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This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts.
Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological
processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event
extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge
summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the
ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which
occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the
last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This
review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current
state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also
discussed.

1. Introduction

The scientific literature is the most important medium for
disseminating new knowledge in the biomedical domain.
Thanks to advances in computational and biological meth-
ods, the scale of research in this domain has changed remark-
ably, reflected in an exponential increase in the number of
scientific publications [1]. This has made it harder than ever
for scientists to find, manage, and exploit all relevant studies
and results related to their research field [1]. Because of this,
there is growing awareness that automated exploitation tools
for this kind of literature are needed [2]. To address this
need, natural language processing (NLP) and text mining
(TM) techniques are rapidly becoming indispensable tools
to support and facilitate biological analyses and the curation
of biological databases. Furthermore, the development of
this kind of tools has enabled the creation of a variety
of applications, including domain-specific semantic search
engines and tools to support the creation and annotation
of pathways or for automatic population and enrichment of
databases [3–5].

Initial efforts in biomedical TM focused on the funda-
mental tasks of detecting mentions of entities of interest
and linking these entities to specific identifiers in refer-
ence knowledge bases [6, 7]. Although entity normalization
remains an active research challenge, due to the high level
of ambiguity in entity names, some existing tools offer
performance levels that are sufficient for many information
extraction applications [6]. In recent years there has been
increased interest in the identification of interactions between
biologically relevant entities, including, for instance, drug-
drug [8] or protein-protein interactions (PPIs) [9]. Amongst
these, the identification of PPIs mentioned in the literature
has received most attention, encouraged by their importance
in systems biology and by the necessity to accelerate the
population of numerous PPI databases.

Following the advances achieved in PPI extraction, it
became relevant to automatically extract more detailed
descriptions of protein related events that depict pro-
tein characteristics and behavior under certain conditions.
Such events, including expression, transcription, localization,
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Figure 1: Example of complex biomolecular event extracted from a text fragment. A recursive structure, composed of two types of events, is
presented: Positive Regulation and Expression.

binding, or regulation, among others, play a central role in
the understanding of biological processes and functions and
provide insight into physiological and pathogenesis mecha-
nisms. Automatically creating structured representations of
these textual descriptions allows their use in information
retrieval and question answering systems, for constructing
biological networks composed of such events [2] or for
inferring new associations through knowledge discovery.
Unfortunately, extraction of this kind of biological informa-
tion is a challenging task due to several factors: firstly, the
biological processes described are generally complex, involv-
ing multiple participants which may be individual entities
such as genes or proteins, groups, or families, or even other
biological processes; sentences describing these processes are
long and in many cases have long-range dependencies; and,
finally, biological text is also rich in higher level linguistic
phenomena, such as speculation and negation, which may
cause misinterpretation of the text if not handled properly
[1, 9].

This review summarizes the different approaches used
to address the extraction and formalization of biomolec-
ular events described in scientific texts. The downstream
impact of these advances, namely, for network extraction,
for pharmacogenomics studies, and in systems biology
and functional genomics, has been highlighted in recent
reviews [2, 4, 10], which have also described various end-
user systems developed on top of these technologies. This
review focuses on the methodological aspects, describing
the available resources and tools as well as the features,
algorithms, and pipelines used to address this information
extraction task, and specifically for protein related events,
which have received the most attention in this perspective.
We present and discuss the most representative methods
currently available, describing the advantages, disadvan-
tages, and specific characteristics of each strategy. The most
promising directions for future research in this area are also
discussed.

The contents of this paper are organized as follows: we
start by introducing biomolecular events and defining the
event extraction task; we then describe the event extraction
steps, present commonly used frameworks, text processing,
and NLP tools and resources, and compare the different
approaches used to address this task; in the following section
we compare the performance of the proposed methods and
systems, followed by a discussion regarding themost relevant
aspects; finally, we present some concluding remarks in the
last section.

2. Biomolecular Events

In the biomedical domain, an event refers to the change of
state of one or more biomedical entities, such as proteins,
cells, and chemicals [11]. In their textual description, an
event is typically referenced through a trigger expression that
specifies the event and indicates its type. These triggers are
generally verbal forms (e.g., “stimulates”) or nominalizations
of verbs (e.g., “expression”) andmay occur as a single word or
as a sequence of words. This textual description also includes
the entities involved in the event, referred to as participants,
and possibly additional information that further specifies the
event, such as a particular cell type in which the described
event was observed. Biomolecular events may describe the
change of a single gene or protein, therefore having only
one participant denoting the affected entity, or may have
multiple participants, such as the biomolecules involved in
a binding process, for example. Additionally, an event may
act as participant in a more complex event, as in the case
of regulation events, requiring the detection of recursive
structures.

Extraction of event descriptions from scientific texts has
attracted substantial attention in the last decade, namely,
for those events involving proteins and other biomolecules.
This task requires the determination of the semantic types of
the events, identifying the event participants, which may be
entities (e.g., proteins) or other events, their corresponding
semantic role in the event, and finally the encoding of this
information using a particular formalism. This structured
definition of events is associated with an ontology that
defines the types of events and entities, semantic roles, and
also any other attributes that may be assigned to an event.
Examples of ontologies for describing biomolecular events
include the GENIA Event Ontology [11] and Gene Ontology
[12].

Figure 1 presents an example of a complex event described
in the text fragment “TNF-alpha is a rapid activator of IL-8
gene expression by. . ..” From this fragment we can construct
a recursive structure composed of two events: a first event, of
type Expression denoted by the trigger word “expression” that
has a single argument (“IL-8”) with the roleTheme (denoting
that this is the participant affected by the event), and a second
event of type Positive Regulation, defined by the trigger
word “activator.” This second event has two participants: the
protein “TNF-alpha” with the role Cause (defining that this
protein is the cause of the event) and the first event with the
roleTheme.
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Figure 2: Overall pipeline of a biomedical event extraction solution. Joint prediction methods merge steps 3 and 4 in a single step. The
corresponding reference paper for each tool and method is also identified [13–50].

3. Event Extraction

Figure 2 illustrates a common event extraction pipeline, iden-
tifying the most popular tools, models, and resources used in
each stage. The two initial stages are usually preprocessing
and feature extraction, followed by the identification of

named entities. The next step is to perform event detection.
This step is frequently divided into two separate stages:
trigger detection, which consists of the identification of
event triggers and their type, and edge detection (or event
construction), which is focused on associating event triggers
with their arguments. Some authors, on the other hand,
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have addressed event detection in a single, joint prediction
step. These approaches tackle the cascading errors that occur
with the two-stage methods and have commonly shown
improved performance. Finally, a postprocessing stage is
usually present, to refine and complete the candidate event
structures. Negation or speculation detection may also be
included in this final step. This section describes each phase,
presenting the most commonly used approaches.

3.1. Corpora for Event Extraction. The development and
improvement of information extraction systems usually
requires the existence of manually annotated text collections,
or corpora. This is mostly true for supervised machine
learning methods, but annotated data can also be exploited
for inferring patterns to be used in rule-based approaches. In
the case of biomedical event extraction, various corpora have
been compiled, including corpora annotated with protein-
protein interactions.

3.1.1. GENIA Event Corpus. The GENIA Event corpus con-
tains human-curated annotations of complex, nested, and
typed event relations [51, 52]. The GENIA corpus [53]
is composed of 1,000 paper abstracts from Medline. It
contains 9,372 sentences from which 36,114 events are
identified. This corpus is provided by the organizers of
BioNLP shared task to participants as the main resource
for training and evaluation and is publicly available online
(http://www.nactem.ac.uk/aNT/genia.html).

3.1.2. BioInfer Corpus. BioInfer (Biomedical Information
Extraction Resource) (http://www.it.utu.fi/BioInfer) [54] is
a public resource providing manually annotated corpus and
related resources for information extraction in the biomedi-
cal domain.

The corpus contains sentences from abstracts of biomed-
ical research articles annotated for relationships, named
entities, and syntactic dependencies. The corpus is annotated
with proteins, genes, and RNA relationships and serves as
a resource for the development of information extraction
systems and their components such as parsers and domain
analyzers. The corpus is composed of 1100 sentences from
abstracts of biomedical research articles.

3.1.3. Gene Regulation Event Corpus. The Gene Regulation
Event Corpus (GREC) (http://www.nactem.ac.uk/GREC/)
[55] consists of 240 MEDLINE abstracts, in which events
relating to gene regulation and expression have been anno-
tated by biologists. This corpus has the particularity that
not only core relations between entities that are annotated,
but also a range of other important details about these
relationships, for example, location, temporal, manner, and
environmental conditions.

3.1.4. GeneReg Corpus. TheGeneReg Corpus [56] consists of
314 MEDLINE abstracts containing 1770 pairwise relations
denoting gene expression regulation events in the model
organism E. coli. The corpus annotation is compatible with

the GENIA event corpus and with in-domain and out-of-
domain lexical resources.

3.1.5. PPI Corpora. Although not as richly annotated as
event corpora, protein-protein interaction corpora may be
considered for complementing the available training data.
The most relevant PPI corpora are the LLL corpus [57], the
AIMed corpus [58], and the BioCreative PPI corpus [7].

3.2. Preprocessing and Feature Extraction. Preprocessing is
a required step in any text mining pipeline. This includes
reading the data from its original format to an internal rep-
resentation, and extracting features, which usually involves
some level of text or language processing. In the specific
case of event extraction, preprocessing may also involve
resolving coreferences [59] or applying some formof sentence
simplification [60], for example, by expanding conjunctions,
in order to improve the extraction results.

3.2.1. Preprocessing Tools

Frameworks. In order to derive a feature representa-
tion from texts, it is necessary to perform text pro-
cessing involving a set of common NLP tasks, going
from sentence segmentation and tokenization, to part-of-
speech tagging, chunking, and linguistic parsing. Various
text processing frameworks exist that support these tasks,
among which the following stand out: NLTK (http://www
.nltk.org/), Apache OpenNLP (https://opennlp.apache.org/),
and Stanford CoreNLP (http://nlp.stanford.edu/software/
corenlp.shtml) (Figure 2).

Syntactic Parsers. A syntactic parser assigns a tree or graph
structure to a free text sentence. These structures establish
relations or dependencies between the organizing verb and
its dependent arguments and have been useful for many
applications like negation detection and disambiguation
among others. Syntactic parsers can be categorized in three
groups: dependency parsers, phase structure parsers, and
deep parsers [61]. The aim of dependency parsers is to
compute a tree structure of a sentence where nodes are
words, and edges represent the relations amongwords; phrase
structure parsers focus on identifying phrases and their
recursive structure, and deep parsers express deeper relations
by computing theory-specific syntactic/semantic structures.
For the task of event extraction several implementations of
each parser groups have been used, as shown in Figure 2.

3.2.2. Features. One of themain requirements of a good event
extraction system is a rich feature representation. Most event
extraction systems present a complex set of features extracted
from tokens, sentences, dependency parsing trees, and exter-
nal resources. Table 1 summarizes the features commonly
extracted in this processing stage and indicates their use in
the event extraction process.

(i) Token-based features capture specific knowledge
regarding each token, such as syntactic or lin-
guistic features, namely, part-of-speech (POS) and
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Table 1: Most common features used in the main event detection stages.

Feature groups Features Trigger recognition Edge detection

Token

Part-of-speech X X
Lemma
Orthographic X
Char n-grams X
Word shape X
Prefixes/suffixes X

Sentence and local context
Number of entities X
BoW counts X
Windows or conjunctions of features X

Dependency
Number and type of dependency edges X
Words, lemmas, or POS tags in dependency path X X
N-grams in dependency path X X

External resources
WordNet lemmas X X
Trigger lexicon X X
Entity lexicon X X

the lemmaof each token, and features based on ortho-
graphic (e.g., presence of capitalization, punctuation,
andnumeric or special characters) [42, 43, 62–68] and
morphological information, namely, prefixes, suffixes,
and character n-grams [42, 43, 64, 67, 69–72].

(ii) Contextual features provide general characteristics
of the sentence or neighborhood where the target
token is present. Features extracted from sentences
include the number of tokens in the sentence [42], the
number of named entities in the sentence, and bag-
of-word counts of all words [43, 64]. Local context
is usually encoded through windows or conjunctions
of features, including POS tags, lemmas, and word n-
grams, extracted from the words around the target
token [42, 63, 65, 73].

(iii) Dependency parsing provides information about
grammatical relationships involving two words,
extracted from a graph representation of the
dependency relations in a sentence. Commonly used
features include the number or type of dependency
hops between two tokens, and the sequence or
n-grams of words, lemmas, or POS tags in the
dependency path between two tokens [65, 68, 72, 74].
These features are usually extracted between two
entities in a sentence [64, 75], or between a candidate
trigger and an entity [75].

(iv) Finally, it is also common to encode domain knowl-
edge as features using external resources such as lexi-
cons of possible trigger words and of gene and protein
names to indicate the presence of a candidate trigger
or entity [27, 76–78]. Also, the token representation
is often expanded with related words according to
some semantic relations such asWordNet hypernyms
[27, 77, 79].

3.3. Entity Recognition. Entity recognition consists of the
detection of references (or mentions) to entities, such as
genes or proteins, in natural language text and labeling them
with their location and type. Named-entity recognition in
the biomedical domain is generally considered to be more
difficult than in other domains, for several reasons: first,
there are millions of entity names in use [71] and new ones
are added constantly, implying that dictionaries cannot be
sufficiently comprehensive; second, the biomedical field is
evolving too quickly to allow reaching a consensus on the
name to be used for a given entity [80] or even regarding the
exact concept defined by the entity itself. So the same name
or acronym can be used for different concepts [81].

Several entity recognition systems for the biomedical
domain have been developed in the last decade. Much of
this work has focused on the recognition of gene and protein
names and,more recently, chemical compounds [82]. In these
cases, machine learning strategies using rich sets of features
have provided the best results, with performances in the order
of 85% 𝐹-measure [83].

The most popular entity recognition tools are shown in
Figure 2, which also lists the biomedical lexicons that are
commonly used, either in dictionary-matching approaches or
as features for machine learning. Some of these tools, namely,
BANNER [36] and Gimli [27], offer simple interfaces for
training newmodels and have been applied to the recognition
of various entity types such as chemical compounds and
diseases.

3.4. Trigger Detection. Trigger word detection is the event
extraction task that has attracted most research interest. It is
a crucial task, since the effectiveness of the following tasks
strongly depends on the information generated in this step.
This task consists of identifying the chunk of text that triggers
the event and serves as predicate. Although trigger words are
not restricted to a particular set of part-of-speech tags, verbs
(e.g., “activates”) and nouns (e.g., “expression”) are the most
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ExpressionPos. Reg.
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(a)

Inhibition of LITAF mRNA expression in THP-1 cells resulted in a reduction of TNF-alpha transcripts

Transcription TranscriptionNeg. Reg.Neg. Reg.
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Figure 3: Trigger detection for two example sentences: (a) “RFLAT-1 activates RANTES gene expression” and (b) “Inhibition of LITAFmRNA
expression in THP-1 cells resulted in a reduction of TNF-alpha transcripts.”

Table 2:Most relevant work addressing the problemof trigger detection. Studies are listed in chronological order and the different approaches
are classified in three main groups: rule-based, dictionary-based, and ML-based strategies.

Approach
Reference

Rule-based Dictionary-based ML-based
SVM CRF VSM MEMM

X X Kilicoglu and Bergler 2009 [84]
X X MacKinlay et al. 2009 [85]

X (structural) X Björne et al. 2009 [86]
X Miwa et al. 2010 [87]

X X Le Minh et al. 2011 [70]
X X X Kilicoglu and Bergler 2011 [79]
X Casillas et al. 2011 [88]
X X (L, R) Van Landeghem et al. 2011 [74]

X (P) X X (CS) Martinez and Baldwin 2011 [73]
X Zhou and He 2011 [89]

X (L) Miwa et al. 2012 [75]
X (L) Björne et al. 2012 [64]
X (C) Qian and Zhou 2012 [90]
X (L) Wang et al. 2013 [65]
X (L) Hakala et al. 2013 [91]
X (L) Zhang et al. 2013 [43]
X (L) Liu et al. 2013 [72]

X Campos et al. 2014 [42]
X (L) Xia et al. 2014 [92]

L: linear kernel; R: radial basis function kernel; P: polynomial kernel; C: convolution tree kernel; CS: cosine similarity.

common. Furthermore, a trigger may consist of multiple
consecutive words.

Figure 3 illustrates the expected results of the trigger
detection process in two example sentences. As we can see
in Figure 3, trigger detection involves the identification of
event triggers and their type, as specified by the selected
ontology. In sentence (a), two different kinds of events are
identified: the trigger word activates defines an event of type
Positive Regulation and the trigger word expression defines
an event of type Gene Expression. Sentence (b) illustrates
the difficulty of this task: it shows that short sentences can
contain various related events; that triggers may be expressed
in diverse ways (two event of type Negative Regulation
are defined with different trigger words); and, finally, that

the same trigger word (expression) may indicate different
types of event, depending on the context.

The various approaches proposed for trigger detec-
tion can be roughly categorized in three types: rule-
based, dictionary-based, and machine learning-based. These
approaches are summarized in Table 2 and presented in the
remainder of this section.

3.4.1. Patterns and Matching Rules for Trigger Detection.
There are several strategies based on patterns [70, 93] and
matching rules. Rule-based methods commonly follow some
manually defined linguistic patterns, which are then aug-
mented with additional constraints based on word forms and
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syntactic categories to generate better matching precision.
The main advantage of this kind of approach is that they
usually require little computational effort. Rule-based event
extraction systems consist of a set of rules that are manually
defined or generated from training data. For instance, Casillas
et al. [88] present a strategy based on Kybots (Knowledge
Yielding Robots), which are abstract patterns that detect
actual concept instances and relations in a document. These
patterns are defined in a declarative format, which allows
definition of variables, relations, and events. Vlachos et
al. [76] present a domain-independent approach based on
the output of a syntactic parser and standard linguistic
processing (namely, stemming, lemmatization, and part-of-
speech (POS) tagging, among others), augmented by rules
acquired from the development data in an unsupervised way,
avoiding the need to use explicitly annotated training data.

In the dictionary-based approach, a dictionary contain-
ing trigger words with their corresponding classes (event
types) is used to identify and assign event triggers. Van
Landeghem et al. [74] proposed a strategy following this
approach, using a set of manually cleaned dictionaries and
a formula to calculate the importance of each trigger word
for a particular event. This is required since the same word
may be associated with events of different types [66]. For
instance, in the BioNLP’09 Shared Task dataset [51], the token
“overexpression” appears as trigger for the gene expression
event in about 30% of its occurrences, while the other 70%
of occurrences are triggers for positive or negative regulation
events.

Many strategies combine both approaches. For instance,
Le Minh et al. [70] present a strategy where rule-based and
dictionary-based approaches are combined. First, they select
tokens that have appropriate POS tags and occur near a
protein mention and then apply heuristic rules extracted
from a training corpus to identify candidate triggers. Finally,
a dictionary built from the training corpus and containing
trigger words and their corresponding classes is used to
classify candidate triggers. For ambiguous trigger classes, the
class with the highest rate of occurrence is selected. Kilicoglu
and Bergler [93] also present a combined strategy based
on a linguistically inspired rule-based and syntax-driven
methodology, using a dictionary based on trigger expressions
collected from the training corpus. Events are then fully spec-
ified through syntactic dependency based heuristics, starting
from the triggers detected by the dictionary-matching step.

Pattern-based methods usually present low recall rates,
since defining comprehensive patterns would require exten-
sive efforts, and because the most common patterns are too
rigid to capture semantic/syntactic paraphrases.

3.4.2. Machine Learning-Based Approach to Trigger Detection.
The most recent and successful approaches to trigger word
detection are based on machine learning methods [72], with
most work defining this as a sequence-labeling problem.The
definition of event types, on the other hand, is addressed as a
multiclass task, where candidate event triggers are classified
into one of the predefined types of biomedical events.
In order to address these problems, several probabilistic

techniques have been proposed, using, for example, Hidden
Markov Models (HMMs), Maximum Entropy Markov Mod-
els (MEMMs), Conditional Random Fields (CRFs) [94, 95],
and Support Vector Machines (SVMs).

For instance, Zhou and He [89] proposed treating trigger
identification as a sequence-labeling problem and use the
MaximumEntropyMarkovModel (MEMM) to detect trigger
words.MEMMis based on the concept of a probabilistic finite
state model such as HMM but consists of a discriminative
model that assumes the unknown values to be learnt are
connected in a Markov chain rather than being conditionally
independent of each other. Similarly, various strategies based
on Conditional Random Fields (CRFs) have been proposed
[42, 73, 85, 86]. CRFs have become a popular method for
sequence-labeling problems, justified mainly by the fact that
CRFs avoid the label bias problem present in MEMMs [96]
but preserve all the other advantages. Unlike HiddenMarkov
Models (HMMs), CRF is a discriminant model. So CRFs
use conditional probability for inference, meaning that they
maximize 𝑝(𝑦 | 𝑥) directly, where 𝑥 is the input sequence
and 𝑦 is the sequence of output labels, unlike HMMs, which
maximize the joint probability 𝑝(𝑥, 𝑦). This relaxes strong
independence assumptions required to learn the parameters
of generative models.

The most recent proposals for trigger detection are
based on Support Vector Machines (SVMs). SVMs do not
follow a probabilistic approach but are instead maximum
margin classifiers that try to find the maximal separation
between classes. This classifier has presented very good
results, showing a higher generalization performance than
CRFs. However, training complex SVM models may require
excessive computational time andmemory overhead. Several
strategies using different SVM implementations and kernels
have been proposed.

The general approach is to classify initial candidate
triggers as positive or not, based on a set of carefully
selected features and a training set with annotated events.
For instance, Björne et al. [80, 86, 97] proposed a solu-
tion based on the SVM-multiclass (http://www.cs.cornell
.edu/people/tj/svm light/svm multiclass.html) implementa-
tion with a linear kernel, optimized by exploring in an
exhaustive grid search the 𝐶-parameter that maximizes the
𝐹-score in trigger detection. In this study only linear kernels
were used since the size and complexity of the training
set, composed of over 30 thousand instances and nearly
300 thousand features, hinders the application of more
computationally demanding alternatives, namely, radial basis
function kernels.

In addition to purely supervised learning, which depends
on the amount and quality of annotated data, semisuper-
vised approaches have also been proposed. Wang et al. [65]
combined labeled data with large amounts of unlabeled data,
using a rich representation based on semantic features (such
as walk subsequence features and n-gram features, among
others) and a new representation based on Event Feature
Coupling Generalization (EFCG). EFCG is a strategy to
produce higher-level features based on two kinds of original
features: class-distinguishing features (CDFs) which have
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the ability to distinguish the different classes and example-
distinguishing features (EDFs) that are good at indicating
the specific examples. EFCG generates a new set of features
by combining these two kinds of features and taking into
account a degree of relatedness between them.

A different strategy was followed by Martinez et al., who
presented a solution based on word-sense disambiguation
(WSD) using a combined CRF-VSM (Vector Space Model)
classifier, where the output ofVSM is incorporated as a feature
into the CRF [73]. This approach significantly improved the
performance of each method separately.

3.5. Edge Detection. Edge detection (also known as event
theme construction or event argument identification) is the
task of predicting arguments for an event, which may be
named entities (i.e., genes and proteins) or another event,
represented by another trigger word. Event arguments are
graphically represented through directed edges from the
trigger word for the event and the argument.These edges also
express the semantic role that a participant (entity or event)
plays in a given event. In Figure 4, sentence (a) illustrates a
basic event defined by the trigger word Phosphorylation that
denotes an event of type Phosphorylation. The directed edge
between this trigger word and the entity TRAF2, denoting
a relation of type “Theme,” indicates that this entity is the
affected participant in this event. It is important to note
that events can act as participants in other events, thus
allowing the construction of complex conceptual structures.
For example, consider the sentence (c), where two events are
mentioned: a first event of type Expression and a second event
of type Positive Regulation.The directed edge from the trigger
word activator and the trigger word expression denotes that
the event Expression is affected directly by the event Positive
Regulation. Similarly, the edge of type cause between activator
and the entity TNFalpha indicates that this is the causing
participant for this event.

Different approaches have been suggested to tackle the
edge detection task, including rule and dictionary-based
strategies and machine learning-based methods. These are
summarized in Table 3 and described in the following sub-
sections.

3.5.1. Patterns and Matching Rules for Edge Detection. These
strategies are based on the identification of edges according to
a set of rules that can be manually defined or generated from
training data. Among the most basic approaches, we find the
strategy proposed byMacKinlay et al. [85], in which a specific
set of hand-coded grammars, supported by specific domain
knowledge like named entity annotations and lexicons, is
defined for each type of event. In the case of basic events
a simple distance criterion is applied, assigning the closest
protein as the theme of the event, while extra criteria is
required for more complex events. For instance, to assign the
Theme arguments for binding events, the maximum distance
away from the trigger event word(s), and the maximum
number of possible themes are estimated, and for regulation
events, in addition to the maximum distance, some priority
rules are used to define Cause orTheme arguments.

Kilicoglu and Bergler [93] present another rule-based
approach, where identification of the event participants and
corresponding roles (e.g., Theme or Cause) is primarily
achieved based on a grammar created from dependency rela-
tions between event trigger expressions and event arguments
in the training corpus. This strategy is based on the Stanford
syntactic parser [98], which was applied to automatically
extract dependency relation paths between event triggers
and their corresponding event arguments. These paths were
manually filtered, preserving only the correct and sufficiently
general ones.

Le Minh et al. [70] follow a similar strategy by generating
pattern lists from training data using the dependency graphs
resulting from application of a deep syntactic parser.

Bui et al. [99] present one of themost recent studies based
on dictionaries and patterns automatically generated from a
training set. In this work, less than one minute was required
to process a training set composed of about 950 abstracts
on a computer with 4 gigabytes of memory, illustrating a
main advantage of rule-based systems. Unfortunately, despite
the low computational requirements, this kind of approach
usually shows modest performance in terms of recall, due to
the difficulty in modeling more complex relationships and in
defining rules capable of generalizing.

3.5.2. Machine Learning-Based Approach to Edge Detection.
In recent years, similarly to trigger detection, there has been
a clear tendency to approach the edge detection task using
machine learning methods. Most works agree on addressing
this problem as a supervisedmulticlass classification problem
by defining a limited number of edge classes.

As can be seen in Table 3, most approaches are based
on SVMs. Miwa et al. [87] presented one such approach,
dividing the task into two different classification problems:
edge detection between two triggers and edge detection
between a trigger and a protein. For this purpose a set of
annotated instances is constructed from a training set, as
follows: for each event found in the training set, a list of
annotated edges is constructed using as label the combination
of the corresponding event class and the edge type (e.g.,
Binding: Theme). Using these extracted annotated edges, an
unbalanced classification problem is then solved using one-
versus-rest linear SVMs. Björne et al. [64] and Wang et
al. [65] followed similar approaches, using multiclass SVMs
in which two kinds of edges are annotated: trigger-trigger
and trigger-protein. Each example is classified as Theme,
Cause, or Negative denoting the absence of an edge between
the two nodes. Each edge is predicted independently, so
that the classification is not affected by positive or negative
classification of other edges.

Roller and Stevenson [68] evaluated a similar strategy,
using a polynomial kernel. The classification of the relations
is carried out in three stages. The first consists of the
identification of basic events by defining the trigger and
a theme referring to a protein; the second stage seeks to
identify regulation events by defining the trigger and a theme
referring to a trigger from a previously identified basic event;
and the final stage tries to identify additional arguments.
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Figure 4: Event extraction from two example sentences: (a) “phosphorylation of TRAF2” and (b) “TNF-alpha which is a rapid activator of
IL-8 gene expression.”

Table 3: Most relevant work addressing the problem of edge detection. Studies are listed in chronological order and the different approaches
are classified in three main groups: rule-based, dictionary-based, and ML-based strategies.

Approach
Reference

Rule-based Dictionary-based ML-based
SVM CRF HVS

X X Kilicoglu and Bergler 2009 [84]
X X Björne et al. 2009 [86]
X MacKinlay et al. 2009 [85]

X (L) Miwa et al. 2010 [87]
X Le Minh et al. 2011 [70]
X Kilicoglu and Bergler 2011 [79]

X (L) X Zhou and He 2011 [89]
X Martinez and Baldwin 2011 [73]

X (L) Miwa et al. 2012 [75]
X (L) Björne et al. 2012 [64]
X (L) Wang et al. 2013 [65]
X (L) Hakala et al. 2013 [91]
X (L) Xia et al. 2014 [92]

L: linear kernel.

Hakala et al. [91] proposed a reranking approach that uses
the prediction scores of a first SVM classifier and information
about the event structure as inputs for a new SVM model
focused on optimizing the ranking of the predicted edges.
For this newmodel, polynomial and radial basis kernels were
evaluated, showing an improvement in the overall precision
of the system.

A different strategy was used by Zhou and He [89], who
proposed a method based on a Hidden Vector State model,
called HVS-BioEvent. Although this method presented lower
performance in basic events, compared to systems based on
SVM classifiers, it achieved better performance in complex
events due to the hierarchical hidden state structure. This
structure is indeed more suitable for complex event extrac-
tion since it can naturallymodel embedded structural context
in sentences.

Van Landeghem et al. [74] proposed an approach that
processes each type of event in parallel using binary SVMs.

All predictions are assembled in an integrated graph, on
which heuristic postprocessing techniques are applied to
ensure global consistency. Linear and radial base function
(RBF) kernels were evaluated by performing parameter
tuning via 5-fold cross-validation. Van Landeghem et al.
made an interesting exploration about feature selection; they
applied fully automated feature selection techniques aimed at
identifying a subset of the most relevant features from a large
initial set of features. An analysis of the results showed that
up to 50% of all features can be removed without losing more
than one percentage point in 𝐹-score, while at the same time
creating faster classification models.

3.5.3. Hybrid Approaches. In the literature, we can find
many studies that combine ML-based with rule-based and
dictionary-based strategies. This combination is often per-
formed in two ways: (1) in an ensemble strategy, eachmethod
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is performed independently and the final output is obtained
by combining the results of eachmethod, either through rules
or by using some classification or regressionmodel; and (2) in
a stacked strategy, the output of one method is used as input
for the following one that performs a filtering and refining
process to produce a more accurate final output.

As an example of the first kind of approach, Pham
et al. [100] proposed a hybrid system that combines both
rule-based and machine learning-based approaches. In this
method, the final list of predicted events is given by the com-
bination of the events extracted by rule-basedmethods based
on syntactic and dependency graphs and those extracted via
SVM classifiers. In the second kind of approach, several stud-
ies [68, 80, 97] have used a rule-based postprocessing step
to refine the initial resulting graph generated by ML-based
classifiers by eliminating duplicate nodes and separating their
edges into valid combinations based on the syntax of the
sentences and the conditions in argument type combinations,
taking into account the characteristics and peculiarities of
each kind of event.

3.5.4. Structured Prediction and Joint Models. To address
the potential cascading errors that originate from two-stage
approaches described above, some authors have proposed the
joint prediction of triggers, event participants, and connect-
ing edges. Riedel et al. [101] and Poon andVanderwende [102]
proposed two methods based on Markov logic. Markov logic
is an extension to first-order logic in which a probabilistic
weight is attached to each clause [103]. Instead of using
the relational structures over event entities, as represented
in Figure 4, Riedel et al. represent these as labeled links
between tokens of the sentence and apply link prediction
over token sequences. As stated by the authors, this link-
based representation simplifies the design of the Markov
Logic Network (MLN). Poon and Vanderwendle, on the
other hand, used Markov logic to model the dependency
edges obtained with the Stanford dependency parser. The
resulting MLN therefore jointly predicts if a token is a
trigger word, the corresponding event type, and which of
the token’s dependency edges connect to (Theme or Cause)
event arguments. This allows using a simpler set of features
in the MLN, which leads to a more computationally efficient
solution without sacrificing the prediction performance. The
authors used heuristics to fix two typical parsing errors,
namely, propositional phrase attachment and coordination,
and showed that this had an important impact on the final
results.

Riedel and McCallum [104] proposed another approach
in which the problem is decomposed in three submodels: one
for extracting event triggers and outgoing edges, one for event
triggers and incoming edges, and one for protein-protein
bindings. The optimization methods for the three submodels
are combined via dual decomposition [105], with three types
of constraints enforced to achieve a joint prediction model.
Links between tokens are represented through a set of binary
variables as in Riedel et al. [101].

McClosky et al. [98] proposed a different approach,
in which event structures are converted into dependencies

between event triggers and event participants. Various depen-
dency parsers are trained using features from these depen-
dency trees as well as features extracted from the original sen-
tences. In recognition phase, the parsing results are converted
back to event structures and ranked by a maximum-entropy
reranker component.

Vlachos and Craven [106] applied the search-based struc-
tured prediction framework (SEARN) to the problemof event
extraction. This approach decomposes event extraction into
jointly learning classifiers for a set of classification tasks, in
which each model can incorporate features that represent
the predictions made by the other ones. Moreover, the loss
function incorporates all predictions, which means that the
models are jointly learned and a structured prediction is
achieved. For this specific task, models were trained to
classify each token as a trigger or not and to classify each
possible pair of trigger-theme and trigger-cause in a sentence.

3.6. Modality Detection. Modality detection refers to the
crucial part of identifying negations and speculations [107].
The aim of this task is to avoid opposite meanings and to
distinguish when a sentence can be interpreted as subjective
or as a nonfactual statement. The detection of speculations
(also referred to as hedging) in the biomedical literature has
been the focus of several recent studies, since the ability to
distinguish between factual and uncertain information is of
vital importance for any information extraction task [108].

In many approaches, modality detection is addressed as
an extra phase following the edge detection process. Most
approaches address this problem in two steps: first specu-
lation/negation cues (which may be words such as “may,”
“might,” “suggest,” “suspect,” and “seem,”) are detected, and,
next, the scope of the cues is analyzed. Most of the initial
systems were rule-based and relied on lexical or syntactic
information, but recent studies have looked at solving this
problem using binary classifiers [64, 78, 85] trained with
generated instances annotated as negation, speculation, or
negative (see Table 4).

4. Comparison of Existing Methods

In this section we present a comparative analysis of the
different approaches and systems described in this review. To
achieve a consistent comparison, we use the results achieved
by the different systems on the standard datasets from
the BioNLP shared tasks on event extraction [51, 52, 109].
These datasets provide a direct point of comparison and are
commonly used to validate and evaluate new approaches and
development, which endorses their use in this comparative
analysis. The datasets are based on the GENIA corpus
[53], consisting of a training set with 800 abstracts and a
development set with 150 abstracts. The test data, composed
of 260 abstracts, comes from an unpublished portion of the
corpus. For the second edition of the challenge, this initial
dataset was extended with 15 full-text articles, equally divided
into training, development, and test portions. Evaluation
is performed with standard recall, precision, and 𝐹-score
metrics.
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Table 4: Modality detection. Most relevant work addressing the problem of modality detection classified in rule-based, dictionary-based,
and ML-based strategies.

Approach
Reference

Rule-based Dictionary-based ML-based
SVM CRF

X X Kilicoglu and Bergler 2009 [84]
X (L) Björne et al. 2009 [86]

X MacKinlay et al. 2009 [85]
X (L) Miwa et al. 2010 [87]

X Kilicoglu and Bergler 2011 [79]
X (L) Miwa et al. 2012 [75]
X (L) Björne et al. 2012 [64]
X (L) Van Landeghem et al. 2013 [110]
X (L) Xia et al. 2014 [92]

L: linear kernel.

4.1. BioNLP Shared Task on Event Extraction. The BioNLP
shared task series is the main community-wide effort to
address the problem of event extraction, providing a stan-
dardized dataset and evaluation setting to compare and verify
the evolution in performance of different methods. Since
its initial organization in 2009, the BioNLP-ST series has
defined a number of fine-grained information extraction
(IE) tasks motivated by bioinformatics projects. In this
analysis, we focus on the main task, GENIA Event Extraction
(GE). This task focuses on the recognition of biomolecular
events defined in the GENIA Event Ontology, from scientific
abstracts or full papers. From the first edition three separate
subtasks have been defined, each addressing the event extrac-
tion with a different level of specificity.

Task 1. Core event extraction: it consists of the identification
of trigger words, associated with 9 events related to protein
biology. The annotation of protein occurrences in the text,
used as arguments for event triggers, is provided in both the
training and the test sets.

Task 2. Event enrichment: it is recognition of secondary
arguments that further specify the events extracted in Task
1.

Task 3. Negation/speculation detection: it is detection of
negations and speculation statements concerning extracted
events.

4.1.1. Target Event Types. The shared task defined a subset of
nine biomolecular events from the GENIA Event Ontology,
classified in three kinds with different levels of complexity:
basic events, binding events, and regulation events. Basic
events are the simplest to fully resolve, because these only
require the specification of a primary argument. Five types
of events are categorized in this group: gene expression, tran-
scription, protein catabolism, phosphorylation, and localiza-
tion. Binding events, on the other hand, require the detection
of at least two arguments. Finally, regulation events, including
Negative and Positive Regulation, are the most difficult to

fully specify, because these involve the definition of another
argument, whichmay be an entity or another event, requiring
identification of a recursive structure.

4.2. Comparative Analysis

4.2.1. Core Event Extraction. Table 5 summarizes the per-
formance achieved by the most representative strategies
addressing the core event extraction subtask (Task 1). The
best results achieved during the first edition of the BioNLP-
ST were obtained through machine learning techniques,
formulating the problems of trigger and edge detection as
different multiclass classification problems, solved by using
linear SVM classifiers [86]. Using the same approach, Miwa
et al. [87] reported improvements over these results by adding
a set of shortest path features between triggers and proteins
for the edge detection problem. As can be observed from the
table, a considerable improvement was obtained for binding
events, with an increase of over 12 percentage points in recall
and 3 points in precision.

In BioNLP-ST 2011, the datasets were extended to include
full text articles, but the abstract collection used for the first
edition was maintained in order to measure the progress
between the two editions. The best result in the second
edition, an 𝐹-score of 57.46% when considering only the
abstracts, was obtained by the FAUST system. This corre-
sponds to a substantial increase of more than four percentage
points over the previous best system, resulting from an
improvement in the recognition of simple events but espe-
cially from a much better recognition of complex regulation
events, with an increase of over 11 percentage points in
precision and 3 points in recall.

The FAUST system consists of a stacked combination
of two models: the Stanford event parser [98] was used
for constructing dependency trees that were then used as
additional input features for the second model, the UMass
model [104].Themain distinction of the UMass model is that
it performs joint prediction of triggers, arguments, and event
structures, therefore overcoming the cascading errors that
occur in the commonpipeline approacheswhen, for example,
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Table 5: Core event extraction performance comparison. BioNLP shared task comparison results in recall/precision/F-score (%) on the test
set for Task 1 (core event extraction). (A) abstracts only and (F) full papers. Data extracted from BioNLP-ST 2009, BioNLP-ST 2011, and
BioNLP-ST 2013 overviews [51, 52, 109].

Year System Event type Total
Simple Binding Regulation

2009 UTurku
Björne et al. [86] (A) 64.21/77.45/70.21 40.06/49.82/44.41 35.63/45.87/40.11 46.73/58.48/51.95

2010 Miwa
Miwa et al. [87] (A) 65.31/76.44/70.44 52.16/53.08/52.62 35.93/46.66/40.60 48.62/58.96/53.29

2011

FAUST
Riedel et al. [111]

(A)
(F)

66.16/81.04/72.85
75.58/78.23/76.88

45.53/58.09/51.05
40.97/44.70/42.75

39.38/58.18/46.97
34.99/48.24/40.56

50.00/67.53/57.46
47.92/58.47/52.67

UMass
Riedel and McCallum [104]

(A)
(F)

64.21/80.74/71.54
75.58/83.14/79.18

43.52/60.89/50.76
41.67/47.62/44.44

38.78/55.07/45.51
34.72/47.51/40.12

48.74/65.94/56.05
47.84/59.76/53.14

2013

EVEX
Hakala et al. [91] (F) 73.83/79.56/76.59 41.14/44.77/42.88 32.41/47.16/38.41 45.44/58.03/50.97

TEES-2.1
Björne and Salakoski [97] (F) 74.19/79.64/76.82 42.34/44.34/43.32 33.08/44.78/38.05 46.17/56.32/50.74

BioSEM
Bui et al. [99] (F) 67.71/86.90/76.11 47.45/52.32/49.76 28.19/49.06/35.80 42.47/62.83/50.68

a trigger is not correctly predicted in the first stage [111]. In
this model, the problem of event extraction is divided into
smaller simple subproblems that are solved individually, with
each subproblem presenting a set of penalties that are added
to an objective function. The final solution is found via an
iterative tuning of the penalties until all individual solutions
are consistent with each other. When used separately, the
UMass model achieved the second best-performing results
in this edition and was the top performing system when
considering just full-texts. In its third edition, BioNLP-ST
focused on simulating a more realistic scenario. For this
reason, a new dataset was constructed using only recent full
papers, so that the extracted information could represent
up-to-date knowledge of the domain. Unfortunately, the
collection of abstracts used in the first two editions (BioNLP-
ST 2009 and BioNLP-ST 2011) was removed from the official
evaluation and the full text collection used in the 2011 edition
corresponds only to a small part of dataset used in this
edition,making it difficult to compare against previous results
and measure the progress of the community.

In this latest edition of the shared task the best-
performing systems were EVEX [91] and TEES [97]. TEES,
an evolution of the UTurku system and also mainly based
on SVM classifiers, introduces an automated annotation
scheme learning system that derives task-specific event rules
and constraints from the training data. In turn, EVEX is a
combined system that takes the outputs predicted by TEES
and tries to reduce false positives by applying a reranking
that assigns a numerical score to events and removing all
events that are below a defined threshold. For this reranking,
SVMrank is used with a set of features based on confidence
scores (i.e., maximum/minimum trigger confidence and
maximum/minimum argument confidence, among others)
and features describing the structure of the event (i.e., event
type of the root trigger and paths in the event from root
to arguments, among others). This reranking and filtering
approach provided a small overall improvement, achieved

through a better precision in the definition of regulation
events, which constitute a substantial fraction of the anno-
tated data [105].

BioSEM [99], a rule-based system based on patterns
automatically derived from annotated events also achieved
high performance results, with only marginal differences to
the machine learning approaches described above. BioSEM
learns patterns of relations between an event trigger and its
arguments defined at three different levels: chunk, phrase,
and clause. Notably, this system presents significantly greater
precision than ML-based systems, especially considering
simple and binding events with improvements of more than
seven percentage points. While in the case of simple events
this was accompanied by a decrease in recall, for binding
events this rule-based system achieved the best results with
a difference of over six percent in 𝐹-score. These results
indicate that although ML methods still produce the best
generalization, rule-based systems can approximate those
results with much better precision and further suggests the
combination of the two approaches.

4.2.2. Event Enrichment. Table 6 shows the results obtained
in the BioNLP-ST Task 2, which consists of the recognition
of secondary event arguments. These secondary arguments
depend on the type of event and include Location arguments
(i.e., AtLoc or ToLoc) that define the source or destination of
an event and Site arguments (i.e., Site or Csite) that indicate
domains or regions to better specify theTheme or Cause of an
event. The settings of this subtask changed between editions,
not only in terms of the dataset used, but also in terms of the
sites to be predicted as secondary arguments.Thismeans that
the results shown in the table are not directly comparable,
namely, for the last edition of the challenge in which sites
for different protein modification and regulation events were
also considered. Nevertheless, these results were included for
reference.
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Table 6: Event enrichment performance comparison. BioNLP shared task comparison results in recall/precision/F-score (%) on the test set
for Task 2 (event enrichment). (A) abstracts only and (F) full papers. Data extracted from BioNLP-ST 2009, BioNLP-ST 2011, and BioNLP-ST
2013 overviews [51, 52, 109].

Year System Site Localization Total

2009a UTurku + DBCLS09
Björne et al. [86] (A) 71.43/71.43/71.43 23.08/88.24/36.59 32.14/72.41/44.52

2011b
FAUST
Riedel et al. [111]

(A)
(F)

43.51/71.25/54.03
17.58/69.57/28.07

36.92/77.42/50.00
—

41.33/72.97/52.77
17.39/66.67/27.59

UMass
Riedel and McCallum (b)
[104]

(A)
(F)

42.75/70.00/53.08
16.48/75.00/27.03

36.92/77.42/50.00
—

40.82/72.07/52.12
16.30/75.00/26.79

2013c
TEES-2.1
Björne and Salakoski [97] (F) 20.68/59.82/30.73 36.67/78.57/50.00 22.03/61.90/32.50

EVEX
Hakala et al. [91] (F) 19.44/59.43/29.30 36.67/78.57/50.00 20.90/61.67/31.22

aOnly phosphorylation sites were considered.
bThe results are for overall binding and phosphorylation sites.
cThe task included the prediction of sites for other protein modification and regulation events.

Table 7: Negation and speculation detection performance comparison. BioNLP shared task comparison results in recall/precision/F-score
(%) on the test set for Task 3 (negation/speculation detection). (A) abstracts only and (F) full papers only. Data extracted from BioNLP-ST
2009, BioNLP-ST 2011, and BioNLP-ST 2013 overviews [51, 52, 109].

Year System Negation Speculation Total

2009 ConcordU09
Kilicoglu and Bergler [84] (A) 14.98/50.75/23.13 16.83/50.72/25.27 15.86/50.74/24.17

2011

UTurku
Björne et al. [64, 77]

(A)
(F)

22.03/49.02/30.40
25.76/48.28/33.59

19.23/38.46/25.64
15.00/23.08/18.18

20.69/43.69/28.08
19.28/30.85/23.73

ConcordU11
Kilicoglu and Bergler [93]

(A)
(F)

18.06/46.59/26.03
21.21/38.24/27.29

23.08/40.00/29.27
17.00/34.69/22.82

20.46/42.79/27.68
18.67/36.14/24.63

2013

TEES-2.1
Björne and Salakoski [97] (F) 21.68/36.84/27.30 18.46/33.96/23.92 19.53/35.59/25.22

EVEX
Hakala et al. [91] (F) 20.98/38.03/27.04 18.46/32.73/23.61 19.82/34.41/25.15

Considering the analysis of abstracts, the table shows
an evident improvement on the results achieved by the top
performing systems in the first and second editions. More
interestingly, there is a considerable difference between the
results achieved over full-texts and the results obtained on
abstracts.This is an indication that, as expected, the language
used for describing the events is much more complex in the
main body of the articles, where events are specified in more
detail, than in the abstracts. Moreover, while the events are
predicted with acceptable levels of precision, the recall is
much lower, especially in full-texts.

4.2.3. Negation and Speculation Detection. Table 7 shows the
best-performing systems in Task 3, corresponding to the
identification of negations and speculations. In the second
edition only two teams participated in this task, both present-
ing an important improvement over the best result of 2009
(ConcordU09 [84]), with UTurku [64, 77] showing a better
performance in extracting negated events, and ConcordU11
[93] showing a better performance in extracting speculated
events and better overall results in terms of full-texts. As
can be directly seen from lower precision and recall rates

achieved, this task is considerably more difficult than the
extraction of secondary arguments. Although the dataset is
different, preventing direct comparison, the results achieved
for full-texts on the last edition of the task were similar to the
previous results.

5. Discussion and Future Research Directions

Biomolecular event extraction consists of identifying alter-
ations in the state of a biomolecule or interactions between
two or more biomolecules, described in natural language
text in the scientific literature. These events constitute the
building blocks of biological processes and functions, and
automatically mining their descriptions has the potential of
providing insights for the understanding of physiological
and pathogenesis mechanisms. Event extraction has been
addressed through multiple approaches, starting from basic
patternmatching and parsing techniques tomachine learning
methods.

Despite the steady progress shown over the last decade,
the current state-of-the-art performance clearly shows that
extracting events from biomedical literature still presents
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various challenges. While performance results close to 80%
in 𝐹-score have been achieved in the recognition of simpler
events, the extraction ofmore complex events such as binding
and regulation events is still limited. Although substantial
efforts have been made for the recognition of these events,
the best performance achieved remains 30%–40% lower than
that for simple events.

5.1. Patterns and Matching Rules versus Machine Learning-
Based Approaches. Biomedical event extraction has been
moving from purely rule-based and dictionary-based
approaches towards ML-based solutions, due to the difficulty
in creating sufficiently rich rules that capture the variability
and ambiguity of natural language, leading to limited
generalization capability and lower recall. Nonetheless, the
automatic extraction of rules from annotated data may
help in obtaining richer rules. In the third edition of the
BioNLP-ST, for instance, the rule-based BioSEM system
presented significantly higher precision than the best ML
approaches, although with a lower recall.

On the other hand, and despite showing the best per-
formance results in a shared task setting, machine learn-
ing approaches present important drawbacks, namely, their
dependence on sufficiently large and high-quality training
datasets. Another important limitation is that even if such
a dataset exists, as in the case of evaluation tasks, its focus
may be too restricted which could mean that a model trained
on these data would be well tuned for extracting information
from similar documents but could become unusable in
a slightly different domain. Many recent advances in this
task have come from the combination of different systems
and approaches. For example, rule-based systems have been
applied to derive constrains from the manually annotated
data that are then used to correct or filter the results of the
machine learning-based event extraction. Another option is
to combine the results of rule-based and ML-based methods
in an ensemble approach.

5.2. Feature Selection and Feature Reduction. The feature
extraction process generates a wide range of features of
different nature. In many studies, the generation of the final
data representation consists of extracting as many features as
possible and integrating them in a basic way. This produces
a high dimensional space that does not take into account
multiple aspects regarding the nature of the data, such as
redundancy, noisy information, or the complexity of its
representation space. Although some studies have tried to
address this problem, this has mainly been from the point
of view of reducing the dimensionality. Some works have
shown that an analysis of the contribution of features and
appropriate selection of these can significantly reduce the
computational requirements. For instance, Campos et al. [42]
proposed a solution that chooses the features that better
reflect the linguistic characteristics of the triggers for a
particular event type; these features are automatically selected
via an optimization problem. Also, Van Landeghem et al. [74]
showed that a similar overall performance could be achieved
using less than 50% of the originally extracted features.

Another important consideration is that this reduction not
only avoids extra processing time but also helps to avoid
undesirable noise [92].

5.3. Current Trends and Challenges. Most event extraction
strategies split the problem into two main steps: a first step
consisting of the identification of trigger words that indicate
the events and a second step (edge detection) that fully
specifies the events by adding the corresponding arguments.
This makes trigger word detection a crucial task in event
extraction, since the second step is commonly performed
over the results of that process. In fact, some studies have
shown that missing triggers cause about 70% of all errors in
event detection [89]. To address these cascading errors, some
authors have proposed the joint prediction of triggers and
edges connecting these triggers to participants in the event
[101, 102, 104, 106, 112]. As shown by the comparative results,
this joint inference allowed the most significant advances in
terms of prediction performance and constitutes the state-of-
the-art approach for event detection. Structured prediction
and jointly trainedmodels have also been applied successfully
in other biomedical information extraction tasks. Berant
et al. [113], for example, used event extraction in order to
improve fine-grained information extraction for question
answering, applying the structured averaged perceptron algo-
rithm to jointly extract the event triggers and arguments.
Kordjamshidi et al. [114] applied structured prediction to the
task of extracting information on bacteria and their locations
(e.g., host organism) by jointly identifying mentions of enti-
ties, organisms, and habitats and corresponding localization
relationship. They used a set of local and contextual features
for words and phrases and for pairs of phrases and trained
structured SVMs for jointly extracting the information.

The use of postprocessing rules to filter and refine the
results of model predictions has proved to be an essential
step in event extraction.These rules are usually automatically
obtained from annotated data and reflect restrictions or
likelihoods for the creation of edges between triggers and
participants in the construction of the events. On the other
hand, the application of automatically extracted rules, on
their own, has also shown positive results as shown by the
BioSEM system. The ensemble combination of this strategy
with the results from ML models could provide a way of
balancing the precision and recall of each approach.

While the initial efforts in this task focused on the analysis
of abstracts, this greatly limits the amount of information that
can be extracted and therefore the impact of these methods
on downstream applications, such as question answering,
network construction and curation, or knowledge discovery.
The latest attempts have therefore focused onmining full-text
documents but, as expected, the precision of event extraction
using the full body is lower due to themore complex language
used in the main text of the publications. Interestingly, the
results obtained have shown that while the recognition of
complex events becomes more difficult in full-texts, the
recognition performance for simple events is higher.

Improving the extraction of complex events, namely, from
full-text documents, either through rules, ML, or hybrid
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approaches, may depend on the amount and quality of the
training data. However, the construction of a fully annotated
large-scale dataset that covers the wide variety of linguistic
patterns would be a very demanding and unfeasible task.
To overcome this, repositories with large amounts of nonan-
notated data, such as PubMed, could be exploited by unsu-
pervised and semisupervised machine learning methods, to
construct richer text representations that can better model
complex relations between words. This is a very promising
research direction due to the large amount of available data
[1] but, unfortunately, very few studies try to take advantage
of this unstructured information (i.e., raw text without
annotations). Another interesting aspect that could also be
further explored is the incorporation of domain information
in resources such as dictionaries, thesaurus, and ontologies.
Related concepts and semantic relations obtained from these
resources could be used to enrich the representation of
textual instances or to aid in the generation of filtering and
postprocessing rules.

Another major challenge for event extraction is related
to coreferences and anaphoric expressions, which make the
correct identification of event participantsmore difficult.This
is a very active research field in computational linguistics and
natural language processing and has also been vastly studied
in the specific case of biomedical text mining [75, 115, 116].
The second edition of the BioNLP-ST included coreference
resolution as a supporting task, in which the best participants
obtained results ranging from 55% to 73% in precision, for a
recall varying between 19% and 22%. These results show that
there is still much room for improvement in this area, which
would also enhance the event extraction results.

Additionally to the extraction of events, respective types,
and participants, a more complete specification of events
requires the identification of additional arguments, such
as specific binding sites, protein regions, or domains. This
extraction of fine-grained information is inherently more
difficult than the primary identification of events, as can be
seen from the current state-of-the-art performance.However,
this information is required if the automatically extracted
events are to be used for constructing biological networks [2].
Similarly, the identification of negation and speculation, also
addressed by various works and evaluated in the BioNLP-ST
setting, still represents a very difficult challenge. Nonetheless,
even if current limitations still hinder the direct extraction of
reliable biological networks from scientific texts, the existing
methods can serve as an efficient aid to accelerate the process
of network extraction, when integrated in curation pipelines
that allow simple and user-friendly revision, correction, and
completion of the extracted information.

6. Conclusions

This paper presents a review of the state-of-the-art in
biomolecular event extraction, which is a challenging task
due to the ambiguity and variability of scientific documents,
and the complexity of the biological processes described.
Over the last decades a wide range of approaches have been
proposed, ranging from basic pattern matching and parsing
techniques to sophisticated machine learning methods.

Current state-of-the-art methods use a stacked combina-
tion of models, in which the second model either uses rules
to refine the initial predictions or applies reranking to select
the best event structures. Additionally, the joint prediction of
the full event structure as opposed to a two- or three-stage
approach has shown to produce improved results.

Important challenges still exist, namely, in the extraction
of complex regulation events, in the resolution of corefer-
ences, and in the identification of negation and speculation.
Nonetheless, current methods can be used in text-mining-
assisted curation pipelines, for network construction and
population of knowledge bases.
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