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Abstract

Background: The rapid increase in High-throughput sequencing of RNA (RNA-seq) has led to tremendous
improvements in the detection and reconstruction of both expressed coding and non-coding RNA transcripts. Yet,
the complete and accurate annotation of the complex transcriptional output of not only the human genome has
remained elusive. One of the critical bottlenecks in this endeavor is the computational reconstruction of transcript
structures, due to high noise levels, technological limits, and other biases in the raw data.

Results: We introduce several new and improved algorithms in a novel workflow for transcript assembly and
quantification. We propose an extension of the common splice graph framework that combines aspects of overlap
and bin graphs and makes it possible to efficiently use both multi-splice and paired-end information to the fullest
extent. Phasing information of reads is used to further resolve loci. The decomposition of read coverage patterns is
modeled as a minimum-cost flow problem to account for the unavoidable non-uniformities of RNA-seq data.

Conclusion: Its performance compares favorably with state of the art methods on both simulated and real-life
datasets. Ryūtō calls 1 − 4% more true transcripts, while calling 5 − 35% less false predictions compared to the next
best competitor.
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Background
In recent years, high throughput sequencing has become
the key to investigating the transcriptomes of both pro-
caryotic and eukaryotic organisms [1, 2]. RNA-seq offers
a high throughput, low cost methodology for direct
sequencing of transcribed genes, thus for the first time
enabling the effective identification and quantification of
transcript isoforms. Compared to previous attempts to
model genes de novo based on signals in the genome
sequence in terms of coding regions and splice sites, RNA-
seq offers a much more nuanced view of the actual struc-
ture of the products of transcription and processing. Still,
the accurate classification of the transcriptional output
remains a very challenging task, in particular for com-
plex eukariotic genes. An increasing number of studies
reveals the high degree of diversity in the transcriptomes
of higher eukaryotes [3]. Genome-wide studies on human
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tissue revealed that 95% of protein coding multi-exon
genes and 30% of non-coding RNAs undergo alterna-
tive splicing [4, 5]. Similar ratios have been found also
for non-human targets, such as mice [6]. Complicating
matters even further, existing annotations likely contain
high error rates and are widely considered unreliable and
incomplete. Analysis of large-scale RNA-seq experiments
indicates that many rare isoforms have evaded annota-
tion, and typically sized RNA-seq experiments miss out
significant portions of low abundant spliceforms [7]. Yet,
many analytic tasks rely on accurate and fast predictions
of all transcripts as a basic first step of their pipelines, e.g.
in gene regulation studies in embryonics [8] and diseases
[1, 9, 10]. While the methods and algorithms described in
this paper are also interesting for their own sake, improved
predictions using our methods can therefore be useful for
a number of tasks.
In a typical RNA-seq experiment, a set of up to 200 mio.

paired-end reads is created, each between 75 − 150 base-
pairs (bp) in length. Assembling a set of short reads into a
viable set of transcripts is subject to a series of challenges.
Transcripts are known to have highly variable sequence
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coverage, even between isoforms of the same locus. As
exons are commonly shared between isoforms, no unam-
biguous resolutions exist in many cases. In addition to
such “natural” concerns, biases from subsequent process-
ing steps or deriving out of the sequencing protocol have
to be considered. As a well known example, both Ribo-
Zero as well Poly-A selection will result in deviations in
the read distribution [11], as well as other factors such as
GC content or position [12, 13]. Therefore, the assump-
tion of reasonably uniform coverage along single isoforms
is generally violated. Methods have to account for and
correct such errors whenever possible. Missing and mis-
leading evidence routinely leads to false predictions even
if all exons have been correctly identified [14]. Even if
the transcripts are known, quantification remains diffi-
cult. Exon sharing and ambiguous read assignments, e.g.
because of close paralogs, and low coverage are all known
to limit quantification [15].
While an increasing number of methods have been pub-

lished to solve both the transcript identification as well
as the expression quantification problem [16–23], none of
these existing approaches are truly satisfactory in terms
of robustness, speed and at the same time accuracy of
the results. While the achievable level of correctness is
ultimately limited by various factors, most of all by noisy
and incomplete base data, we propose several new and
improved algorithms that significantly boost both quality
and efficiency of transcript predictions. Our tool Ryūtō
— named after spirit fires that appear as signs of the
workings of water gods based in Japanese folklore, thus
denoting our use of networks-flows — was designed as
a general framework for transcript assembly with the
expressed goal of later extension beyond the functional
capability of current tools. In this first paper, we layout
the foundation of this work.We show that Ryūtō identifies
around 1−4%more true transcripts, while calling 5−35%
less false predictions compared to the next best competi-
tor Scallop [16]. We demonstrate improvements on both
simulated as well as real-life datasets.

Methods
Overview
Ryūtō employs an extension of common splice graphs
in combination with min-cost network-flows similar to
Traph [19], as well as graph editing techniques related to
Scallop [16] to improve results. Among many improve-
ments in methodology, a key advantage is the ability to
identify likely areas of errors in the assembly process as
a starting point for rationally designing post-processing
procedures. As a second, future, advantage, our imple-
mentation allows for straightforward integration of non-
co-linear transcript or trans-splicing events.
Transcript assembly methods follow one of two general

strategies. If a reference is available, the RNA-seq reads

are aligned against the reference by a specialized state-
of-the-art split alignment tools. Common choices include
TopHat2 [24], STAR [25] or HISAT [26]. If no reference
can be used or the reference is incomplete, a de novo
approach can be chosen, where reads are directly assem-
bled into transcripts. Although alignment tools also strug-
gle to correctly assign reads due to e.g. similar regions
in multi-copy gene families, sequencing errors or repeats,
these issues are aggravated in de novo assemblies. Pure
de novo methods therefore are usually less accurate and
computationally more complex. Thus they are avoided
wherever possible [27].
Ryūtō is set within a reference-driven framework, but

also incorporates de novo concepts. In particular, Ryūtō
can be used on mixed sets of inputs. Pertea et al. [17] first
introduced a pipeline that assembled RNA-seq data into
contigs that are then aligned against the same reference.
Mixing contig alignments and conventional split read
alignments can improve predictions. Due to the advanced
use of long reads, Ryūtō can make effective use of such
data.
Mapping split-reads against a reference results in a set

of intervals within which reads provide evidence for (par-
tial) segments of one or more exons. Split reads, i.e. splice
junctions, indicate introns. Cufflinks [18], the most widely
used transcript assembler, employs an overlap graph to
consolidate this data. Here each fragment is represented
by an individual node and nodes are connected if reads
overlap and are compatible in their splice signals. This
structure does well in conserving both evidences from
reads spanning more than two exons, as well as paired-
end connections, two commonly underused sources of
information. The average exon length of many eukaryotic
organisms, including human and mouse is smaller than
200bp [28]. Thus, not only reads spanning 1 or 2 exons,
but also reads covering > 2 exons are abundant in many
datasets. The latter category, which we will refer to as
multi-splice, can be used to resolve ambiguities among
alternative splicing events. However, as fragments with
less splice evidence are given the same importance in
the graph, incorrect transcripts may still be chosen in
practice, depending on the details of the post-processing
procedure.
Additional evidence to resolve alternative splice sites

can be found in paired-end information. However, in
an overlap graph, reads of the same pair cannot be
represented in the same node due to their unknown
insert context. Their introns, on the other hand, can
be tested for compatibility. Thus, an edge is added
only if the reads themselves as well as their “partners”
agree. While removing some complexity, this additional
condition fails to resolve many cases, as ambiguous
junctions remain in the unsequenced region between
partners.



Gatter and Stadler BMC Bioinformatics          (2019) 20:190 Page 3 of 14

Splice (or connectivity) graphs provide an alternative
mathematical framework. Here, full or partial exons are
the nodes, and edges represent either splices or neighbor-
ing partial exons. Although several extension have been
proposed for this type of graph, it is typically employed in
its basic definition. The implied coverage of each node and
edge can be leveraged for transcript extraction in terms
of a network flow problem. Traph uses a min-cost flow to
denoise the raw graph that is subsequently decomposed
into isoforms. While abundance alone acts as a good
classifier here, evidence from multi-splice and paired-end
reads are neglected. The use of so called bin graphs has
therefore been proposed e.g. in [21, 22], where reads are
abstracted as sets of (partial) exons. Reads with the same
evidenced set are grouped into bins that are then used
as the new nodes in the generalized splice graph. Scal-
lop only relies on a basic splice graph. However, it keeps
track of phasing paths from multi-splice and unambigu-
ous paired reads to resolve them via Linear Programming
(LP) optimization operating on the uncorrected coverage
values.
Ryūtō combines aspects of overlap and bin graphs with

the aim of maximizing the use of both multi-splice and
paired-end information to the fullest extent. To this end,
we utilize a novel bin graph where multi-splice infor-
mation stays maximally intact, while each read can still
be matched to a unique path in the graph. It therefore
retains the desirable properties of overlap graphs and at
the same time provides access to the coverage values that
have been proven to be effective in choosing transcripts.
Non-uniformities are resolved using aminimum-cost flow
problem that satisfies a minimum-square optimization
criterion similar to the approach proposed by Tomescu
et al. [19]. Flow-conservation allows us to simplify the
graph followed by a setup of LP optimization similar to
but more general than Scallop.

Identification of exons and bins
Similar to other reference based transcript assemblers,
Ryūtō relies on the output of a specialized spliced-
alignment algorithm. Exons are identified as consecu-
tive stretches of mapped regions, with splices indicat-
ing introns. If the intron of one isoform starts or ends
within the boundaries of the exon of another, this exon
needs to be split at this position and handled as two
parts.
We use 1D-clustering to resolve possible errors in align-

ments around junctions [29]. We first identify the smallest
set of n exon ranges X = x1, . . . , xn, ordered by genome
positions, that can explain all found splice-sites (Fig. 1a).
We define a bin to be an ordered set of exons. Every read
is assigned to a bin corresponding to all overlapping exon
ranges in genomic order. Two partnered paired-end reads
r1 = xr11 , . . . xri1 and r2 = xr12 , . . . xrj2

, |r1| = i, |r2| = j, are

treated as a single read z = r1 ∪ r2 if ri1 ≥ r12 or r
i
1 +1 = r12,

i.e., if they overlap or are consecutive without an inter-
vening gap. Otherwise, paired information between reads
will be stored for later steps. As a special feature of Ryūtō,
genomic start- and end-positions of every read are stored
in each bin in a compressed format. We keep detailed
information of a reads only for (usually small) connected
regions until its paired partner is resolved and counted.
Otherwise we store read information as combined cov-
erage gains and losses per base in a bin. As normally
only a small portion of the genome is covered, with even
fewer changes in coverage, this structure is very sparse,
yet allowing full access to coverage motives at each bin
or later exon in the graph. This technique allows us to
read in complete chromosomes with very small memory
footprint in a single pass. This will greatly simplify the
later inclusions of trans-splices and other distant splice
events. Similarly, bins from several input files over the
same chromosome can be effectively merged.

Graph construction
Instead of relying on traditional splice graphs, we propose
a novel generalized bin-based graph structure that makes
it possible to utilize multi-splice evidences. The nodes of
G are identified such that they can represent a minimal
partial set of exonsX together with two artificial unlabeled
nodes s, t ∈ V representing joined start and end points
of all transcripts. Nodes v ∈ V (G) \ {s, t} are accordingly
labeled l(v) ∈ X such that l(v) = l(w) implies v = w.
The edges e ∈ E(G) correspond to (partial) bins and are
labeled by ordered sets of exons l(e) = {l1, l2, . . .} with lj ∈
X. The labels of G satisfy the following four conditions:

(i) Every path p = (v1, . . . , vk) such that v1 = s and
vk = t and vivi+1 ∈ E(G) for 1 ≤ i < k through G
corresponds to a unique transcript defined as the
union

⋃
e∈p l(e).

(ii) Every bin b = (x1, . . . xj) maps to a unique path
p = (v1, . . . , vk) such that vivi+1 ∈ E(G) for all
1 ≤ i < k, l(v1) = x1, and l(vk) = xj.

(iii) G contains the minimal possible number of nodes
among all graphs satisfying (i) and (ii).

(iv) For every edge e ∈ E the length |l(e)| is maximal.

Conditions (i) and (ii) hold for the basic splice graph (see
Additional file 1: Note 1) but they are not necessarily sat-
isfied for all bin graphs — e.g. StringTie [17] adds edges
such that multi-splice bins create alternative paths signi-
fying the same transcript for flow computations, violating
both (i) and (ii). Since we enforce an injective but not
necessarily surjective map from nodes to exons, condition
(iii) maximizes exons that are only part of (possibly mul-
tiple) edges. Condition (iv) is required because edges can
include exons that are also present as nodes (see following
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Fig. 1 Overview of the most important steps of the transcript assembly pipeline. In (a) an example set of transcripts over the same gene is shown,
together with potential paired-end reads leading to them. Reads have the same length r, but varying insert lengths. Be |X| the number of basepairs
in exon X, then: |A|, |C|, |D|, |E|, |F|, |G| < r and |C| + |D| < r. All other conditions are > r. The commonly used split graph (b) removes all evidence
from reads spanning more than two exons and paired-end information. Instead, an exon-bin based subset — adding edges between bins when a
bin is a subset of another bin — and overlap— adding edges when a bin’s suffix is prefix of other bin — graph (c) is created (trivial subsets
omitted). After removing transitive components, a directed acyclic splice graph is created that allows each bin to be uniquely mapped to a set of
edges, but minimizes the number of ambiguous connections (d). Any maximum- or minimum-flow implementation can be used to establish
transcript expressions on each edge. Due to flow conservation, composite paths and tree nodes can be reduced without loss of information. Flow
decomposition into final transcripts can be improved by using evidences (e) from multi-exon-spanning single reads or paired-end data (dashed
edge-links, color-code by (a))

example). We note that our requirements to allow only
one node per exon, as well as the sub-condition in (ii)
requiring start and end exons of every bin to match nodes
may seem restrictive at first glance. Indeed, it is easy to
construct scenarios where we loose multi-splice informa-
tion because of this definition. However, as bins tend to be
incomplete for realistic data, both conditions have proven
to help amend for such noise. Further, we exclude bins
that are true subsets of a single unique bin from condi-
tion (ii). Similarly, we treat stretches of unique overlapping
bins as a single bin for (ii). For a full discussion please see
Additional file 1: Note 2.
The graph G can be computed in O(N logN) time if

there are N initial bins.
We proceed in two steps to create our final graph. First

we create an auxiliary graph G′ = (V ′,E′) that is used as
a guide for the final bin graph. We initialize V ′ as the set
of all bins directly supported by reads. We add two kinds
of edges v′w′, labeled accordingly (a) as overlap if the suf-
fix of the bin v′ is a prefix of bin w′ or (b) contained if v′
is a subset of w′. This formulation is similar to the over-
lap graphs used by Cufflinks [18]. It uses an immediate
bin-formulation, however. Using pre-sorted bins, this raw
graph can be built in O(N logN) (see Additional file 1:

Algorithm 1).Contained bins are not allowed to own over-
lap edges, which are removed accordingly. Both transitive
contained and overlap edges are removed by using an
adaptation ofMyer’s approach for string graphs [30] in lin-
ear time. Pairs of nodes that are connected by a unique
overlap path not overlapping to that of any other pair are
successively merged. This is achieved in also linear time
and in particular removes all nodes with in-degree 1 or
out-degree 1. Thus merged bins are treated as a single bin
according to (ii).
The resulting graph gives full evidence for creating the

bin graph according to (i-iv) (see Additional file 1: Note 2).
We then use the following algorithm to build up the bin

graph (see also Additional file 1: Algorithms 2 and 3): (a)
Loop through all bins marked with overlap edges in the
order of genomic position and create nodes for the first vi
and last vj exons in the bin if they do not already exist in
G. If there are no incoming overlap edges in G′, add the
full bin as an edge vivj in G. Otherwise, split all paths in G
corresponding to incoming overlap edges inG′ at position
vi and join them along the path to vj to the rightmost pre-
existing node vx < vj. Then add an edge vxvj together with
the corresponding partial bin.
(b) Loop through all bins marked with outgoing contained
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edges inG′. If only one contained is marked, add the bin as
a partial count to the path in G corresponding to the bin
it is contained in (as exception to (ii)). Otherwise, join all
paths corresponding to the containing bins in G along the
bin.
The correctness of this procedure can be argued as

follows. We reduced the auxiliary graph such that any
overlap marks joints between contradictory bins. Hence,
it is unclear to which bins the overlapping regions belong,
and the paths in this regions need to be joined. Similarly, if
a bin is contained in two or more longer bins, it is unclear
to which one it belongs and paths needs to be joined as
well. Therefore, we join exactly all regions conflicting with
(ii) to achieve minimality according to (iii) and (iv) — see
Additional file 1: Note 2 for a full discussion.
Remarkably, despite circular dependencies, we are also

able to construct the splice graph in only linear time by
using recursive, shared interval markers for each bin (see
Fig. 2). In worst case, we compute exactly the basic split
graph. In practice, however, we regularly see improve-
ments.

An example for graph construction
An example for advanced graph construction can be
found in Fig. 1. Using a regular splice graph (b) for a set
of transcripts (a) results in a loss of information. Instead,
the auxiliary graph (c) created by Ryūtō shows that bins
form distinct clusters that can be kept intact. Accord-
ingly, in the bin graph (d) no nodes for exons E and F
are created, despite their presence in multiple transcripts,
as their bins uniquely define their connections. Exon D
appears in a critical region between two transcripts and
needs to be set as a node, as the bin (D, F) could belong
to either one and both transcripts need to be compacted
to fulfill (ii). A third isoform uses also D, but no other-
wise violating bins force its connection to the established

node. Instead, it is kept within the edge according
to (iv).

Inclusion of super-reads
Ryūtō can be used in combination with de novo sequence
assembly using the methods invented by Pertea et al.
[17] for StringTie. We used the script provided by these
authors aimed to assemble contigs containing both reads
for each pair utilizing the MaSuRCA assembler [31]. The
resulting super-reads were aligned against the chromo-
some using HISAT or STAR. We merged the paired-end
and super-read alignments into one file for benchmarks.
As super-reads are by construction significantly longer
than regular reads, they are more likely to include mul-
tiple splice-sites, resulting in longer bins. Ryūtō thus can
use them to obtain a more accurate generalized splice
graph. As suggested in [17], they may also mapmore accu-
rately to the genome and therefore improve predictions in
otherwise noisy or uncovered regions.

Flow network design
Our generalized framework allowed us to test multiple
flow network designs. We define cov(v) to be the cover-
age of the labeled exon on node v ∈ V (G) and cov(uv) the
coverage of the bin corresponding to edge uv ∈ E(G). In
general, we treat both nodes and edges in our bin-splice
graph as flow constraints using cov as capacity in the net-
work. Therefore, in practice, we convert each node v into
two nodes vin, vout joined by an edge vinvout of capacity
cov(v). We will omit this transformation in definitions for
simplicity.
From a theoretical point of view, a simple maximum

flow algorithm seems to be the most efficient implemen-
tation: Assuming perfect uniformity among transcripts,
finding a maximal flow will show coverage saturation of
all bins, with unused capacity indicating missed start- or

Fig. 2 Shared interval markers are used to keep track of overlapping regions during computations. Each bin is assigned a directed binary forest of
intervals, where current edges in G are marked as leaves, and inner nodes mark steps in the partitioning. Two distinct suffixes of bin A are respectively
prefixes of bins B and C. B and C differ outside of the prefixes. When adding bins into the graph A will be added first by genomic position, and a single
edge is added 1. B splits edge 1 into two edges 2 and 3, set as new child nodes to 1 in A. 3 and the new arc x are added as new trees in B. C further
splits A, and with this indirectly B. As we use the same reference 3 for both bins, splitting is trivial. The resulting range forests are shown to the right
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end- sites. However, as uniformity is generally violated, we
found this method to be inaccurate. The start- and end-
sites tend to be underrepresented due to coverage biases,
forming bottlenecks in the flow network and thus lead-
ing to an overall underestimation of transcripts and the
introduction of incorrect additional starts and ends. We
found no reasonable metric to distinguish bias from real
evidences and therefore did not further pursue this path.
Any flow metric on splice graphs needs to account for

this lack of uniformity in its definition. We therefore devi-
ate from maximum flows and use a formulation based
on the minimum-cost flow problem (MCFP) instead. We
extended the Unannotated Transcript Expression Cover
(UTEC) problem introduced by Tomescu et al. [19] for the
use on our generalized graph structure. Given cost func-
tions cv( . ) and cvu( . ) for v ∈ V and uv ∈ E, respectively,
we aim to find tuples P of paths from source s to sink t
with estimated costs e(P) such that we minimize

∑

v∈V
cv

⎛

⎝|cov(v) −
∑

p∈P:v∈p
e(p)|

⎞

⎠+

∑

v→u∈E
cvu

⎛

⎝|cov(uv) −
∑

p∈P:uv∈p
e(p)|

⎞

⎠ .

In other words, we aim to find a set of transcripts
with minimal errors to the coverage of each feature. The
solution of Tomescu et al. via a minimum cost network
flow on an offset graph can be directly applied to our
bin graphs, because all relevant mathematical properties
are preserved. As a result we obtain an optimal flow,
quantifying each bin in the graph. Using the Network Sim-
plex Algorithm we achieve this in O(|V |2|E| log(|V |C))

time, where C is the maximal cost of any edge. Since
we chose convex cost functions, in our implementation a
pseudo-polynomial transformation is necessary (see [32]
for details). However, we strongly limit the arc-numbers
using heuristics to avoid “blow-ups” in computation time
that are common for Traph. Empirically, we found that
cv(x) = x2/cov(v) and cvu(x) = x2(|l(uv)|−1)/cov(vu) are
adequate cost functions that outperform those suggested
by Tomescu et al.
Even though we confirmed that this method performs

well on its own, we developed an additional, data driven,
pre-processing step to denoise coverage labels. Flow for-
mulations tends favor shorter transcripts that are often
present in the graph due to incorrect alignments on splice
sites as changing a single edge is often cheaper than
changing a whole path. Even though the convex cost func-
tion aims to mitigate this influence, it does not completely
remove the effect. We therefore pre-process coverage val-
ues to enhance uniformity along long transcripts first.
For each node, we compute the forward and reverse

overhead: b+
v is the difference of the maximal coverage of

v and the coverage of the rightmost base in v, and b−
v is the

difference of the maximal coverage of v and the coverage
of leftmost base in v, respectively. Then, we compute the
forward correction of the coverage by updating nodes in
topological order in the following manner:

covf (v) =
∑

u:uv∈E
(covf (u) + b+

u )
cov(uv)

∑

z:zv∈E
cov(zv)

− b−
v

covf (vu) = covf (v)
cov(vu)

∑

z:vz∈E
cov(vz)

The reverse correction covr(.) is analogously computed
in reverse topological. We update coverage as cov(x) ←
cov(x) + max(covf (x), covr(x)). These corrections, while
related to the use of gain and loss factors for flow com-
putations in combination with length restrictions in path
selection in StringTie, are unique to Ryūtō.
If an annotation of known transcripts (guides) is avail-

able, we can make use of them to increase the accuracy of
the denoising step. To this end we identify the paths corre-
sponding to each guide, or remove the guide if it is incom-
patible with the graph. We compute the bias factor for
each exon node as bv = ∑

u:v→u∈E
cov(vu)/

∑

u:u→v∈E
cov(uv).

We then determine the largest possible coverage for each
transcript such that no coverage is exceeded on any edge
or node, and coverage follows the bias exactly at each node
by multiplying the factors along the path. As a result we
obtain coverage values for each edge and node. We sum
up values over all guides and compute the percentage F of
coverage that that is accounted for in this manner. If the
percentage exceeds a threshold defined by the user, we set
the new coverage to the sum of guides; otherwise the cov-
erage is increased to match F. This methods allows us to
give the user a handle to account for particularly good or
bad guides.

Identification and quantification of transcripts
In order to extract transcripts as paths out of the flow
network, we can make use of several well established
properties of flows. A decomposition of a flow into at
most |E| paths always exists and can be computed effi-
ciently. Any such decomposition is optimal with respect to
UTEC on the established flow, but not necessarily biolog-
ically meaningful. To explain transcipts parsimouniously,
a minimal set of paths is usually sought. This is an NP-
hard problem for which several alternative heuristics are
in use [33, 34]. Most commonly, the heaviest paths, with
maximal coverage, are removed successively until no flow
remains. Traph, for examples uses this approach.
We observed that the minimal set of paths may not

be the best metric, however. Our methods allowed us
to solve the NP-problem for a substantial percentage of
loci, resulting in overall worse classification. Instead of
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focusing on the heaviest path, we found that successively
removing the longest possible transcript together with
the maximal flow along its path performs better. This
approach is reminiscent of StringTie, where the longest
path containing the exon with the highest coverage in the
raw split graph is selected first.
Prior to extracting transcripts, several simplifications

can be made to the graph G. As a consequence of the
flow conservation on nodes, we can remove tree nodes
(with in- or out-degree of 1 and higher respective opposite
degree) and composite paths (nodes with in- and out-
degree 1). As a result, all inner (exon) nodes of the graph
will have at least two in-coming and out-coming edges
respectively, and therefore represent unresolved positions
in the transcript assembly. We output such nodes for
post-processing, because they identify likely points ofmis-
matches in the subsequent assembly, as a unique feature
of our method. This reduction in graph size also makes
it possible to enumerate all paths locally left and right
of each unresolved node. We employ a strategy reminis-
cent of Scallop, were the evidence is decomposed using
Linear Programming (LP). Here we use a simple heuris-
tic to mark transcript evidence: we mark all connections
corresponding to overlapping (long) bins, or matching
paired-end bins. However, we prioritize more specific
hits, only adding less specific matches if more precise ones
cannot sufficiently explain them. We chose this heuristic
for several reasons. Foremost, in the presence of multi-
splice bins, typically also bins exist that are subsets of
these maximal bins, thus cannot provide new information
and are removed. Additionally, we hope to exclude oth-
erwise noisy bins. For example, if an exon em is shorter
than the read size, but its flanking exons left el and right
er are not, we can expect to see bins (el, em), (em, er), and
(el, em, er). Similarly, as the connection between read pairs
is unknown, we might find connections between arcs in
this gap that actually have incorrect labels. By prioritizing
specificity, we hope to remove such errors.
We obtain a set of connections between incoming and

outgoing edges. Given incoming edges Sv with evidence,
and out-going Tv of a vertex v with connections Ev : Sv →
Tv, the number of reads n( . ) inducing them, and the flow
on each edge fl( . ) we take two optimization steps using
connection variables xe,e′ ∈ Ev:

fl(e) −
∑

e′∈Tv:(e,e′)∈Ev
xe,e′ ≤ ye ≥ 0,∀e ∈ Sv

fl(e) −
∑

e′∈Sv:(e′,e)∈Ev
xe′,e ≤ ye ≥ 0,∀e ∈ Tv

We first optimize subject to

minimize

∣
∣
∣
∣
∣
∣

∑

(e,e′)∈Ev
n(e, e′) − xe,e′

∣
∣
∣
∣
∣
∣

to gain the minimal flow induced by each connection. We
then take optimal xe,e′ as minimal values in a second step
maximizing the used flow

minimize
∑

e∈Sv
ye +

∑

e∈Tv

ye

Nodes with evidence are decomposed in the order of
the quality of evidences andminimal square root error per
flow. While conceptually similar to Scallop, our method
has several advantages:
(1) We are not limited to pairs of reads with an unam-
biguous connection in the graph, but rather can include
all pairs.
(2) Incomplete evidences will leave significant flow intact,
where Scallop would remove edges.
(3) By prioritizing specificity, we create less false connec-
tions, and LPs are easier to solve.
(4) We are not required to resolve unmatched edges by
forcing a connecting them by some heuristic. Rather, we
can rely on flow decomposition to determine leftover
complexity.

Heuristics for noise reduction
Ryūtō handles noise stringently in each step of the compu-
tation. While noise reduction mechanisms remain often
under-reported in publications, they are an integral part
of every pipeline. For an exhaustive list of available filters,
we refer to the description of the commandline options of
the Ryūtō manual.
We found that much of Scallop’s success is not only

explained by its LP strategies, but rather can be attributed
to its smart noise filters. We therefore designed our set-
tings after the same model, adding both reported and
unreported procedures. As an added bonus, this ensures
our reported improvements can explicitly be traced back
to our novel algorithms. Most notably, nodes are cate-
gorized by quality of evidences. Edges without evidence
and flow below a certain score threshold are removed
in between steps. Ryūtō removes edges without evidence
with less than 30% flow compared to any another edge
incident to a common vertex, or less than 75% if no
evidences are found for a node.
As the only additional filter, next to flow denoising,

errors emerging from intron-retention are filtered by
Ryūtō. Ryūtō will remove all (possibly interrupted) introns
unless there is significant coverage evidence for them.
This gives a slight advantage for noisy data, but a disad-
vantage for perfect data compared to Scallop.
Similar to Cufflinks and StringTie, Ryūtō can employ

a threshold to filter out low abundance transcripts. By
default, this behavior is disabled, because removing edges
without evidence by the above criteria already works well
on its own. However, for guided regions only transcripts
with sufficient abundance compared to themost abundant
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transcript are reported, depending on the trust level given.
This is necessary as guided transcripts are removed from
the graph first, which obstructs the standard step-wise
denoising.

Results
Benchmarking
In order to compare Ryūtō to competing programs, we
benchmarked all tools on a diverse collection of datasets.
We only considered tools tested positively by Hayer et al.
[35], as well as newer, freely available, competitors. We
had to omit Traph [19] and Strawberry [22], because they
could not be run in the available time on the benchmark
dataset or produced errors. This leaves only Cufflinks
(v2.2.1), StringTie (v1.3.3), Scallop (v0.10.3), as well as
Transcomb (v.1.0) for testing.
In order to conclusively benchmark our tool we need to

consider both simulated, as well as real datasets. Results
of simulated data were evaluated with the scripts pro-
vided by [35], calling correct transcripts only if all splices
match and the same number of exons was predicted.
Additionally, we require the predicted strand to match.
We chose the same metric for real datasets, only here
using Cuffcompare of the Cufflinks Package [18].
While Ryūtō and other tools were designed with mainly

multi-exon transcripts in mind, especially those underly-
ing alternative splicing, also single exon transcripts can
be called by all tools. As the latter are more prone to
be effected by fine tuned filter settings – and often can
be called outside of the core methods of each tool by
merely detecting areas of coverage – we will consider both
benchmarks in- and excluding them.
We chose the combination of recall vs. precision as a key

statistic in evaluating all tools. Naturally, improving recall
will result in worse precision for each individual tool. We
aim to compare all tools at a good trade-off point for both
statistics, as an average user would. StringTie, Cufflinks,
and Ryūtō can be run with standard parameter. Scallop
and Transcomb do not filter significantly in their presets.
Accordingly, we set Scallop to a minimal transcript cover-
age of 4, as this best matches the other tools. Transcomb
was set to a filter value of 4 as well, although it did not
compete well at any setting with decent precision.
It should be noted that any attempts to continuously

match filters is heavily problematic. While each tool pro-
vides a key option to filter transcripts, and thus allow the
user to adjust results, they ultimately all relate to differ-
ent properties despite superficial similarities. Therefore,
parameters cannot be simply set to the same value to the
same effect.

Simulated datasets
At present there are a no real life datasets for which
the complete collection of transcripts and their expres-

sion levels are known with high precision. Benchmark-
ing of transcript assemblers thus has to resort to simu-
lated datasets. To stay objective, we used the benchmark
datasets from a previous, independent evaluation of ref-
erence based transcript assemblers [35]. In the systematic
dataset (T1) 13,000 artificial genes with varying numbers
of isoforms, all of the same coverage, were simulated with-
out sequencing errors. In the ENSEMBL Perfect (EP) and
ENSEMBL Realistic (ER) sets all genes of Mus musculus
mm9 annotated in ENSEMBL were simulated, with no
errors and realistic error margins, respectively. For tech-
nical details on the datasets we refer to [35]. For each set,
50 million paired-end directional reads were created. All
tools were provided with the same input and no guiding
annotation.
Ryūtō performed significantly better on all datasets

(Fig. 3; Additional file 1: Figure S10) in terms of the qual-
ity of the inferred isoforms. Ryūtō’s running times were
comparable to StringTie and Scallop (see Additional file 1:
Table S2).
For dataset T1, Ryūtō found 3.6% more true transcripts

compared to the next best performing tool Scallop, while
producing more than 35.7% fewer false positives. Even for
realistic data (ER) we still found nearly 3.6% more true
transcripts and at same time reduced the false positives
by 19.2%. This improvement is driven mainly by aver-
age to high abundant transcripts. For very low abundant
isoforms Ryūtō performs very similar to StringTie and
Scallop. Low abundant regions exhibit generally high lev-
els of noise that can often not be easily distinguished from
real data. Therefore, conservative filtering is employed as
a preset among all tools with the exception of Transcomb.
The artificial design of dataset T1 enables us to evaluate
the impact of the number of spliceforms per locus (Fig. 4).
While improvements can be seen in all categories, they
are particularly prominent for more complex transcripts.
Improvements are consistently observed for all alignment
methods (Additional file 1: Figures S10 and S11). Ryūtō
produces a significant number variants not called by other
tools, both for true (see Additional file 1: Figures S12, S14,
S16 and S18), but especially for falsely predicted isoforms
(see Additional file 1: Figures S13, S15, S17 and S19)
With the exception of Ryūtō and Scallop, transcripts are

mainly filtered in post-processing. Therefore, filters can
only have a neutral or negative effect on recall. To com-
plicate matters, filters vary wildly between tools, despite
superficial similarities. Meaningfully matching similar
options is difficult at best. As Ryūtō dominates in both cat-
egories for the overwhelming number of data-points, we
did not systematically vary filter settings.
If gene coordinates are available to guide transcript

assembly, they can be used to enhance predictions. In
order to incorporate different levels of reliability we devel-
oped an abstract trust measure that gauges how reliable an
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Fig. 3 Accuracy of transcript assemblers as recall-precision plots summarized for the simulated datasets T1, ENSEMBL Perfect (EP) and ENSEMBL
Realistic (ER) using the alignments produced with STAR. Plots are broken down by coverage of isoforms

annotation is perceived to be by the user. Ideally, unanno-
tated transcripts will only be called if the annotation can
not sufficiently explain the data, and increasing trust levels
should decrease the number of unannotated transcripts
while increasing precision. We had to exclude Transcomb
and Scallop from this test, as they provide no guide option.

To simulate unreliable annotations, Hayer et al. [35] pro-
vides guides where 15% of transcripts were removed and
replaced by unexpressed isoforms. Figure 5 summarized
the performance of different transcript assemblers.
While Cufflinks showed impressive accuracy for highly

abundant transcripts, recall for others was much worse.

Fig. 4 The artifical dataset T1 allows to break down accuracy (as recall-precision plots) along the number of spliceforms on genes. Ryūtō dominates
in particular on genes with high splice variation
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Fig. 5 Ryūtō offers a trust parameter for guided transcript assembly as a unique feature, allowing the user to specify a trade-off between recall and
precision

At medium trust levels, we found that Ryūtō improves
medium to high abundant recall, while performing only
comparable in very low abundant ones. We have yet
to investigate this discrepancy in detail, but found that
StringTie e.g. calls annotated isoforms even though indi-
vidual splices have not been observed, but exons are still
present. We have not yet implemented such a system.
Most noteworthy, for the highest trust rating 100, we
only loose 3.1% of true transcripts compared to StringTie
(2.9% to trust 60), compared to 80.5% (72.3% to trust
60) fewer false positive predictions, despite the moderate
annotation quality.

Isoform expression
Network flow approaches closely link the quantification of
the expression levels of individual isoforms with the iso-
form identification. In order to benchmark the inference
of (relative) expression levels, we computed the Spear-
man’s rank correlation coefficient to the ground truth for
each individual chromosome. To this end, FPKM (frag-
ments per kilobase of transcript per million fragments)
values are first converted to ranks in increasing order that
are then correlated to the true ranks. To avoid the prob-
lem of assigning ranks to 0 values (from false positive
or unpredicted transcripts), we restrict the evaluation to
true transcripts. This performance measure favors tools

with low recall but avoids biases from lower precision and
thus somewhat handicaps our own tool. Nevertheless, we
found that correlation is on par or improved. Cufflinks,
with substantially smaller isoform recall, achieves only
slightly better scores (see Additional file 1: Table S3). Since
Scallop explicitly recommends the use of a second tool for
quantification, while internally relying on abstract scores,
it was not considered in this test.
As there is no way of knowing true abundances of real

datasets, we could only compute this measure for the sim-
ulated datasets. T1 was designed with equal abundances
for each transcript, therefore offering no rank order. As
expected, all tools show ρ ≈ 0 reflecting this fact.

Inclusion of de novo reads
As mentioned above, Ryūtō can be run utilizing also de
novo concepts. We assembled the paired reads of ER
to super-reads according to the StringTie pipeline and
aligned them against the reference genome using HISAT
and STAR aligner. Transcomb was unable to run on
merged alignments, and thus not considered for this task.
Cufflink’s accuracy is well documented to detoriate for
this use-case in [17], hence it was also not considered here.
StringTie, Scallop, and Ryūtō all showed improvements

(Fig. 6). We ran all tools both in standard setting, as well
as with slightly increased coverage filters to offset the
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Fig. 6 Ryūtō, Scallop, and StringTie allow the use of aligned de novo assembled super-reads next to normal paired-end alignments, all showing
improvements when using this method, both using the more accurate HISAT (l.h.s.) or to a lesser degree STAR (r.h.s.) for de novo alignment.
Combined alignments were run in standard setting (up-pointing triangle) as well as with filter coverage 5 (left-pointing triangle)

increase in input size. As HISAT alignments are more
accurate, the observed gains were also larger. For STAR,
true improvements were only reached using the second
option, as otherwise too much additional noise was kept.
Changes were consistent among all tools, relative to the
the respective base values. It is worth noting that results
for HISAT de novo alignments alone were consistently
more accurate compared to paired-end alone for all but
low abundant isoforms.

Real datasets
Even though RNA-seq simulators strife to capture the
variety of real data, they might fail to reproduce some
aspects. Yet, when testing on real data it is impossible

to know which genes or isoforms are expressed nor their
expression levels. Nevertheless, we have curated sets of
known genes for well studied organisms, including human
and mice, that can be used as a reasonable approxima-
tions of the truth. In particular, it is fairly safe to assume
that a prediction that matches a curated gene is most likely
true. In the following we also make the assumption that all
other predictions are false positives. This is not necessar-
ily true – they may just have remained unannotated so far.
As all tools are penalized equally, we suppose that these
caveats have no crucial influence on the ranking, only
on the distance between tools. We used eight datasets of
human, and two datasets from mouse ranging from 25 to
167Mio. spots utilizing 76 or 101 Bp paired-end, stranded

Table 1 Summary of RNA-seq samples used in this paper

Organism SRA Accession GEO Accession Chosen By # Spots Cell Line Localization Length

human SRR307911 GSM758566 TransComb, Scallop 41M H1-hESC cell 76

SRR307912 GSM758566 - 36M H1-hESC cell 76

SRR387661 GSM840137 TransComb, Scallop 125M K562 cytosol 76

SRR307903 GSM758562 Scallop 36M BJ cell 76

SRR534319 GSM981256 StringTie, Scallop 25M CD20+ cell 76

SRR545695 GSM984609 StringTie 40M CD14+ cell 76

SRR534307 GSM981252 Scallop 167M MCF-7 cytosol 101

SRR545723 GSM984621 Scallop 147M HMEpC cell 101

mouse SRR203276 SRX062280 TransComb 52M dendritic cell 76

ERR1138641 ERX1217510 - 29M liver cell 101
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protocols. To avoid any bias, Datasets were mainly chosen
from publications of competing tools while representing a
broad range of sample sizes and read lengths (see Table 1).
Improvements on calling only multi-exon were consis-

tent and systematic among all datasets (Fig. 7), with Ryūtō
calling more true transcripts (up to 2%), while calling
significantly fewer false ones (up to 5.9%). As any improve-
ment in recall entails a larger factor of false positives,
Ryūtō significantly improves accuracy. When matching

Scallop to the recall of Ryūtō, by slight variations in fil-
ter settings, we find that it calls up to 12.7% more false
positives, averaging at around 5%. For SRR545723 Ryūtō
filters stronger than Scallop, likely due the additional
intron filter. Disabling this filter reveals a much closer
match regarding recall while still outperforming Scallop’s
accuracy (see Additional file 1: Table S11). Like for the
simulated data, Ryūtō produces a significant number vari-
ants not called by other tools, both for true (see Additional

Fig. 7 The advantage of Ryūtō also becomes apparent in real datasets downloaded from NCBI, again using recall-precision plots, both only
comparing multi-exon transcipts (top), or all transcripts (bottom)
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file 1: Figures S12 and S16), but especially for falsely pre-
dicted isoforms (see Additional file 1: Figures S13 and
S17).
Similar results were achieved when including also

single-exon transcripts into the metrics (Fig. 7, Additional
file 1: Table S12), although Ryūtō’s advantage in accu-
rate compared Scallop decreases by a minor factor. Again,
Ryūtō produces a significant number of variants not called
by other tools (see Additional file 1: Figures S14, S15 S18
and S19).

Conclusion
Ryūtō uses aspects of overlap graphs to create a general-
ized splice graph to make use of multi-splice evidences.
A network-flow is used to assemble and quantify reads.
Local enumeration at problematic graph regions has made
integration of paired-end data possible to resolve ambi-
guities. Compared to other leading methods, Ryūtō is
significantly and consistently more accurate for both sim-
ulated and real data, in particular for complex loci. Ryūtō
can also be used with de novo assembled super-reads that
combine pairs of reads, providing an additional increase
mostly among low and medium abundant loci. It includes
a framework for guided transcript assembly that can help
adjust predictions according to annotation quality and
user preference as a completely unique feature.
The Ryūtō framework in its current implementation

is already a competitive alternative for the task of iso-
form identification and isoform quantification in RNA-
Seq pipelines that can achieve substantial improvements.
By design, Ryūtō’s internal data structures lend themselves
to handling circular and trans-splice events in future ver-
sions of the software. The same features make it possible
to localize positions in the graph structure that are the
likely cause for errors, a property that will be useful for
future improvements. Its structure also facilitates an easy
exchange of components, allowing for easy prototyping
and evaluation of individual elements. We reserve a dis-
cussion of alternative components that can help guide fur-
ther development for another paper, especially in regards
to noise handling.

Additional file

Additional file 1: Supplementary materials: This file contains additional
information for graph construction and supplementary figures and tables.
(PDF 10, 402 KB)
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