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Abstract

During general anesthesia (GA), direct analysis of arterial pressure or aortic flow waveforms

may be inconclusive in complex situations. Patient-specific biomechanical models, based

on data obtained during GA and capable to perform fast simulations of cardiac cycles, have

the potential to augment hemodynamic monitoring. Such models allow to simulate Pres-

sure-Volume (PV) loops and estimate functional indicators of cardiovascular (CV) system,

e.g. ventricular-arterial coupling (Vva), cardiac efficiency (CE) or myocardial contractility,

evolving throughout GA. In this prospective observational study, we created patient-specific

biomechanical models of heart and vasculature of a reduced geometric complexity for n =

45 patients undergoing GA, while using transthoracic echocardiography and aortic pressure

and flow signals acquired in the beginning of GA (baseline condition). If intraoperative hypo-

tension (IOH) appeared, diluted norepinephrine (NOR) was administered and the model

readjusted according to the measured aortic pressure and flow signals. Such patients were

a posteriori assigned into a so-called hypotensive group. The accuracy of simulated mean

aortic pressure (MAP) and stroke volume (SV) at baseline were in accordance with the

guidelines for the validation of new devices or reference measurement methods in all

patients. After NOR administration in the hypotensive group, the percentage of concordance

with 10% exclusion zone between measurement and simulation was >95% for both MAP

and SV. The modeling results showed a decreased Vva (0.64±0.37 vs 0.88±0.43; p = 0.039)

and an increased CE (0.8±0.1 vs 0.73±0.11; p = 0.042) in hypotensive vs normotensive

patients. Furthermore, Vva increased by 92±101%, CE decreased by 13±11% (p < 0.001 for

both) and contractility increased by 14±11% (p = 0.002) in the hypotensive group post-NOR

administration. In this work we demonstrated the application of fast-running patient-specific

biophysical models to estimate PV loops and functional indicators of CV system using
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clinical data available during GA. The work paves the way for model-augmented hemody-

namic monitoring at operating theatres or intensive care units to enhance the information on

patient-specific physiology.

Introduction

Cardiac physiology is a delicate balance between extrinsic (e.g. preload or afterload) and

intrinsic (e.g. contractility or electrical activation) properties of the heart. Cardiovascular (CV)

failure is the third reason for entering the intensive care unit (ICU) and the second cause of in-

ICU death [1]. Furthermore, it is estimated that around 230 million major surgical procedures

under general anesthesia (GA) are performed each year worldwide [2] and perioperative CV

events remain the main cause of postoperative death [3]. CV management during GA or at

critical care includes CV monitoring based on (and not limited to) arterial pressure and car-

diac output (CO) measurements [4, 5].

The simultaneous evaluation of the ventricular pressure and volume (PV loop) allows a

functional interpretation of pathophysiological conditions, such as quantifying myocardial

energetic expenditure or ventricular-arterial coupling [6] (see Fig 1). In some complex cases,

the PV loop analysis can bring additional insight in to the current physiological state [7]. How-

ever, as it requires invasive intraventricular pressure measurement, its usage is not convenient

during monitoring.

Patient-specific CV modeling provides a numerical representation of the CV system in

individual patients—a “numerical avatar”—which is becoming a powerful diagnostic or thera-

peutic tool. For example, it allows to access the PV loop [8–10], predict the success of cardiac

resynchronization therapy [11, 12], or estimate myocardial stiffness and contractility or vascu-

lar resistance [13–15] including under various physiological conditions [16, 17], see also

reviews [18, 19] and references therein. However, a requirement of fast analysis alongside with

restricted data availability make its implementation within CV monitoring rather challenging.

In the present study, we aimed to evaluate the feasibility of using a monitoring framework

augmented by a biophysical model to obtain and interpret the simulated PV loops and some

CV functional quantities, while using only data readily-available during neuroradiological

procedure.

Methods

This prospective and non-interventional cohort study was held in a university hospital in

Paris, and followed the STROBE guidelines for conducting observational studies.

Patients monitoring and data collection

Patients scheduled for an intracranial endovascular procedure were selected for inclusion in

this study. Only the patients for whom continuous arterial pressure and CO monitoring was

indicated for clinical purposes were included. This study was approved by the appropriate

Institutional Review Board—ethical committee of the Société de Réanimation de Langue Fran-

çaise (CE-SRLF 14-34)—which waived the need for written informed consent. Consequently,

oral informed consent was obtained from all subjects after providing a protocol information

letter. Every subject had the possibility to withdraw from the study at any time.

During neuroradiological procedure, GA was induced and maintained by total intravenous

anesthesia using propofol (75-150 mg/kg/min) and remifentanil (0.2-0.5 μg/kg/min). Oro-

PLOS ONE Monitoring of cardiovascular physiology augmented by a patient-specific biomechanical model

PLOS ONE | https://doi.org/10.1371/journal.pone.0232830 May 14, 2020 2 / 19

Funding: A.L.G. and F.V. were employed full-time

by a research program "Poste d’accueil APHP"

funded 50% by Assistance Publique - Hopitaux de

Paris and 50% by Inria. R.C. and K.P. acknowledge

the support of Wellcome/EPSRC Centre for Medical

Engineering [WT 203148/Z/16/Z]. R.C., D.C. and T.

H. acknowledge the support of Inria-UTSW

Associated Team TOFMOD. R.C. additionally

acknowledges support of the Ministry of Health of

the Czech Republic (project No. NV19-08-00071).

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: A.L.G., F.V., D.C.

and R.C. are co-owners of the patent entitled

"Dispositif cardiaque" (number 1758006, 2017). A

research license agreement is currently ongoing

between the Anesthesiology and intensive care

department of Lariboisière hospital, Paris, France

and Deltex Medical, Chichester, UK. This does not

alter our adherence to PLOS ONE policies on

sharing data and materials.

https://doi.org/10.1371/journal.pone.0232830


tracheal intubation was facilitated using 0.5 mg/kg atracurium and followed, if needed, by con-

tinuous infusion of 0.5 mg/kg/h atracurium. After intubation, ventilation was established to

reach an end-tidal CO2 concentration of 35-38 cm H2O using a tidal volume of 6-8 ml/kg of

body weight.

After GA induction, the monitoring devices were installed. Transesophageal Doppler probe

(TED) was inserted into the esophagus and connected to the CombiQ monitor (Deltex medi-

cal, Chichester, UK). A transthoracic echocardiography (TTE) was performed at the beginning

of the interventional procedure. A radiopaque wire was advanced from the femoral artery

through the aorta up to cerebral arteries. Invasive arterial pressure was recorded by connecting

a fluid-filled mechanotransducer (TruWave, Edwards Lifescience, Irvine, CA, USA), as previ-

ously described in [20]. For research purposes, data were recorded when the pressure catheter

was in the ascending aorta.

Our standard procedure for management of intraoperative arterial hypotension (IOH),

defined as the fall of mean arterial blood pressure by 20% as compared to the awake value,

includes: 1) titration of saline solution by 250 ml step s to optimize CO; and 2) in case of persis-

tent IOH despite the fluid expansion, titration of diluted norepinephrine (NOR) (5μg/ml) by 5

μg steps to restore the blood pressure. This management was not modified for this research

project. We separated a posteriori the population into so-called hypotensive and normotensive

groups according to whether they received NOR.

Validation group. In order to compare the PV loops obtained by the model to invasively

acquired PV loops, we analyzed four additional patients with pressure and volume measured

in their systemic ventricles by pressure catheter and magnetic resonance imaging (MRI),

respectively. Validation subjects #1-2 had a single-ventricular physiology (Fontan circulation)

and underwent combined cardiovascular MRI and heart catheterization procedure for pro-

gressive symptoms of exercise intolerance. Validation subjects #3-4 were patients with repaired

tetralogy of Fallot who underwent cardiovascular MRI and catheterization before pulmonary

valve replacement.

All XMR exams were performed under GA. During the catheterization, pressure signals

(aortic, ventricular, venae cavae, and pulmonary capillary wedge pressures) were obtained.

Fig 1. Example of PV loop and its interpretation. Cardiac bioenergetics (left): internal work (Iw) associated with the

potential energy or the energetic expenditure necessary to reach optimal conditions for ejection; external work (Ew)

associated with the energetic expenditure of the ejection; cardiac efficiency (CE) defined as the ratio CE ¼ Ew
EwþIw

.

Ventricular-arterial coupling (right): ventricular elastance Ees (slope of the end-systolic pressure-volume relationship,

ESPVR, at end-systolic pressure-volume point); arterial elastance Ea ¼ ESP
SV with ESP being end-systolic pressure and

SV = EDV − ESV the stroke volume (subtraction of end-diastolic and end-systolic volumes).

https://doi.org/10.1371/journal.pone.0232830.g001
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Simultaneously, cardiac volumes and 2D flows (ascending and descending aorta) were

acquired using cardiovascular MRI (CMR). The obtained CMR data were post-processed into

0D signals of time-vs-flow or time-vs-ventricular volumes.

The data collections in the patients with Fontan circulation were performed at Evelina Lon-

don Children’s Hospital, King’s College London, under the ethical approval of institutional

ethics committee, London UK (Ethics Number 09H0804062). The data collection in tetralogy

of Fallot patients were performed at Children’s hospital, UT Southwestern Medical Center

Dallas, under the ethical approval UT Southwestern IRB (STU 032016-009).

Biomechanical model of cardiovascular system for monitoring purposes

The biomechanical model of heart and vasculature used in this study is described in [21]. It is

a combination of a biomechanical heart [22, 23] and a Windkessel circulation model [24].

The passive component of the myocardium is inspired by [25] with a hyperelastic potential

in the form

We ¼ C0eC1ðJ1 � 3Þ2 þ C2eC3ðJ4 � 1Þ2 ; ð1Þ

with J1 and J4 being reduced invariants of the left Cauchy-Green tensor C, given by J1 ¼

traceðCÞðdetðCÞÞ�
1
3 and J4 ¼ fib � C � fibðdetðCÞÞ

� 1
3 (with fib being the unit vector in the myo-

cardial fiber direction). We used the parameters C0 = 665 Pa, C1 = 2.4 Pa, C2 = 103 Pa and C3 =

5.5 Pa, which allow to fit the experimentally measured end-diastolic pressure volume relation-

ship (EDPVR) [26] in a reference healthy human. The passive potential (Eq (1)) is then multi-

plied by a “stiffness multiplication factor”—the only parameter used in adjusting the passive

part of the model to a given patient (passive tissue stiffness). The active component of the

model—representing actin-myosin interaction and formation of cross-bridges—is based on

Huxley’s sliding filament theory [27, 28], albeit with an extension allowing to represent the

Frank-Starling mechanism [23]. The active stress τc and active stiffness kc in sarcomeres with

the extension efib ¼ L
L0
� 1 (where L and L0 represent the actual and reference sarcomere

lengths, respectively) generated in the sarcomere are given by

_kc ¼ � ðjuj þ aj _efibjÞkc þ n0ðefibÞk0jujþ
_tc ¼ � ðjuj þ aj _e fibjÞkc þ n0ðefibÞs0jujþ þ kc _efib:

(

ð2Þ

The asymptotic active stress σ0 and stiffness k0, generated by the sarcomere, are directly

related to myocardial contractility, while taking into account the effect of actin-myosin overlap

using a Frank-Starling law function n0(efib) with value s between 0 and 1 (the maximum value

for the optimal fiber extension and optimal overlap of actin and myosin chains), for details see

[23]. The activation of the sarcomeres is modeled using an activation function u, which is posi-

tive when the tissue is electrically activated with the maximum value of 35s−1 (given by the rate

of active stress generation [29]), |u|+ being defined as max(u, 0), and |u|− as max(−u, 0). The

parameter α governs the cross-bridge destruction rate due to rapid length changes.

The LV geometry was reduced to a thin-walled sphere as described in [21]. While the geom-

etry and kinematics are simplified, all physical and physiological components are preserved.

The model is then solved for the unknown displacement in the radial direction y(t) = R(t) −
R0, where R(t) and R0 stand for the actual (at time t) and reference (stress-free) radii of the

sphere (from the center to the mid-wall), and unknown intra-ventricular pressure P (and

active stiffness and stress as internal variables). Using the fiber extension efib ¼
y
R0

, the kinemat-

ics of the model can be rewritten as: R = R0(1+ efib). Likewise, due to tissue incompressibility
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the thickness of the myocardium d = d0(1+ efib)−2, with d0 being the wall thickness in the refer-

ence configuration. Ventricular volume is then given by V ¼ 4

3
pðR � d=2Þ

3
.

The circulation is represented by a Windkessel model containing proximal and distal

capacitances (Cp and Cd) and resistances (Rp and Rd) connected in series, with the distal part

representing the majority of the vascular resistance—typically ten times higher than in the

proximal part. The Windkessel model equations read:

Cp _Pao þ ðPao � PdÞ=Rp ¼ Qao

Cd _Pd þ ðPd � ParÞ=Rp ¼ ðPve � PdÞ=Rd;

(

ð3Þ

with Qao being the flow through aortic valve and Pao, Pd, Pve representing aortic, distal arterial

and venous pressures, respectively.

We remark that even though the geometry of the model used in this work is reduced to a

sphere, the adjustment of the cavity size, myocardial mass and biophysical properties of the tis-

sue allows to tailor the model to individual patients. Thanks to such a reduction of geometric

complexity, the proposed formulation allows to use patient-specific cardiovascular modeling

in close to real-time setting—a single heart beat being simulated within a few seconds—with

standard computational resources.

Calibration of the model to data of individual patients

The generic model was turned into patient- and physiology-specific regime by a calibration

procedure, during which the model parameters were manually adjusted according to the mea-

sured clinical data (see Table 1). The sequential calibration procedure consists of:

1. Adjustment of the parameters of Windkessel circulation model after imposing the flow in

ascending aorta, with the objective of matching the measured aortic pressure with the simu-

lation. As the monitoring data contain only velocity in the descending aorta, this waveform

was scaled by using stroke volume (SV) obtained by TTE in the beginning of the procedure,

in order to obtain a surrogate for the ascending aortic flow signal.

2. Adjustment of the left ventricular (LV) geometry (LV volume and myocardial mass)

according to the TTE measurements taken at end-diastole. The assumed LV volume at zero

pressure level (the so-called reference configuration), was given according to [26] by EDV �

(0.6-0.006 � EDP), where EDP was the assumed end-diastolic ventricular pressure, see next

point (pressure and volume in the formula are given in mmHg and ml, respectively).

3. Adjustment of the passive tissue stiffness of myocardium aiming at obtaining the EDV as

measured by TTE while applying the ventricular EDP. Not having an access to the ventricu-

lar or atrial pressure, we used a semi-quantitative method to classify LV filling pressure as

either high or normal [30], and we arbitrarily prescribed EDP value of 15 or 7 mmHg,

respectively.

4. Adjustment of timing of the electrical activation by using the measured ECG.

5. Adjustment of the myocardial contractility in the model to reach the stroke volume (SV) as

in the data.

The model calibration was performed for all patients at baseline. If NOR was requested dur-

ing GA, we re-adjusted only the parameters that are expected to be involved by NOR (i.e.

Windkessel model, timing of heart activation and myocardial contractility, see Table 2).
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Objectives

The first objective was to demonstrate that the calibrated models at baseline accurately repre-

sent the patients’ data by conducting an equivalence study. The second objective was to

employ the augmented hemodynamic monitoring to quantify the alterations of cardiovascular

state during IOH and after administering NOR to restore blood pressure.

Judgement criteria

The primary endpoint was to test the equivalence between the simulated and measured aortic

pressures and flow for the population. The mean, systolic and diastolic aortic pressures (MAP,

SAP, DAP), and SV were used. The secondary endpoints were to compare the hypotensive and

normotensive patients, and the hypotensive patients during the restoration of blood pressure

by NOR in the following sense: 1) Distal resistance (Rd) and capacitance (Cd) of the Windkessel

model with the calculated systemic vascular resistance (SVR) and total arterial compliance

(Ctot), respectively; 2) myocardial contractility; 3) simulated indicators of ventricular-arterial

coupling (Vva); and 4) simulated indicators of heart bioenergetics (Table 3).

Statistics

We designed an equivalence study to validate the ability of our framework to reproduce the

aortic pressure and CO. We followed the extended CONSORT guidelines for reporting equiva-

lence and non-inferiority studies [31]:

Table 2. List of parameters used for calibration. In bold are the parameters which were re-calibrated after norepi-

nephrine administration according to the new physiology state.

1 Sphere radius at reference configuration

2 Sphere thickness at reference configuration

3 Atrial pressure

4 Heartbeat duration

5 Time of ventricular activation

6 Duration of electrical activation

7 Myocardial stiffness factor

8 Proximal Windkessel resistance

9 Distal Windkessel resistance

10 Distal Windkessel capacitance

11 Myocardial contractility

https://doi.org/10.1371/journal.pone.0232830.t002

Table 1. Imaging data procedure: Transthoracic echocardiography mesurements.

Parasternal long axis Left Ventricular Posterior Diameter (LPWD)

Aortic Root Diameter (ARD)

Septum Diameter (SD)

Left Ventricular End-Diastolic Diameter (LVEDD)

Apical 4-chamber E wave

A wave

E’ wave (Tissue Doppler Imaging)

Left Ventricular End-Diastolic Surface (LVEDS)

Left Ventricular End-Systolic Surface (LVESS)

Left Atrial Surface (LAS)

Apical 5-chamber Velocity Time integral of Left Ventricular Outflow Tract (VTI)

https://doi.org/10.1371/journal.pone.0232830.t001
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1. Rationale and choice of equivalence margins: according to the guidelines for the validation

of a new arterial pressure device [32], we set the equivalence margins for the simulated aor-

tic pressure to 13 mmHg. The equivalence margins for the simulated CO, using the percent-

age error PE ¼ 100 � 1:96 �
SDsim� meas
Meanmeas;sim

, was set to 30%, a margin consistent with the ability of

current physiological monitors to measure the trends in CO (as reviewed in [33]). The coef-

ficient error (CErr ¼ SD
Mean �

1ffiffiffiffiffi
nob
p , nob being the number of heart beats considered for calcula-

tion) was also calculated.

2. Sample size calculation: With a first-order error α = 0.025 and a power (1 − β) = 0.99, the

number of patients requested to include in the equivalence study was 45.

3. Confidence interval analysis: We provided a Bland-Altman plot for repeated measurements

to represent the bias with the reference method. We tested the equivalence between the sim-

ulation and the measurement using the Two One-Sided Test (TOST, [34]). This test postu-

lates that accepting the H0 hypothesis implies that there exists a difference between the two

tested means, and accepting the H1 hypothesis (p< 0.05) implies that the two tested means

are equivalent.

We compared the characteristics of the normotensive group with the characteristics of the

hypotensive group at baseline by using the χ2-test for categorical variables and by the Wil-

coxon test for continuous variables. In the hypotensive group, we further analyzed the varia-

tion of the parameters of the models and the results of the simulations from baseline to the

maximum effect of NOR using the Wilcoxon test. The continuous variables were presented as

mean ± standard deviation and the categorical variables as count (%).

The simulations were performed using an in-house implementation of the model in

MATLAB (The MathWorks Inc, Natick, Massachusetts). The statistical analysis was per-

formed using R (The R Foundation for Statistical Computing, Vienna, Austria).

Table 3. Calculations of heart function indicators. MAP, mean aortic pressure; SAP, systolic aortic pressure; DAP, diastolic aortic pressure; LVEDS, left ventricular end-

diastolic surface; LVESS, left ventricular end-systolic surface; LVESP, left ventricular end-systolic pressure; AOD, left ventricular outflow tract diameter; HR, heart rate; V0,

intersection of end-systolic pressure volume relationship with volume axis.

Stroke Volume SV ¼ p AOD2

4
� VTI

Left Ventricular End-Diastolic Volume LVEDV ¼
Pn

i¼1
pixel spacing � p LVEDS2

4

Left Ventricular End-Systolic Volume LVESV ¼
Pn

i¼1
pixel spacing � p LVESS2

4

Left Ventricular Ejection Fraction LVEF ¼ LVEDV� LVESV
LVEDV

Pulse Pressure PP = SAP − DAP

Cardiac Output CO = SV �HR

Total Arterial Compliance Ctot ¼
SV
PP

Systemic Vascular Resistance SVR ¼ MAP
CO

Arterial Elastance Ea ¼ LVESP
SV

Ventricular Elastance Ees ¼
LVESPhighPreload � LVESPlowPreload
LVESVhighPreload � LVESVlowPreload

Ventricular-Arterial Coupling Vva ¼
Ea
Ees

Internal Work Iw ¼
LVESPðLVEDV� V0Þ

2

External Work Ew = area under PV loop

Cardiac Efficiency CE ¼ Ew
EwþIw

https://doi.org/10.1371/journal.pone.0232830.t003
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Results

Between November 1, 2016 and October 30, 2017, 45 patients were included (Table 4). Among

them, 16 patients (36%) received at least one NOR administration to treat IOH and were

included in the hypotensive group. The remaining 29 patients (64%) remained hemodynami-

cally stable during the data recording and were included in the normotensive group. Main

parameters of the models after calibrations to patients’ data and the interpretation of PV loops

are presented in Table 5. Fig 2 shows examples of the models confronted to the data. Fig 3 dis-

plays an example of simulated PV loop.

Equivalence between clinical data and the calibrated models

The Bland-Altman plots for repeated measurements in Fig 4A and 4C demonstrate that the

simulated and the measured aortic pressure and flow at baseline were concordant. The

Table 4. Population characteristics and comparison between the normotensive and hypotensive group. Results are expressed as mean ± standard deviation or count

(percentage).

Patient’s data All Normotensive Hypotensive P-val

n = 45 n = 29 n = 16

Demographic

Age (years) 51±13 53±14 49±12 0.315

Sex F n (%) 21(46) 11(39) 10(63) 0.997

Weight (kg) 73±15 76±17 69±11 0.292

Height (cm) 168±9 169±10 166±8 0.329

Comorbidities

Hypertension n (%) 14(31) 10(39) 4(25) 0.957

Diabetes n (%) 2(4) 1(4) 1(6) 0.516

Dyslipidemia n (%) 5(11) 4(14) 1(6) 0.662

Myocardial infarction n (%) 1(2) 1(4) 0(0) 0.468

Transthoracic echocardiography

Ejection Fraction (%) 59±9 57±9 61±8 0.127

Wall Thickness (cm) 0.78±0.13 0.83±0.13 0.76±0.14 0.69

Aortic root diameter (cm) 1.91±0.19 1.94±0.21 1.88±0.17 0.242

End-Diastolic Volume (ml) 129±25 132±25 126±25 0.681

Left Atrial Volume (ml) 54±5.4 56±3.8 52.4±7 0.682

E-wave (cm.s−1) 76±24 70±21 82±26 0.105

A-wave (cm.s−1) 61±18 64±18 59±15 0.432

E’-wave (TDI) (cm.s−1) 12±5 11±3 13±5 0.352

Velocity-Time Integral (cm) 23±5 23±5 23±5 0.86

Stroke Volume (ml) 76±17 75±15 77±19 0.681

Hemodynamic

Mean Pressure (mmHg) 81±13 85±14 75±10 <0.001

Systolic Pressure (mmHg) 114±19 118±20 109±16 <0.001

Diatolic Pressure (mmHg) 60±10 62±11 56±7 <0.001

Stroke Volume (TED) (ml) 73±18 70±15 76±22 <0.001

Biology

Potassium mmol.l−1 4.1±0.4 4.1±0.5 4.1±0.3 0.962

Serum Creatinine μmol.l−1 70±16 73±18 65±12 0.242

Treatment

Total Fluid Infusion ml 1027±464 1079±417 950±612 0.475

https://doi.org/10.1371/journal.pone.0232830.t004
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simulated MAP, SAP, DAP, and SV were statistically equivalent to the measurements: −0.9

(95%-confidence interval CI95=−1.7 to −0.1) mmHg for MAP; −1.2 (CI95=−2.2 to −0.2) mmHg

for SAP; 2.4 (CI95=1.6 to 3.2) mmHg for DAP; and 0.1 (CI95=−0.9 to 1.2)% of measured SV for

SV (p< 0.001 for equivalence for all). Furthermore, the upper and the lower bounds of the

confidence interval for the differences between measurements and simulations were within

Table 5. Results of model calibration procedure for the entire population, and comparison between the normotensive and hypotensive group. Results are expressed

as mean ± standard deviation.

Model parameters and simulation results All Normotensive Hypotensive P-val

n = 45 n = 29 n = 16

Model parameters

Ventricular volume (ml) 69±14 70±14 66±13 0.581

at reference configuration

Wall thickness at reference configuration (cm) 0.96±0.17 0.93±0.15 1±0.19 0.404

at reference configuration

Radius of ventricle from center

to mid-wall at reference configuration (cm) 3±0.2 3.01±0.19 3±0.21 0.842

Heartbeat duration (ms) 9501±181 9621±182 9291±182 0.433

Distal Resistance (108 Pa � s �m−3) 1.25±0.33 1.33±0.35 1.1±0.25 0.014

Distal Capacitance (10−8 m3� Pa−1) 1.25±0.38 1.2±0.4 1.35±0.31 0.09.

Contractility (kPa) 91±23 94±27 84±14 0.302

Ventricular-arterial coupling

Arterial elastance (Ea) (108 Pa �m−3) 1.76±0.45 1.86±0.42 1.59±0.45 0.095

Ventricular elastance (Ees) (108 Pa �m−3) 2.76±1.52 2.52±1.15 3.2±1.99 0.182

Ventricular-arterial coupling (Vva) (unitless) 0.8±0.4 0.88±0.43 0.64±0.37 0.039

Cardiac bioenergetics

External work (Ew) (Joules) 0.96±0.3 0.99±0.3 0.91±0.31 0.365

Internal work (Iw) (Joules) 0.32±0.19 0.38±0.21 0.23±0.12 0.009

Cardiac efficiency (CE) (unitless) 0.75±0.11 0.73±0.11 0.8±0.1 0.042

https://doi.org/10.1371/journal.pone.0232830.t005

Fig 2. Example of model calibration. Solid lines represent the result of the patient-specific simulation. Dashed lines

represent measured data. Blue: Hypotensive. Orange: Maximum effect of norepinephrine.

https://doi.org/10.1371/journal.pone.0232830.g002
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the predefined margins of equivalence (Fig 5). The percentage error s for MAP, SAP, DAP,

and SV were 6, 5, 8, and 18%, respectively. The coefficient error s for the simulation s were

0.61, 0.29, 1.27, and 0.5%, for MAP, SAP, DAP and SV, respectively. Finally, Fig 6 shows a

statistically significant correlation between the measured and simulated indicators of arterial

resistance and compliance.

PV loop interpretation in normotensive vs hypotensive group before

norepinephrine administration

Characteristics of normotensive patients were not different from hypotensive, except for the

hemodynamic conditions before the administration of NOR (see Table 4). Specifically, the

hypotensive patients had a lower blood pressure and a higher SV. The analysis of the values of

the model parameters was consistent with these observations (see Table 5 and Fig 7), as the dis-

tal resistance was lower in the hypotensive group (110±25 vs 133±35 MPa � s �m−3; p = 0.014).

The PV loop analysis showed that the ventricular-arterial coupling (Vva) was lower for the

hypotensive than for normotensive group (0.64±0.37 vs 0.88±0.43;p = 0.039). The internal

work (Iw) was lower and the cardiac efficiency (CE) was higher in the hypotensive group (0.23

±0.12 vs 0.38±0.21 Joules; p = 0.009 and 0.8±0.1 vs 0.73±0.11; p = 0.042, for Iw and CE, respec-

tively), see Table 5 and Fig 7.

Interpretation of the norepinephrine effects in the hypotensive group

The effect of NOR was confirmed by the changes in measured pressures and flow (MAP, SAP

and DAP increased by 30±15, 23±12 and 27±13%, respectively, whereas SV decreased by 14

±9%;p< 0.001 for all). Fig 2 shows an example of the adjusted calibration after NOR adminis-

tration in a hypotensive patient. The adequacy between the simulations and measurements

was confirmed by the 4-quadrant plots (Fig 4B and 4D) (>95% concordance with 10%

Fig 3. Example of output of a patient-specific simulation for a hypotensive patient and at the maximum effect of

norepinephrine. Solid lines represent the dynamic pressure-volume relationship during a cardiac cycle—namely the

Pressure-Volume (PV) loop. Dashed lines represent the static pressure-volume relationships—namely the End-

Diastolic Pressure-Volume Relationship (EDPVR) and the End-Systolic Pressure-Volume Relationship (ESPVR). The

EDPVR characterizes the ventricular volume for a given pressure at end-diastole. The ESPVR represents the

ventricular pressure and volume at end-systole, prior to isovolumic relaxation. Note that the dynamic PV loop does

not necessarily reach the theoretical static ESPVR curve, typically when cardiac cycle is too short.

https://doi.org/10.1371/journal.pone.0232830.g003
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Fig 4. Results of calibration. Left: Bland-Altman plots for repeated measurements representing dispersion of the difference between measurement and

simulation at baseline (n = 45 patients). Blue points and bars represent the mean and standard deviation for 10 heart beats in individual patients.

Dashed horizontal lines represent the limit of agreement (±1.96 times standard deviation) and the horizontal gray line represents the bias or the mean

difference between measurements and simulation. Right: 4-quadrant plots representing the variation of mean pressure and stroke volume from

hypotension to maximum effect of norepinephrine in patients from hypotensive group (n = 16), orange points represent mean of ten beats for each

patient. LLA, lower limit of agreement; ULA, upper limit of agreement.

https://doi.org/10.1371/journal.pone.0232830.g004

Fig 5. Confidence intervals for the differences between measurements and simulations. Dark gray boxes represent

the equivalence area for the mean difference estimation (in percentage of the measured indicator), light gray boxes

represent the equivalence area for confidence intervals. Limits of equivalence were defined as ±8mm Hg for pressure

and ±30% for stroke volume, as recommended by international guidelines. Blue lines represent the mean and the

confidence interval for the difference between measurement and simulation.

https://doi.org/10.1371/journal.pone.0232830.g005
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exclusion zone for MAP and SV, respectively). The 4-quadrant plots in Fig 6 show the ade-

quacy of the NOR-adjusted capacitance and resistance parameters with SVR and Ctot, respec-

tively (>95% concordance with 10% exclusion zone, for both). To adjust the calibration, we

had to significantly increase Rd by 60±39%;p< 0.001, increase contractility by 14±11%;

p = 0.002, and decrease Cd by 27±16%;p< 0.001.

When analyzing the effect of blood pressure restoration by using the simulated PV loops

(example in Fig 1), we observed an increase of Ew by 13±12%;p = 0.001, and Iw by 141±161%;

p< 0.001, associated with a decrease of CE by 13±11%;p< 0.001. We also observed an

increase of Vva by 92±101% caused by an increase of arterial elastance (Ea) by 59±37%;

p< 0.001, for both. Fig 7 shows the absolute variation of PV loop functional indicators

between the baseline and the maximal effect of NOR.

Validation group

The analysis of the validation group confronts the simulated vs measured PV loops and dem-

onstrates the sensitivity to using the flow in ascending vs descending aorta to calibrate the

Windkessel model. While Fig 8 shows a visual comparison, Table 6 demonstrates that the

errors between the simulated and measured ventricular pressures and the quantities obtained

from the PV loop analyses (Ew, CE and Vva coupling) are all�10% in both types of recorded

aortic flows.

Discussion

This study demonstrates the feasibility of employing biomechanical modeling to augment CV

physiological monitoring. The proposed framework allowed to set up models for 45 patients

while using standard data recorded during neuroradiological procedures (without cardiac

catheterization). The patient-specific models were subsequently used to quantify in vivo the

CV consequences of IOH on the cardiovascular system (including PV loop analysis) as

Fig 6. Correlations between simulated and measured indicators. A: Correlation plot representing simulated

capacitance (Cd) against measured total arterial compliance (Ctot = SV/PP) for all 45 patients at baseline. B: 4-quadrant

plot of ΔCd against ΔCtot representing difference from hypotension to maximum effect of norepinephrine for 16

hypotensive patients. C: Correlation plot representing simulated resistance (Rd) and systemic vascular resistance

(SVR ¼ MAP
CO ) for all 45 patients at baseline. D: 4-quadrant plot of ΔRd against ΔSVR representing difference from

hypotension to maximum effect of norepinephrine for 16 hypotensive patients. SV, stroke volume; PP, pulse pressure;

MAP, mean aortic pressure.

https://doi.org/10.1371/journal.pone.0232830.g006
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compared to the normotensive population, and the effects of restoration of blood pressure by

NOR administration.

First, we verified that the models were adequately calibrated in the cohort of 45 patients.

We performed an equivalence study between the measurements and simulations by analyzing

MAP, SAP, DAP and SV differences. The confidence interval s of the differences did not

exceed the equivalence margins. Moreover, we observed that the numerical values prescribed

for the parameters were in accordance with the expected theoretical levels. The validation

Fig 7. Boxplots of model parameters and the results of the simulation. Normotensive patients are in green; hypotensive patients before and after

administering norepinephrine are in blue and red color, respectively. � p< 0.05; �� p< 0.01; ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0232830.g007
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group confirmed that using the proposed calibration procedure, the simulated and measured

PV loops were in accordance.

We therefore assumed that the calibrated models behaved as the CV systems of the patients,

which allows to access an advanced CV picture of the individual patients. Specifically, we were

able to observe from a cardiac energetics viewpoint, that the hypotensive group expressed

more efficient hearts with better ventricular-arterial coupling. Despite the higher efficiency,

the model revealed an anesthetic drug-induced vasodilation. The restoration of blood pressure

was required, as hypotension may worsen organ perfusion and lead to renal or myocardial

ischemia [35, 36]. Optimizing the cardiac energetic expenditure could be the main target, how-

ever, in other situations (e.g. failing hearts or malignant hypertension management [7]).

Thirdly, we aimed to test the ability of our patient-specific model to quantify the changes in

the CV system induced by a pharmacological challenge. NOR should enhance the myocardial

contractility, increase the systemic vascular resistance and decrease the total arterial compli-

ance [37, 38]. We can appreciate that, after NOR administration, both measured Ctot and distal

capacitance Cd (model) varied in the expected direction, even though the correlation at

Fig 8. Validation subjects. Comparison of the simulated PV loops and of the measurements in selected validation

subjects once descending aortic flow was used (as in our clinical study) or when directly measured ascending aortic

flow was used.

https://doi.org/10.1371/journal.pone.0232830.g008

Table 6. Relative error in simulation vs measurement (in %) in the validation group. First and second line in each subject for measured flow in ascending, descending

aorta, respectively. MP, mean ventricular pressure; SV, stroke volume; Ew, external work; A-V coupling, arterio-ventricular coupling; CE, cardiac efficiency.

Patient measurement type MP SV Ew V-A coupling CE

Patient 1 ascending aorta 10 6 2 6 4

descending aorta 5 3 5 6 4

Patient 2 ascending aorta 2 3 3 2 10

descending aorta 2 2 3 5 10

Patient 3 ascending aorta 1 <1 4 2 1

descending aorta 2 4 3 6 3

Patient 4 ascending aorta 1 3 10 2 8

descending aorta 1 1 10 <1 8

https://doi.org/10.1371/journal.pone.0232830.t006
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baseline was mild. Measured SVR and distal resistance Rd (model) were significantly correlated

at baseline and at the maximal effect of NOR. We observed that the contractility increased and

that cardiac energetic expenditure and the V-A coupling worsened. These observation s are

compatible with the pharmacological effect s of NOR.

It has been shown that the model-estimated contractility correlates with the maximum

upslope of the ventricular pressure (dp/dt)max [11, 16]. Moreover, a close relationship has been

found between the contractility changes and the changes of maximum ventricular elastance Ees

in response to inotropic drugs [39]. While both (dp/dt)max and Ees are only surrogate measures

of contractility, which both in addition require ventricular catheterization, the estimated true

myocardial contractility is likely to have a direct link to the energy needs of the cell.

Cardiovascular models combined with measured data have the potential to assist in diag-

nostic or therapeutic management by providing additional information not directly contained

in the data. Patient-specific cardiovascular models are already available, see e.g. [40–45]. They

have not yet been tested for monitoring of physiological functions, however. In [10], the

authors used lumped-parameter modeling framework calibrated using 4D flow MRI to com-

pute PV loops in 8 healthy volunteers. MRI is however not suitable for monitoring. The

authors of [46] explored the effect of sodium nitroprusside on PV loops using a lumped-

parameter model in 5 patients with decompensated heart failure. Their calibration involved a

pulmonary artery catheter, which however narrows the applicability of the method.

Limitations

Further steps will need to be performed prior to employing the model-augmented monitoring

in routine practice. First, the combination of our biophysical modeling framework with mod-

els based on time-varying elastance as in [47] is currently being investigated (as suggested in

[48]) to achieve real-time monitoring, compared with simulation runs of about ten seconds

(on a standard laptop) in the present work. Secondly, not having access to the ventricular or

atrial pressure, we used a validated semi-quantitative method to classify LV filling pressure as a

high or normal preload [30]. Moreover, the filling pressure was kept at the same level during

NOR administration, even though NOR is known to increase the LV filling pressure [49]. This

approximation is likely to have led to an overestimation of contractility in response to NOR.

In future work s we will investigate a possibility of including a venous return model, while

keeping the protocol still clinically acceptable. The flow in the ascending aorta was replaced by

the descending aorta flow waveform scaled by using the measured SV. This could be consid-

ered as a surrogate measure for the ascending aorta flow if no significant aortopathy is present

(as was the case in our cohort), which was confirmed by using our validation subjects. A

significant stenosis in the aortic arch (such as in aortic coarctation) would require to include

information about the stenosis level (obtained e.g. by TTE prior to the procedure) into consid-

eration. Finally, the setting of our proof-of-concept study involves aortic pressure measure-

ment. Although it can be easily obtained during radiological interventions, it is not routinely

available during GA as only a peripheral artery cannula is typically requested for medical con-

cerns. A transfer function between peripheral arterial pressures and aortic pressures will be

included in our future work [50, 51].

Conclusions

This study aimed at evaluating the feasibility of hemodynamic monitoring augmented by

employing a patient-specific biomechanical model of heart and circulation set up using routine

hemodynamic measurements during neuroradiological procedure. Our framework allowed to

create biomechanical models specific for individual patients. Such models then allowed the
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interpretation of patient data comparatively between normotensive and hypotensive state by

plotting simulated PV loops and by quantitative estimation of pharmacologically-induced alter-

ations of the cardiovascular system. Even though further methodological improvements are

needed to transfer the technology to the bedside, the presented work represents a significant step

towards augmenting cardiovascular monitoring by using biophysical modeling. The availability

of such ready-to-use numerical patient-specific models has the potential to cause a paradigm

shift in physiological monitoring and management of patients in critical states during complex

general anesthesia procedures or at intensive care units throughout the medical specializations.

Supporting information

S1 File. Data file S1 File.txt contains data in the form of time-vs-aortic pressure and flow

(for all subjects in the study), as well as in addition the ventricular volumes and pressures

for the validation subjects. For each subject, the left ventricular end-diastolic and end-sys-

tolic volumes, and myocardial mass are also indicated.
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