insulin
secretion (Uchida and Tominaga, 2011; Shigeto et al., 2015;
Uchida et al., 2017). TRPM4 and TRPM5 are also different.
TRPM4 is expressed in both human and mouse β cells and
INS-1 cells, and its depolarization mechanism is almost similar
(Uchida et al., 2017). In addition to the PKC pathway, PIP2
also maintains TRPM4 sensitivity to [Ca2+]i concentration,
and TRPM4 is inhibited by glibenclamide (Colsoul et al.,
2011). Particularly, in pancreatic acinar cells (PACs), the
depolarization of TRPM4 inhibits Ca2+ influx (Diszhazi
et al., 2021). TRPM4 is also involved in glucagon secretion
in DTC1-6 of islet α cell line (Colsoul et al., 2011). TRPM5 was
highly expressed in rat β cells and insulinoma cells but low in
human β cells (Islam, 2020). Stevioside can regulate TRPM5,
which may be related to its hypoglycemic effect (Steinritz et al.,
2018). Interestingly, TRPM5 acts as a taste receptor and
activation of sweet-taste receptors in mouse β cells is
mediated by TRPM5, and TRPM5 knockout mice have less
sweet taste preference and higher glucose tolerance (Larsson
et al., 2015; Islam, 2020).

TRPM6 is not expressed in human β cells, while TRPM7, with
the permeability of Mg2+, Ca2+, and Zn2+, is exceptionally
abundant in human and mouse β cells, and can regulate
[Mg2+]i to promote insulin secretion (Islam, 2020).
Importantly, in the case of human pathological pancreatic
adenocarcinoma, TRPM7 and TRPM8 are overexpressed and
are necessary biomarkers for cancer cell proliferation (Yee et al.,
2011; Yee et al., 2012a). In pancreatic adenocarcinoma,
sweetbread (SWD) mutations overexpress the suppressor of
cytokine signaling 3a (socs3a) gene, resulting in cell cycle
arrest in G0-G1 phases, inhibiting pancreatic epithelial cell
growth, causing hypoplastic acini and dysmorphic ducts. In
this process, TRPM7 of some cells is activated by SWD
mutations, which mediates Mg2+ influx to inhibit socs3a, thus
protecting cells from growth defects and enabling normal aging
(Yee et al., 2011; Yee et al., 2012b). On the contrary, TRPM8 can
prevent gene-induced senescence of cancer cells, which means
that it is beneficial to the proliferation and anti-senescence of
pancreatic adenocarcinoma cells and promotes the progression of
the disease (Yee et al., 2010).

TRPA1
TRPA1 is a calcium-permeable non-selective cation channel, dual
thermoreceptor, which is highly expressed in rat pancreatic cells.
It is activated by glycolytic products at high glucose
concentrations and positively regulated by estrogens and their
metabolites (Uchida et al., 2017; Mendez-Resendiz et al., 2020). In
mouse islet β cells and rat INS-1 cells, TRPA1 is directly activated
by hydroxylated catechol estrogens such as 2-hydroxyestradiol,
which accelerates membrane depolarization and calcium influx
through synergistic K-ATP channel closure, thereby increasing
glucose-induced insulin secretion (Colsoul et al., 2011; Ma et al.,
2019; Mendez-Resendiz et al., 2020). However, long-term
stimulation of TRPA1 interferes with the transcription of
insulin-related factors such as pancreatic and duodenal

homeobox 1 (PDX-1) and reduces insulin secretion (Steinritz
et al., 2018).

TRPML Channels
TRPML1, TRPML3, and TRPP1 are expressed in human
pancreatic β cells and islets (Marabita and Islam, 2017).
TRPML1 is also a Ca2+ osmotic channel, mainly located in
intracellular vesicles. Since the activity of TRPML is related to
pH, it tends to exist in lysosomes with low pH and can be
activated by phosphatidylinositol 3,5-bisphosphate, which is
rich in lysosomes. It plays a role in vesicle transport and
lysosomal exocrine secretion (Li et al., 2017b; Di Paola et al.,
2018). Moreover, TRPML1 mutation can lead to the loss of
lysosome function (Sun et al., 2000; Dong et al., 2009). Finally,
TRPP1 acts as a Ca2+ permeable non-selective cation channel,
which may also promote β cell depolarization (Islam, 2020). The
detailed molecular mechanism of TRP channels in the pancreas is
shown in Figures 2, 3.

TRP CHANNELS IN THE SALIVARY GLAND

TRPC Channels
Salivary gland secretion depends on the increase of Ca2+ in
salivary gland cells; when both extracellular and endoplasmic
reticulum (ER) Ca2+ are insufficient to maintain the
concentration gradient, the Store-Operated Ca2+ Entry (SOCE)
mechanism mediates [Ca2+]i (Ambudkar, 2016; Liu et al., 2018).
Thus, ion transporters and channels such as Na+/K+/2Cl−

cotransporter 1 (NKCC1), Anoctamin 1 (ANO1), and KCa

are opened to regulate intracellular and extracellular Cl−

concentration and maintain osmotic gradient, allowing
water to be secreted through the water channel Aquaporin 5
(AQP5) in the apical membrane (Ambudkar, 2012; Ambudkar,
2014; Liu et al., 2018). In this process, the channels involved in
SOCE are mainly TRPC1 and Orai1. Orai1 is an important
component of store-operated calcium release-activated
calcium and SOC channels, and the role of TRPC1 depends
on the activity of the Orai1 channel (Liu et al., 2000; Liu et al.,
2007; Cheng et al., 2008; Cheng et al., 2011; Hong et al., 2011;
Ambudkar, 2016). Orai1 is first activated to mediate Ca2+

influx, which stimulates the movement of TRPC1 to the
plasma membrane after the acinar cells are stimulated by
neurotransmitters. Moreover the two channels are coupled
into a single channel to increase Ca2+ influx and salivary
secretion by activating an ER- Ca2+ binding protein- STIM1
and Caveolin-1 (Zeng et al., 2008; Pani et al., 2009; Cheng et al.,
2011; Hong et al., 2011; Pani et al., 2013; Choi et al., 2014;
Ambudkar, 2016; Liu et al., 2018).

Except for TRPC1, TRPC3 and TRPC4 also participate in
SOCE, but whether TRPC3 participates in SOCE seems to be
related to cell type and expression level (Liu et al., 2018). In
salivary gland ductal cells, TRPC3 acts in a similar way to TRPC1
that TRPC3 is also associated with Orai1 after being activated by
STIM1. However, TRPC3 must bind to TRPC1 before activation;
that is, TRPC3 is dependent on TRPC1 to form TRPC3-TRPC1
heteromeric channel (Lee et al., 2014; Ong et al., 2014; Ambudkar,
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2016). In pathological conditions, the generation of cytotoxicity
in salivary acinar cells during inflammation is related to the Ca2+

influx mediated by TRPC3, which is reflected in ROS production
and membrane damage. This phenomenon is similar with the
increased of [Ca2+]i in pancreatic acinar cells aggravating
pancreatitis. It is suspected that TRPC1 is also involved in this
cell damage process (Kim et al., 2011; Ambudkar, 2016).

Other Channels
Loss of salivary gland function leads to xerostomia, often caused
by radiation therapy or chronic autoimmune disease Sjögren’s
syndrome (pSS), which is associated with an unregulated increase
in intracellular Ca2+ (Konings et al., 2005; Mavragani and
Moutsopoulos, 2014; Liu et al., 2018). For the loss of salivary
gland function caused by pSS, pSS itself leads to the
overexpression of TNF-α, interleukin, γ-IFN, and other
inflammatory factors (Baturone et al., 2009; Bikker et al.,
2010). Moreover, activated granulocytes also increase ROS
during inflammation, which is regulated by TRPM2. TRPM2
regulates immune inflammation by regulating the release of
inflammatory factors and the growth of dendritic cells (Gasser
et al., 2006; Yamamoto et al., 2008; Sumoza-Toledo et al., 2011;
Knowles et al., 2013).

TRPM2 is the ROS receptor existing in mouse salivary acinar cells,
which may be involved in radiation-induced cell damage and pSS
(Sumoza-Toledo and Penner, 2011; Liu et al., 2013; Liu et al., 2018).
TRPM2 is activated by NAD+ and its ADPR generated after
hydrolysis to guide Ca2+ influx and participate in cell damage
when the radiation creates an excessive ROS microenvironment
(Perraud et al., 2003; Sumoza-Toledo and Penner, 2011;
Ambudkar, 2016; Liu et al., 2018). TRPM2 plays a key role in the
relationship between cell damage after radiation and dry mouth (Liu
et al., 2013; Teos et al., 2016; Liu et al., 2018). In conclusion, TRPM2
mediates irreversible salivary glanddamage after radiation by excessive
consumption of STIM1 and dysregulation of SOCE (Liu et al., 2013;
Liu et al., 2017). For the recovery of damaged glands after radiation,
inhibition of TRPM2 activation can promote the regeneration of
glandular cells by keeping STIM1 and SOCE at normal levels (Jang
et al., 2016; Liu et al., 2017). Moreover, TRPM2 was not only
associated with salivary gland secretion loss, but also inhibited the
abnormal shrinkage of acinar cell volume, which is related to the
change of osmotic pressure during salivary gland secretion
(Ambudkar, 2016). For example, TRPM2 is activated after
radiation to regulate ion transporters, changes osmotic gradients,
and normalizes cell size through regulatory volume increase (RVI)
under the condition of being excited by agonists such as carbachol

FIGURE 2 | Activation of TRP channels in the pancreas. Here is pancreatic β cell or adenoma cell. TRPC1, TRPC3, TRPC4, and TRPA1 are activated by different
pathways, mediating extracellular Ca2+ influx in the presence of Ca2+ deficiency in the ER and depolarizing to stimulate insulin secretion. TRPC6 is associated with cell
proliferation and tumor migration. TRPV2, which existed on vesicles and ER, was activated by insulin synthesis or altered intracellular and extracellular osmotic pressure
under high glucose conditions, translocated to the plasma membrane and increased Ca2+ influx.
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(CCh) (Liu et al., 2018). In contrast to TRPM2’s RVI, swollen cells that
absorb water can return to normal size by the opposite route, known
as regulatory volume decrease (RVD). TRPV4 can be activated under
hypotonic conditions and play an RVD role by regulating osmotic
gradient by guiding Ca2+ influx as well (Liu et al., 2006; Liu et al.,
2018). Additionally, TRPV4 also can be activated by 4α-phorbol-12,13
didecanoate, Muscarine, GSK1016790A, and heat. Muscarine leads to
salivary secretion by activating TRPV4 through heat, which opens the
Cl− transport channel ANO1 (Zhang et al., 2012a; Sobhan et al., 2013;
Derouiche et al., 2018).

Among them, TRPV1, TRPM8, TRPV3 and TRPV6 are also
found in salivary glands. TRPV1 agonists-capsaicin, piperine, or
TRPM8 agonist -menthol increased CCh-induced salivary
secretion. Allyl isothiocyanate, the co-antagonist of TRPM8
and TRPA1, decreased the salivary secretion, indicating that
the roles of these TRP channels are different (Peng, 2011;
Sobhan et al., 2013; Liu et al., 2018; Houghton et al., 2020).
TRPC1, TRPV4, TRPM8, and TRPV3 are also involved in the
early tubular structure differentiation of salivary gland cells
(Fujiseki et al., 2017). The detailed molecular mechanism of
TRP channels in the salivary gland is shown in Figure 4.

TRP CHANNELS IN THE ADRENAL GLAND

TRPC Channels
The adrenal gland is a vital endocrine organ of the human body.
The gland is divided into two parts, the adrenal cortex and the
adrenal medulla (AM). The chromaffin cells in the medulla

secrete catecholamine hormones, and the cortex mainly
secretes corticosteroids, including aldosterone and
glucocorticoids. These hormones always affect the function of
the human body, and their balance is of great significance to
human health. Many subfamilies of TRP channels are expressed
in the adrenal gland and play a significant role in adrenal
physiology and pathology.

It has been confirmed that TRPC1, TRPC4, and TRPC5 are
expressed in guinea pig AM cells at the protein level. Keita et al.
found that STIM1 promotes the formation of TRPC1 with
TRPC4 heteromer channels as well as insertion into the cell
membrane in PC12 cells and guinea pig AM cells (Harada et al.,
2019). TRPC1—TRPC4 heteromeric channels function as store-
operated Ca2+ entry channels in endothelial cells (Sundivakkam
et al., 2012). And TRPC3 (Goel et al., 2007), TRPC5 (Bezzerides
et al., 2004), and TRPC6 (Cayouette et al., 2004) are inserted into
the cell membrane in response to stimulation by G protein-
coupled receptors (GPCRs) or receptor tyrosine kinases.
TRPC1—TRPC4 heteromeric channels, therefore, mediate
Ca2+ influx in response to stimulation of muscarinic receptors
in guinea pig AM cells.

TRPC channels expression in the adrenal gland is increased
in patients with metabolic syndrome, which may be a
potential risk of inducing cardiovascular disease (Hu et al.,
2009). Renin-angiotensin-aldosterone system activity is
significantly increased in metabolic syndrome (Krug and
Ehrhart-Bornstein, 19792008; Sarzani et al., 2008). High
concentrations of aldosterone can regulate gene expression
through corresponding receptors, which include binding to

FIGURE 3 | Activation of TRP channels in the pancreas Ⅱ. Here is pancreatic β cell or adenoma cell. TRPM2, TRPM3, TRPM4, and TRPM7 are also activated to promote
insulin secretion. It is noteworthy that TRPM2needs to bind toCa2+, TRPM3mainlymediates Na+ and Zn2+ influx, TRPM4mainlymediatesNa+ influx, and TRPM7mediatesMg2+

influx. They mainly mediate extracellular Ca2+ influx by changing membrane potential and activating voltage-gated calcium channels. Similar to TRPV2, TRPV4 was activated by
osmotic pressure under high glucose conditions. Although TRPV6 exists in INS-1 and inhibits insulin mRNA expression, it does not affect insulin secretion alone.
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the glucocorticoid response element (GRE) half-site sequence
(Olivos and Artalejo, 2008; Bhargava et al., 2004).
Mineralocorticoid and glucocorticoid receptors bind to the
same response element in the promoter, the GRE. Several
GRE-like half-site motifs (AGAACA) were present in the
putative promoter region of TRPC1, TRPC5, and TRPC6
channels. These channels are up-regulated in patients with
metabolic syndrome. When these channels are activated via
the Gq/11-PLCβ pathway or Ca2+ store depleting pathway
(Marom et al., 2011), an influx of Ca2+ into chromaffin
cells causes depolarization of chromaffin cells and may
activate voltage-gated Ca2+ channels to promote their
secretion of epinephrine (Burgoyne et al., 1993; Cheek and
Barry, 1993). The detailed molecular mechanism is shown in
Figure 5. In addition, circulating hormones, such as histamine
and angiotensin II, can also stimulate catecholamine
exocytosis from adrenal chromaffin cells by activating
voltage-independent circulating hormone-operated cation
channels (Livett and Marley, 1993; Olivos and Artalejo,
2008; Sala et al., 2008). TRPC1, TRPC5, and TRPC6 are
candidates for increasing hormone-induced exocrine
secretion in chromaffin cells (Obukhov and Nowycky,

2002). It is well-known that excessive release of
epinephrine from the adrenal gland increases the risk of
myocardial infarction, cerebrovascular accident,
arrhythmia, stroke, while up-regulated TRPC1, TRPC5, and
TRPC6 channels are likely to cause cardiovascular disease in
patients with metabolic syndrome. Therefore, these channels
in the adrenal gland may be a therapeutic intervention target
in patients with metabolic syndrome. However, it is not clear
whether aldosterone is the only regulator of TRPC channels in
the adrenal medulla, and additional molecular factors that
further up-regulate TRPC channels may exist during
metabolic syndrome.

TRPV Channels
TRPV1 is a polymodal receptor activated by physical and
chemical stimulation, including heat (above 43°C) and changes
in pH (both acidic and alkaline), endovanilloids, such as
anandamine, N-acyldopamines, and a variety of exogenous
agonists, which mainly consist of capsaicin (Zsombok, 2013;
Moran and Szallasi, 2018). TRPV1 was upregulated in
chromaffin cells of neuropathic animals (Arribas-Blázquez
et al., 2019). Meanwhile, Pablo et al. found that stress

FIGURE 4 | Activation of TRP channels in salivary glands. Here is salivary acinar cell (TRPC3 is present in duct cells). When TRPM2, TRPC1, TRPC3, or TRPV4 are
activated and mediate Ca2+ influx, ANO1 and other ion transport channels can be activated to change osmotic pressure and secrete or absorb water through AQP5.
TRPA1, TRPV1, and TRPM8 also affect cell secretion but remain to be studied. In addition, too much ROS can damage gland cells, resulting in secretion disorders.
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significantly increased the mRNA levels of TRPV1 channels in
adrenal cells (Surkin et al., 2018). TRPV1 is a ligand-gated, non-
selective cation channel with high permeability to Ca2+ and
therefore Ca2+ influx in adrenocortical cells when TRPV1 is
activated (Moran and Szallasi, 2018). High levels of
intracellular Ca2+ concentration may suppress glucocorticoid
production (Matthews and Saffran, 1973). Capsaicin inhibits
lipopolysaccharide-induced intracellular steroidogenesis in
adrenocortical cells by activating TRPV1 and increasing
intracellular Ca2+ levels, which may prevent the development
of central nervous system disorders in patients with severe sepsis
(Ferreira et al., 2019). In summary, TRPV1 channels in the
adrenal gland are upregulated when the body is under stress
or neuropathological conditions. Excessive expression of TRPV1
after activation by its agonists may attenuate the release of
corticosteroids to some extent and thus protect the body.
Finally, TRPV1 is a driver to increase the rapid release of
corticosterone and epinephrine. Dekel et al. proposed an
alternative strategy to modulate peripheral organ function
(Rosenfeld et al., 2020). They developed a magnetothermal
switch for the on-demand release of the adrenal hormones
epinephrine and corticosterone by controlling TRPV1
activation in vitro. They use this approach to control adrenal
hormone secretion in genetically intact rats wirelessly. Since
alterations in the levels of these hormones are associated with
psychiatric disorders such as post-traumatic stress disorder and
depression, their approach may be helpful to study the physical
and psychological effects of stress. While TRPV1 (and other
thermosensitive TRP channels) was shown to be expressed in

other organs deep in the body, such as peripheral nerves,
gastrointestinal tract, pancreas, and heart (Akbar et al., 2008;
Schwartz et al., 2011; Randhawa and Jaggi, 2017), the potential
application of magnetothermal deep organ stimulation as means
to study organ function paves the way for the development of
bioelectronic medicines.

TRPA1 Channel
TRPA1 is a Ca2+ -permeable non-selective cation channel that
can be activated by various toxic or irritating substances in nature.
Allyl isothiocyanate (AITC) and cinnamaldehyde (CAN) increase
epinephrine secretion by activating TRPA1-expressing adrenal
sympathetic nerves in rats (Iwasaki et al., 2008). TRPA1 is
frequently coexpressed with TRPV1, raising the possibility that
TRPA1 and TRPV1 mediate the function of a class of polymodal
nociceptors (Liedtke and Heller, 2007). Yuriko et al. found that
oleuropein aglycone (OA) stimulates norepinephrine secretion by
activating TRPA1 and TRPV1, thereby enhancing UCP1 receptor
expression in brown adipose tissue (BAT) (Oi-Kano et al., 2017).
BAT is the organ responsible for heat production in the human
body, and activation of adrenergic receptors expressed in BAT
can increase UCP1 receptor expression (Himms-Hagen et al.,
1994; Nagase et al., 1996; Cannon and Nedergaard, 2004). The
activation of TRPV1 is a key link in capsaicin-induced
epinephrine secretion. Capsaicin improves body energy
metabolism by promoting catecholamine secretion and up-
regulating UCP1 receptor in rats (Kawada et al., 1986;
Watanabe et al., 1987; Watanabe et al., 1988; Kobayashi et al.,
1998). Also, AITC increases body heat production and expression

FIGURE 5 | Mineralocorticoid-mediated up-regulation of TRPC5. The GRE-like half-site (AGAACA) in the TRPC5 gene binds to the mineralocorticoid receptor,
prompting the up-regulation of TRPC5 channels. TRPC5 is activated to mediate the influx of Ca2+ into chromaffin cells, depolarizing chromaffin cells and prompting their
secretion of catecholamines.
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of UCP1 receptors by activating TRPA1 channels (Yoshida et al.,
1988). We hypothesize that TRPA1, when expressed alone, can be
activated by its agonist AITC, thereby inducing catecholamine
secretion from the adrenal gland. Activation of TRPA1 is
therefore likely to be one of the pathways by which the body
increases energy metabolism as well as increases heat production,
but there is currently insufficient evidence to elucidate the
mechanism by which TRPA1 mediates catecholamine
secretion after activation. However, not all TRPA1 activation
can mediate the increased activity of adrenal sympathetic nerves.
Some studies have found that β-eudesmol inhibits adrenal
sympathetic nerve activity (ASNA) by activating TRPA1
(Ohara et al., 2018). Kazuaki et al. identified three key amino
acid residues in TRPA1, namely threonine 813, tyrosine 840, and
serine 873, which can be activated by β-eudesmol (Ohara et al.,
2015).

TRPM Channels
TRPM7 has a very broad tissue distribution as a member of the
TRP channel superfamily. Its gene encodes a persistently open
calcium channel regulated by intracellular Mg2+/ATP. It has been
shown that calcium influx caused by TRPM7 plays a key role in
the survival of cells (Nadler et al., 2001). Bonnie et al. found that
rat adrenal pheochromocytoma (PC12) cells expressing the
receptor (LEPRb) showed significant induction of promoter
activity and TRPM7 expression after leptin treatment (Yeung
et al., 2021). They found that activated pSTAT3 epigenetically
regulates the transcription of TRPM7 through DNA methylation
and histone modifications. Specifically, it is manifested in a
reduction in CpG site-specific methylation and H3K27 (H3
[histone 3] K27 [lysine 27]) trimethylation and an increase in
H3K27 acetylation and H3K4 (H3 lysine 4) trimethylation at the
TRPM7 promoter. The detailed molecular mechanism is shown
in Figure 6. Therefore, TRPM7 channels may be up-regulated

when plasma levels are increased in vivo due to obesity, and we
speculated that when this event occurs in adrenal chromaffin
cells, more Ca2+ influx due to up-regulation of TRPM7 channels
may induce increased catecholamine secretion, which is likely to
be one of the reasons associated with hypertension. Fortunately,
epigenetic changes are reversible, and epigenetic modifications
targeting TRPM7 may serve as a novel therapeutic approach for
the treatment of obese hypertension.

TRPM4 has been demonstrated to be expressed in mouse
adrenal medulla (AM) cells at the mRNA levels (Mathar et al.,
2010a). Masumi et al. found that pituitary adenylate cyclase-
activating polypeptide (PACAP) induced catecholamine
secretion in mouse AM cells, which may be due to the
generation of depolarizing inward currents caused by TRPM4
channel activation (Inoue et al., 2020). Application of the
endogenous PKC activator 1-oleoyl-2-actyl-sn-glycerol mimics
PACAP activation of Na+ -permeable cation channels in bovine
AM cells (Tanaka et al., 1996), and therefore, PACAP may also
activate TRPM4 in an AM-cell PKA-dependent manner.
Differently, PACAP does not directly induce the secretion of
catecholamines in guinea-pig AM cells, but rather promotes
muscarinic receptor-mediated activation of Ca2+-activated
nonselective cation (NSC) channels, and this promotion is
mainly due to the increased insertion of heteromeric TRPC1-
TRPC4 channels into the cell membrane (Harada et al., 2019).
Ilka et al. found that mice with Trpm4 gene deletion lost long-
term regulation of blood pressure stability, which they concluded
was caused by elevated plasma levels of epinephrine and
norepinephrine after excluding the cause of altered cardiac
function (Mathar et al., 2010b). However, the molecular
mechanism of how TRPM4 regulates or promotes release from
chromaffin cells remains to be clarified but may include direct
dependence on TRPM4 to regulate vesicle release, as shown for
another TRPM7 in cholinergic synaptic vesicles (Krapivinsky

FIGURE 6 | Leptin induces epigenetic regulation of TRPM7. Activated pSTAT3 epigenetically regulates transcription of TRPM7 through DNA methylation and
histone modifications. Specifically, it is manifested in a reduction in CpG site-specific methylation and H3K27 trimethylation and an increase in H3K27 acetylation and
H3K4 trimethylation at the TRPM7 promoter.
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et al., 2006). These results suggest that TRPM4 activity may be
beneficial in limiting elevated blood pressure in hypertensive
patients. Hypertension is a potential risk factor for cardiovascular
disease. In most cases, its pathogenesis remains unclear. The
above lists two TRPM channels that affect the body’s blood
pressure level by changing the secretion of catecholamines by
adrenal chromaffin cells, demonstrating the feasibility of TRP
channels as a therapeutic target for hypertension, but there are
still not many studies in this area and the mechanism by which
TRP channels regulate blood pressure needs to be further
explored.

TRP CHANNELS IN THE MAMMARY
GLAND

The mammary gland is an accessory gland to the skin. Adult
women have no secretory activity of the mammary gland when
they are not pregnant, called the quiescent mammary gland.
Mammary gland hyperplasia during pregnancy and exuberant
secretion during lactation are called active mammary glands. TRP
channels are expressed in normal mammary epithelial cell, and
play an important role in Ca2+ transport in mammary epithelial
cells. Anantamongkol et al. found that the expression of TRPC1,
TRPC5, and TRPC7 increased during early lactation
(Anantamongkol et al., 2009). Mammalian TRPC channels can
be activated by receptor-operated or store-operated mechanisms
to mediate Ca2+ influx, thereby prompting breast milk secretion
(Ambudkar, 2006). It is therefore likely that TRPC channels that
are upregulated prepare for extensive and sustained epithelial cell
activity to support milk production and/or secretion. However,
another study reported decreased expression of TRPC1 during

lactation and early mammary involution stages in mice
(McAndrew et al., 2011). VanHouten et al. showed that
TRPV5 expression was lower in mammary epithelial cells
during pregnancy and lactation than in quiescent mammary
epithelial cells. In addition, TRPV6 is expressed in the
mammary gland of quiescent mice, but its expression shows a
decreasing trend throughout pregnancy and is not expressed
during lactation (VanHouten and Wysolmerski, 2007).

TRPV Channels
The widely distributed TRPV4 cationic channel participates in
the transduction of mechanical and/or osmotic stimuli in
different tissues (Liedtke and Friedman, 2003; Gao et al.,
2003). TRPV4 is selectively localized in the basolateral
membrane compartment, where it is activated by 4-a-
phorbol12,13-didecanoat (4a-PDD) (Vriens et al., 2007),
resulting in calcium entry, which on the one hand activates
Ca2+-activated K+ channels (BK) and provides a transcellular
ion pathway. On the other hand, it increases the permeability of
mammary epithelial cells, which is created by a down-regulation
of sealing-type claudin proteins accompanied by an altered tight
junction structure (Reiter et al., 2006). The detailed molecular
mechanism is shown in Figure 7. Md Aminul et al. found that
both low permeability tight junctions of mammary epithelial cells
andmilk production were enhanced after a mild heat treatment at
39°C. TRPV4 activity was increased during mild heat treatment at
39°C. Activation of TRPV4 by GSK1016790A leads to Ca2+ influx,
promotes Ca2+ release from the endoplasmic reticulum (ER), and
depletes Ca2+ stores, at which point the unfolded protein response
(UPR) is initiated and upregulates the transcript levels of Xbp1s
through PERK, IRE1, and ATF6 receptor-mediated signaling
pathways (Harding et al., 2000; Celli et al., 2011; Shen et al.,
2019). Upregulation of the Xbp1 gene increases the expression of
β-casein (β-casein is a differentiation marker of HC11 cells and is
a representative milk protein), Zo-1, ocln, and Cldn3 mRNA, and
thereby regulates the expression of TJ protein-coding genes.
Interestingly, TRPV4 expression is increased during pregnancy
but decreased during lactation (Islam et al., 2020). Mammary
epithelial cells are exposed to temperatures above body
temperature during lactation due to metabolism (Berman
et al., 1985). Heat stress induces ER stress and causes UPR
(Xu et al., 2011; Kim et al., 2013). Elevated transcript levels of
Chop decrease the viability of cells and therefore cause reduced
lactation (Urra et al., 2013). The detailed molecular mechanism is
shown in Figure 8. TRP channels cover the temperature sensing
range, TRPV4 is activated at 39°C, but there may be other TRPs
that are activated at higher temperatures, and although there is no
evidence so far, it provides direction and ideas for later studies.

TRPV6 is expressed in normal breast and breast cancer cell
lines. A positive correlation between expression of the
transcription factor zinc finger homeobox 3 (ZFHX3) and
promoter activity of TRPV6 was found by Dan et al. (Zhao
et al., 2019). Previous studies have shown that Ca2+ influx
mediated by TRPV6 activation is able to induce keratinocyte
differentiation (Lehen’kyi et al., 2011; Lehen’kyi et al., 2007). Ca2+

has been shown to be involved in controlling the growth of breast
cancer cells through its interaction with calmodulin (Strobl et al.,

FIGURE 7 | Regulation of transcellular and paracellular pathways by
TRPV4 in HC11 cells. TRPV4 induces Ca2+ influx by activation by 4-PDD,
which activates BK channels to provide transcellular ion channels. The
process down-regulates sealed claudin proteins and alters the structure
of tight junctions, increasing paracellular permeability and facilitating milk
production.
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1995). TRPV6 channel-mediated Ca2+ influx is involved in cell
proliferation, which may be associated with breast cancer cell
migration (Bolanz et al., 2008; Bolanz et al., 2009).

TRPC Channels
TRPC1 expression is increased in invasive ductal carcinoma
(Guilbert et al., 2008; Dhennin-Duthille et al., 2011; Mandavilli
et al., 2012). TGFβ-induced Epithelial-to-Mesenchymal Transition

(EMT) is dependent on Ca2+ entry via the TRPC1- Stromal
Interaction Molecule 1 (STIM1) complex that leads to the
activation of calpains and matrix metalloproteinases (MMPs),
which target proteins involved in cellular adherence and
promote their migration (Schaar et al., 2016). The detailed
molecular mechanism is shown in Figure 9. Therefore,
inhibition of the TRPC1-STIM1 complex may be an attractive
target for the treatment of breast cancer metastasis. Naoya et al.
found that LPA/LPAR3 signaling and subsequent TRPC3
activation leaded to an increase in the number of breast cancer
stem cells (BCSCs) through calcium-dependent transcriptional
activation of IL-8 by NFAT (Hirata et al., 2022).
Polyunsaturated fatty acids (PUFA) and TRPC3 antagonists
continuously inhibit the proliferation and migration of breast
cancer cells (Zhang et al., 2012b), but the mechanism is still
unclear. As one of the biomarkers of breast cancer development
and migration, TRPC3 represents a potential target for a new class
of anticancer drugs. In the future, specific therapeutic approaches
to reduce tumorigenesis may be established by targeting the LPA/
LPAR3 pathway and TRPC3 channels. Overexpression of TRPC5
induces chemoresistance by up-regulating of P-glycoprotein (P-gp)
and hypoxia-inducible factor-1α in chemoresistant breast cancer
cells (Zhu et al., 2015; Ma et al., 2012a). TRPC5-mediated Ca2+

entry stimulates P-gp overproduction through NFATc3 in breast
cancer cells (Ma et al., 2012b). P-gp expels intracellular Adriamycin
(ADM) into the extracellular matrix, leading to drug resistance.
The detailedmolecularmechanism of TRPC3 andTRPC5 is shown
in Figure 10. In addition, TRPC5 mediates cytoprotective
autophagy through the CaMKKβ/AMPKα/mTOR pathway,
causing drug resistance in breast cancer cells (Zhang et al.,
2017). Inhibition of P-gp activity and avoidance of autophagy is

FIGURE 8 | Regulation of TRP Channels on breast cells at different temperatures. The activity of TRPV4 increased at 39 °C. Activation of TRPPV4 by
GSK1016790A leads to Ca2+ influx, promotes Ca2+ release from the ER, and depletes Ca2+ stores, at which point the UPR is initiated to upregulate transcript levels of
Xbp1s via the PERK, IRE1, and ATF6 signaling pathways. This increased the expression of Zo-1, occln and Cldn3 mRNA and enhanced the expression of β-casein and
TJ protein-coding genes. The presence of a certain TRP channel up-regulates the apoptosis transcription factor CHOP and promotes apoptosis through the UPR
pathway at 41 °C.

FIGURE 9 | TRPC1-STIM1 complex mediates TGF-β-induced EMT.
STIM1 aggregates to the endoplasmic reticulum-plasma membrane (ER-PM)
junctions, forming the TRPC1-STIM1 complex with TRPC1, mediating the
down-regulation of E-cadherin and leading to the activation of
calproteinases and MMPs, which target proteins involved in cell adhesion and
promote their migration.
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therefore an attractive approach to overcome multidrug resistance
in cancer chemotherapy, and TRPC5 is a valuable target.

TRP CHANNELS IN THE GALLBLADDER

The gallbladder is an exocrine digestive gland of the human body
that mainly serves to concentrate and store bile. The contractile
emptying of the gallbladder is regulated by hormones, and
cholecystokinin stimulates contraction of the gallbladder
smooth muscle (GBSM) layer and excretion of bile after
eating. TRPP2 channel protein belongs to the superfamily of
transient receptor potential (TRP) channels and is widely
expressed in the smooth muscle of the digestive tract,
including gallbladder smooth muscle. TRPP2 can not only
mediate intracellular Ca2+ release from Ca2+ stores, but also
regulate extracellular Ca2+ influx and enhance intracellular
Ca2+ concentration ([Ca2+]i) (González-Perrett et al., 2001;
Koulen et al., 2002).

It has been shown that TRPP2 channels are widely distributed
in the plasma membrane and endoplasmic reticulum (ER)
(Tsiokas, 2009). Xingguo et al. found that knockdown of
TRPP2 protein in GBSM of guinea pigs significantly decreased
Ca2+ release and extracellular Ca2+ influx evoked by carnosine
(CCh), thereby inhibiting endothelin-1 (ET-1) and
cholecystokinin-induced gallbladder contraction (Zhong et al.,
2016). Cholecystokinin (CCK) and ET-1 receptors play an
important role in GBSM contraction. CCK and ET-1 receptors,
as members of the G protein-coupled receptor (GPCR)
superfamily, can activate phospholipase C (PLC) and guide the
hydrolysis of phosphatidylinositol 4,5-bisphosphate to produce
diacylglycerol and inositol 1,4,5-triphosphate (IP3) (Noble et al.,
1999). IP3 increases local cytosolic Ca2+ concentration by
activating the IP3 receptor to release Ca2+ from Ca2+ stores,

which may activate TRPP2 causing the further release of Ca2+

(Li et al., 2005; Sammels et al., 2010). Depletion of Ca2+ stores will
subsequently initiate SOCE. An increase in [Ca2+]i is a key event in
eliciting smoothmuscle contraction in response to agonists (Karaki
et al., 1997). In addition, studies have shown that TRPP2 is also
present in the plasma membrane and mediates Ca2+ influx (Du
et al., 2012; Narayanan et al., 2013). In summary, TRPP2-mediated
Ca2+ release expressed on the ER membrane plays an important
role in agonist-induced GBSM contraction. GPCRs are key points
in initiating TRPP2 opening through the PLC-IP3 pathway. The
detailed molecular mechanism is shown in Figure 11.

However, in addition to TRPP2 channels, many other ion
channels similarly mediate smooth muscle Ca2+ homeostasis and
contractility. An example is a physical and functional interaction
between TRPC1 or TRPC4 channels and STIM1 thought to
contribute to SOCE (Sours-Brothers et al., 2009). TRPC4 and
TRPC6 channels depolarize muscarinic receptor-coupled
intestinal smooth muscle cells and voltage-activated Ca2+

influx and contraction, thereby accelerating small intestinal
motility in vivo (Tsvilovskyy et al., 2009). Sara Morales et al.
found that guinea pig gallbladder smooth muscle contains
mRNAs encoding TRPC1, TRPC2, TRPC3, and TRPC4
proteins whose abundance depends on cytosolic Ca2+

concentration. They found that lowering the level of cellular
Ca2+ with the use of Ca2+ chelators such as EGTA and BAPTA
AM leads to a decrease in the expression of all TRPC members
found in GBSM, whereas elevations in cellular Ca2+ as a result of
Ca2+ influx or store depletion leads to an increase in TRPC gene
expression (Morales et al., 2007). Therefore, we cannot deny that
there are other ion channels mediating Ca2+ homeostasis in
gallbladder smooth muscle cells, and the interaction between
these ion channels still needs to be explored in the future, and the
detailed mechanism of gallbladder smooth muscle contraction
still needs to be further elucidated.

FIGURE 10 | TRPC3 and TRPC5mediate breast cancer cell proliferation and drug resistance. Ca2+ entry through TRPC3 and TRPC5 channels, via calmodulin-calcineurin
dependent NFAT signal pathway, upregulating IL-8 and P-gp expression respectively. IL-8 mediates BCSC proliferation through CXC receptor 2. Up-regulated P-gp expels
intracellular ADM into the extracellular matrix, leading to drug resistance.
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TRP CHANNELS IN THE SWEAT GLANDS

Human skin has more than two million sweat glands and plays a
great role in excreting waste products andmaintaining water and salt
balance. Sufficient studies have shown that TRP channels are
abundantly expressed in the skin, and various TRP channels are
involved in the formation and maintenance of the skin barrier, the
growth of HF, and the immune and inflammatory processes of the
skin, thereby maintaining skin homeostasis and promoting the
occurrence of a variety of skin diseases. More importantly, several
skin-expressed TRP channels act as primary sensors for temperature,
mechanical, and chemical stimuli, modulating our temperature,
touch, itch, and pain perception under physiological and
pathological conditions. TRPV4 channels are present in
cutaneous vascular endothelial cells and eccrine secretory cells
(Kida et al., 2012; Fusi et al., 2014; Olivan-Viguera et al., 2018),
and activation of the channel increases the concentration of
intracellular Ca2+. If it has an important function in the cell types
described above, it leads to vasodilatation (Félétou and Vanhoutte,
2009) and sweat secretion (Sato and Sato, 1981; Metzler-Wilson
et al., 2014). Naoto et al. showed that TRPV4 channel activation
mediates cutaneous vasodilatation but has no effect on sweating and
that activation of TRPV4 channels alone is not sufficient to
induce sweat secretion in humans. However, TRPV4 channel
activation may increase calcitonin gene-related peptide (Gao
and Wang, 2010), a peptide that has been shown to increase
muscarinic sweating in humans (Schlereth et al., 2006). TRPV6
is involved in the uptake of ca ions and regulates intracellular ca
ion levels in keratinocytes. Extracellular ca ion-induced
differentiation up-regulated the mRNA and protein levels of
TRPV6, and keratinocyte differentiation was affected after
siRNA silencing of TRPV6 in human primary keratinocytes
(Lehen’kyi et al., 2007). However, there are no excessive studies
to elucidate the link between TRP channels and sweat glands,
and there may be other TRP channels other than TRPV4 that
mediate the secretion of sweat glands.

TRP CHANNELS IN THE LACRIMAL GLAND

In lacrimal glands, some TRP channels are involved in tear secretion
and inflammation. Among them, TRPM3 located in the apical
membrane of lacrimal gland epithelium may promote the
development of lacrimal gland in the early mouse embryo
(Kanewska et al., 2020). TRPV1 is also expressed in lacrimal glands
and may play a role in regulating Ca2+ and water transport (Martinez-
Garcia et al., 2013). In addition, the role of TRPV4 in the lacrimal gland
is the same as that in the salivary gland, which is also activated at
moderate temperature and regulates the transporter ANO1 through
the influx of Ca2+ to enhance the secretion of the lacrimal gland, which
is manifested by the tearing effect of muscarinic (Derouiche et al.,
2018). However, additional studies on the specific mechanisms of TRP
channels in lacrimal glands remain to be conducted.

CONCLUSION AND DISCUSSION

In this article we review the specific regulatory mechanisms of
various TRP channels in some common glands (pancreas,
salivary gland, lacrimal gland, adrenal gland, gallbladder, sweat
gland). Except the tissues discussed above, TRP channels are also
reported to have important functions in other tissues. TRPC5
together with TRPA1 are capable for cold sensing in teeth (Bernal
et al., 2021). Meanwhile TRPC5, which is expressed in dopamine
ARC neurons, has also been reported to regulate prolactin
homeostasis (Blum et al., 2019). TRPM2, which is expressed in
a subpopulation of neurons in hypothalamic, is a temperature
sensor and able to regulates the fever response (Song et al., 2016).

As summarized above, TRP channels are been participated in
pathology of diverse system. Therefore, drug discovery targeting
TRP channels to cure different disorders has grown. Moreover,
majority of TRP channels are located at the cell surface, whichmeans
they are easily accessible target. Many members of the TRP channel
superfamily are abundantly expressed in the pancreas, and their

FIGURE 11 | TRPP2 mediates gallbladder smooth muscle contraction. CCK and ET-1 receptors can activate PLC and guide the hydrolysis of phosphatidylinositol
4,5-bisphosphate to produce diacylglycerol and IP3. IP3 increases local [Ca2+]i by activating IP3R to release Ca2+ from Ca2+ stores, which in turn activates TRPP2 to
cause further release of Ca2+. Depletion of Ca2+ stores will subsequently initiate SOCE. The increase in [Ca2+]i causes contraction of gallbladder smooth muscle.
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activity is closely related to the physiological and pathological
processes of the pancreas. TRPA1 can be activated by a variety of
substances to promote Ca2+ influx to induce insulin secretion, but
maintaining the activated state for a long time will instead inhibit
insulin secretion (Steinritz et al., 2018). TRPV1 is expressed in
sensory nerve fibers in the mouse pancreas and does not mediate
insulin secretion (Diaz-Garcia et al., 2014), but is closely linked to the
physiological function of β-cells (Razavi et al., 2006; Najder et al.,
2018; Zhong et al., 2019), in addition to mediating the release of
inflammatory mediators and the production of pain sensation in
acute pancreatitis (Schwartz et al., 2011; Schwartz et al., 2013). There
is no disease-modifying treatment for people with type 2 diabetes
mellitus. Accumulating evidence suggests that pharmacological
blockade of TRPV1 with the small molecule antagonist BCTC291
improves oral glucose tolerance and glucose-stimulated insulin
secretion. Another TRPV1 antagonist, XEN-D0501, is currently
undergoing phase II clinical trials in T2DM patients with good
tolerability and safety. The combination of TRPV1 and TRPA1
antagonists also protects sensory nerves and prevents cognitive
decline in patients with T2DM. TRPC1, TRPC3, and TRPC4 is
expressed in pancreatic β-cells and can be activated by various
pathways such as G-protein-coupled receptors and mechanical
stimuli to mediate insulin secretion under physiological
conditions (Hayes et al., 2013; Park et al., 2013; Srivastava et al.,
2018), but the activation of these TRPCs in PDAC is amajor cause of
PSCs migration and chemotaxis, which will aggravate the
development of the disease. These TRPCs have the potential to
be a biological indicator for the diagnosis and treatment of PDAC,
but there is no excessive literature to support the conjecture. The
TRPM subfamily is the most reported TRP channel expressed in the
pancreas, in which TRPM2, TRPM4, and TRPM5 mediates Ca2+

influx with significant differences in activation patterns, while
TRPM3 and TRPM7 is also permeable to Zn2+, and they all play
a role in insulin secretion. It is worth noting that TRPM2, TRPM7,
and TRPM8 is involved in the progression of pancreatic cancer, and
TRPM7 and TRPM8 is overexpressed in pancreatic cancer tissues
and has become a marker for judging cancer cell proliferation in
clinical practice (Yee et al., 2011; Yee et al., 2012a). Interestingly, they
play an opposite role in pancreatic cancer. TRPM7 has a protective
effect on pancreatic cancer, but TRPM8 can promote the
progression of the disease, which provides a new target and idea
for the treatment of pancreatic cancer. In addition, other TRPMs
channels have not been reported in pancreatic diseases, and their role
in the disease is still unknown. Many TRPC members are expressed
in the mammary gland and are closely associated with the
development and metastasis of breast cancer. Adriamycin is one
of the drugs for the treatment of breast cancer in clinical practice, but
the up-regulation of TRPC5 makes tumor cells resistant to
adriamycin and promotes the metastasis of tumor cells (Ma
et al., 2012b; Zhang et al., 2017). Blocking TRPC5 activation may
provide new clinical treatment options for adriamycin-resistant
breast cancer. In addition, digoxin may have a therapeutic effect
on Triple-negative breast cancers (TNBC) cell lines with high
TRPC1 and TRPC4 expression (Grant et al., 2019). Some other
diseases and related drugs currently studied are summarized in
Supplementary Table S1.

Much of our understanding of the contribution of TRP channels
to disease comes from studies of in vitro systems or preclinical rodent
models, which do not always reflect human disease. In this context,
endocrine-related diseases caused by abnormal TRP channels
provide some uncertainty. In terms of drug discovery, diseases
caused by functional overactivation of TRP channels may be
easier to treat because small molecules (e.g., targeted nanodrugs)
can inhibit overactivation of TRP channels on the surface of cell
membranes; Diseases caused by loss of TRP channel function,
especially gene mutations, are difficult to target with small
molecules and may require a less-validated approach, such as
gene therapy, DNA-based nanostructures, or organoid therapy, to
restore normal TRP channel function. In addition to directly
reversing dysfunctional TRP channels, there may be benefits in
regulating the function of intact TRP channels through therapeutic
interventions when diseases associated with these channel diseases
are caused by other genetic mutations or environmental factors.

In summary, due to the diversity and specificity of TRP
channels, a variety of customized TRP channel-based structures
have been created. The mechanism of action of endocrine-related
TRP channels summarized in this paper provides valuable
directions for biomedical development. On salivary secretion,
the role of TRPC1, TRPM2 and TRPV4 in the physiological
and pathological processes of salivary glands has been to be
explored (Ambudkar, 2016; Liu et al., 2018). Some TRP channel
superfamily members are expressed in the lacrimal gland and
mainly mediate the development and secretion of the lacrimal
gland, but the mechanism remains to be studied (Martinez-Garcia
et al., 2013; Derouiche et al., 2018; Kanewska et al., 2020). TRPA1,
TRPV1, TRPM4 and TRPM7 has been shown to affect adrenaline
production (Iwasaki et al., 2008; Mathar et al., 2010b; Ferreira et al.,
2019; Yeung et al., 2021). TRP channels are also expressed in sweat
and lacrimal glands, and there is currently insufficient evidence for
the association of TRP channels with sweat gland secretion, TRPV6
and TRPM3 promote cell development in sweat and lacrimal
glands, respectively, and TRPV4 plays a role in enhancing
lacrimal gland secretion (Derouiche et al., 2018; Lehen’kyi et al.,
2007; Kanewska et al., 2020). TRPM7, TRPM8, and TRPV6 have
been used as diagnostic and prognostic markers of breast cancer in
clinical practice (Lehen’kyi et al., 2012; Van Haute et al., 2010;
Chan et al., 1991; Adams et al., 2003; Zhuang et al., 2002; Tsavaler
et al., 2001; Wang et al., 2009), but because the molecular markers
are still insufficient in the judgment of prognosis, and it is necessary
to explore the correlation betweenmore types of TRP channels and
breast cancer, in addition to the lack of specific drug inhibitors of
these channels is also an obstacle that must be overcome.

These problems are real, but may not be insurmountable, and
the potential benefits are considerable. If drug discovery
companies can find creative ways to harness TRP pathways in
diseases, they may be able to develop novel, state-of-the-art drugs.
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