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Abstract: Accurate life prediction and reliability evaluation of lithium-ion batteries are of great
significance for predictive maintenance. In the whole life cycle of a battery, the accurate description
of the dynamic and stochastic characteristics of life has always been a key problem. In this paper,
the concept of the digital twin is introduced, and a digital twin for reliability based on remaining
useful cycle life prediction is proposed for lithium-ion batteries. The capacity degradation model,
stochastic degradation model, life prediction, and reliability evaluation model are established to
describe the randomness of battery degradation and the dispersion of the life of multiple cells.
Based on the Bayesian algorithm, an adaptive evolution method for the model of the digital twin
is proposed to improve prediction accuracy, followed by experimental verification. Finally, the life
prediction, reliability evaluation, and predictive maintenance of the battery based on the digital
twin are implemented. The results show the digital twin for reliability has good accuracy in the
whole life cycle. The error can be controlled at about 5% with the adaptive evolution algorithm. For
battery L1 and L6 in this case, predictive maintenance costs are expected to decrease by 62.0% and
52.5%, respectively.

Keywords: life prediction; reliability evaluation; lithium-ion battery; digital twin; model evolution;
predictive maintenance

1. Introduction

As a new energy resource, lithium-ion batteries have been widely used in mobile
phones, laptops, energy storage systems, military equipment, aerospace, etc. [1,2] With the
rapid development of industrial technology and the continuous improvement of the degree
of product integration and intelligence, the application scenarios of lithium-ion batteries
tend to be complicated. The predictive maintenance of lithium batteries can effectively re-
duce maintenance costs, shorten the failure time, and improve system reliability. Predictive
maintenance is strongly based on the health state of the battery; therefore, accurate life
prediction is the key to effective predictive maintenance.

Lithium-ion batteries’ life prediction and reliability evaluation are the key issues in
engineering applications [3,4]. The existing methods mainly include data-based, model-
based, and data–model fusion [1–8]. Li [9] proposed a prognostic framework shared by
multiple batteries with a variant long short-term memory (LSTM) neural network (NN)
method to improve the accuracy of health state estimation and life prediction. A deep
learning-based stacked denoising autoencoder method is proposed to predict battery life
by Xu et al. [10]. Xie [11] analyzed the growth of the SEI layer based on a pseudo-two-
dimensional (P2D) electrochemical model, and constructed the degradation model of
batteries. Moreover, a multi-parameter coupling degradation model was established to
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predict the calendar and cycle life of batteries by He [12]. Ren [13] proposed a reliability life
assessment method of the lithium-ion battery pack based on the multiphysical coupling
model. Then, the multiphysical behavior and life in different situations were analyzed
and predicted. Ma [14] combined the capacity degradation data and open-circuit-voltage
parametric model to improve the accuracy of capacity estimation.

At present, the life prediction for lithium-ion batteries is mainly based on the prior
knowledge of historical data and models, which may not meet the needs of accurate predic-
tive maintenance. Life prediction should be developed from merely prior knowledge to
real-time and historical information integration. With the development of sensor technol-
ogy and data analysis methods, the concept of the digital twin provides inspiration and
technical ways to solve the above problems [15]. A digital twin uses digital technology
and virtual model simulation technology to explore and predict the operating state of
physical space, which provides the important theoretical basis and technical support for
the connection and real-time interaction between virtual and physical space [16,17]. The
digital twin can be naturally linked with the reliability requirements of products for its
main advantage of real-time and accurate mapping between virtual and physical space.
The literature shows that digital twin technology has been applied to evaluate and pre-
dict the performance degradation, failure, and life of products, for example, the concept
of digital twins was applied to the health monitoring, life prediction, and maintenance
support decision-making of aircraft by the U.S. Air Force Research Laboratory [18–20]
and the General Electric Global Research Center [21]. The performance and reliability of
underwater unmanned vehicle systems were predicted and improved based on digital
twin technology by Demetrious et al. [22]. Rajesh [23] applied digital twin technology
into the life prediction of automobile brake pads. A wear prediction model of tool cutting
using digital twin technology was proposed by Dary et al. [24]. A digital twin application
framework and a method of structural health state detection and residual life prediction
for aircraft were established based on digital twins by Beihang University [25–28]. Digital
twin technology has been well applied in life prediction and health assessment of aircraft,
automobiles, and mechanical products.

In the application of lithium batteries, Monika et al. [29] proposed a cloud battery
management system based on the concept of a digital twin to solve the problem of limited
data storage in vehicle battery management systems. A hybrid twin model for predicting
the degradation of lithium-ion batteries under real driving conditions was proposed by
San Carlos et al. [30]. Park [31] constructed a digital twin model of an all-solid-state battery
from physical and electrochemical perspectives to predict the electrochemical behavior of
the battery. There are also scholars who study models and methods related to digital twins
in the field of supercapacitor materials [32,33]. A digital twin based on the performance
degradation assessment model of the battery was established by Qu [34] to estimate the
capacity under dynamic operating conditions. Moreover, a framework of a digital twin
for the modeling and fault diagnosis of the battery was proposed by Billy et al. [35]. The
existing research and applications of digital twin technology for batteries mainly focus on
the technical framework and the construction of deterministic models of electrochemical
or degradation behavior. In practice, because of inevitable differences in the production
process, connection conditions, and operating conditions, the degradation process of the bat-
tery life cycle has the characteristics of multistate, dynamic, and random uncertainty [36,37].
Thus, how to accurately describe the dynamic evolution and random uncertainty charac-
teristics of the lithium battery model is the key to realizing accurate life prediction and
digital twinning. However, the existing research about the digital twin of batteries lacks
consideration of uncertainty and model evolution to the best of our knowledge.

To solve the above problems and realize an accurate online life prediction and reliabil-
ity evaluation, a digital twin for the reliability of lithium-ion batteries is proposed in this
paper based on the stochastic degradation model and a Bayesian-based adaptive evolution
method. The paper is organized into six sections. The framework of a digital twin for
reliability of lithium-ion batteries is proposed in Section 2. The digital twin models for
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reliability are established in Section 3. The model parameters are summarized, and the
experimental verification is described in Section 4. Several cases of life prediction, reliability
evaluation, and predictive maintenance are analyzed in Section 5. The conclusions and
future work are presented in Section 6.

2. The Framework of Digital Twin-Driven Life Prediction of Lithium-Ion Batteries

According to the framework of digital twins [25–27], the digital twin for the reliability
of lithium-ion batteries is established with its structure shown in Figure 1, which is mainly
composed of the data acquisition module, data management module, model manage-
ment module, simulation and calculation module, model evolution module, visualization
module, etc.

Figure 1. The framework of the digital twin for the reliability of lithium-ion batteries.

(1) Data acquisition module

To realize the interaction between the digital twin and physical entities, battery infor-
mation needs to be collected by data acquisition, including the design data, operation data,
real-time feedback data, etc. The function of the data acquisition module is data collection
and transmission in the whole life cycle of the battery.

(2) Data management module

The data management module is used to process and manage all kinds of data related
to the digital twin, including the basic data composed of design data, experimental data,
operating data and maintenance data; the algorithm and model data; expert knowledge
and standards data; and the derived data composed of diagnosis and prediction results.
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(3) Model management module

In the model management module, all models can be stored, used, managed, and
updated. The digital twin model for the reliability of batteries contains the degradation
model, the reliability evaluation model, the life prediction model, etc.

(4) Simulation and calculation module

Various algorithms are integrated into the simulation and calculation module. This
module will interact with the data and model management module to realize the function
of description, prediction, diagnosis, analysis, and evaluation of the battery.

(5) Model evolution module

With the use of lithium-ion battery products, the digital twin will continuously ac-
cumulate a large amount of data during the whole life cycle including mission profile,
working environment, sensor acquisition, and maintenance measured data. Combining
the historical and real-time data, the structure and parameters of the digital twin models
can be updated and evolved by the model evolution method, such as neural networks,
Bayesian regression, maximum likelihood parameter estimation, EM algorithm, etc. This
model evolution module will constantly improve the accuracy of the digital twin mapping
to the actual battery.

(6) Visualization module

In the visualization module, according to the user’s need, the digital twin models,
historical data, real-time data, prediction, diagnosis, and evaluation results of batter-
ies can be visualized by visual design, programming, and the set up human–computer
interaction interface.

(7) Other functional modules

In addition to the main modules mentioned above, the digital twin for the reliability
of batteries also includes the maintenance decisions, implementation, feedback, etc. For
maintenance decisions, the fault prediction will be implemented in the digital twin by using
historical data and real-time data. It will then provide the corresponding maintenance
strategies according to the failure mode and severity.

3. Digital Twin-Driven Life Prediction Model for Lithium-Ion Batteries

Based on the proposed framework of a digital twin for the reliability of lithium-ion
batteries, a digital twin model for reliability based on the remaining useful life cycle predic-
tion is established to verify the feasibility of the method, including stochastic degradation
model, life prediction model, and the Bayesian-based evolution model.

3.1. Stochastic Degradation Model

(1) Degradation model

Chemical and mechanical degradation are generally considered to be the main mecha-
nisms causing battery degradation [38]. There are many reasons for capacity fading [39,40],
such as the formation, cracking, and dissolution of the solid electrolyte interface (SEI), elec-
trolyte decomposition, and lithium plating. To facilitate the construction and verification of
the digital twin model for the reliability of lithium-ion batteries, the following assumptions
are made:

(1) The mechanical degradation caused by fatigue, cracking, and structural changes
related to discharge and charging rates is ignored. Chemical degradation is considered
to be the main reason for the loss of active lithium ions [38,41].

(2) During the cycling of lithium-ion batteries, temperature is a key factor affecting
battery capacity degradation [41,42]. It has been considered that the current indirectly
affects the degradation of the battery in the form of heat generation and temperature
rise [43,44]. Thus, the capacity decay of the battery can be expressed by the Arrhenius
formula [41]:
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dC f ade,N(t)
dt

= Ad exp
[
− Ea

RT(t)

]
(1)

C f ade,N =
∫ tN

0
Ad exp

[
− Ea

RT(t)

]
dt (2)

where Cfade, N is the accumulated capacity fade of the battery in the Nth cycle (mAh). Ad and
Ea represent the concentration degradation rate (mAh·s−1) and activation energy (J·mol−1),
respectively. R is the ideal gas constant (8.314 J mol−1·K−1). T(t) is the time-dependence
average battery temperature (K). tN represents the end time of the discharge process (s).

The suitable working temperature for lithium-ion batteries is usually about
298.15–318.15 K [45–47]. Therefore, in actual engineering, a battery thermal management
system (BTMS) is usually applied to improve the operating environment [48,49]. Thus, it is
assumed that the battery system operates in a good temperature range, and the degradation
model of Equations (1) and (2) is suitable for the temperature range of 298.15–318.15 K.

(2) Stochastic model

Due to the differences in the production process and operating environment in practice,
the degradation of lithium-ion batteries has a certain degree of randomness and dispersion.
For the nonlinear and fluctuating characteristics of the degradation process, randomness is
defined to describe the stochastic degradation during the life cycle of a battery. In addition,
for the differences of multiple battery degradation, the dispersion is defined to describe the
stochastic degradation characteristic of the same type or batch of batteries. According to
the normal distribution and Weibull distribution [37], a stochastic degradation model is
established with the probability density function (PDF) expressions listed as follows:

Normal distribution : f f ade(x, µ, σ) =
1√

2π · σ
· e−

(x−µ)2

2σ2 (3)

Weibull distribution : f f ade(x, β, η) =
β

η
·
(

x
η

)β−1
· e−

(
x
η

)β

(4)

where µ and σ are the location parameter and scale parameter of normal distribution, re-
spectively. β and η are the shape parameter and scale parameter of the Weibull distribution.
The calculation formulae for mean value are shown as follows:

Dnorm = µ = C f ade(T, t, ...) (5)

DWeibull = ηΓ(1 + 1/β) = C f ade (6)

For the normal distribution, the accumulated capacity fade Cfade is the mean value of
the distribution, whose parameters can be used to describe the stochastic degradation of
the battery shown as follows:

µ f ade = C f ade (7)

σf ade = κµ f ade (8)

where κ is the relative co-efficient of variation (κ = σ/µ), which is obtained by data fitting.
For the Weibull distribution, the shape parameter β will not change with increases in the
number of cycles. Thus, the relationship between shape parameter β and temperature
can be established by polynomial fitting. The scale parameter η can be derived from
Equation (6). The capacity stochastic degradation model fξ(x,µ,σ) that obeys the Weibull
distribution is shown as follows:

β(T) = f
(

T, T2, T3 · · ·
)

(9)
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η(T, t) =
ξ · t

Γ
(

1 + 1
β(T)

) (10)

where ξ is the battery degradation rate. The parameters of the above stochastic model can
be obtained by fitting the degradation data of the battery.

3.2. Life Prediction and Reliability Evaluation Model

Based on the degradation model, the life of the lithium-ion battery can be predicted
by analyzing the historical degradation trajectory and determining the failure criterion. In
this paper, the remaining capacity of 80% is used as the failure criterion, and the battery
capacity degradation Cfade can be calculated by Equation (1). The remaining useful life
(RUL) of a lithium-ion battery with the same working conditions can be calculated by the
following equation:

RUL =

(
0.2Cnom − C f ade

)
N

C f ade
(11)

where Cnom is the nominal capacity, and N is the number of cycles that the battery has
experienced. For temperature that changes dynamically, the remaining life can be expressed
as follow:

RUL =
0.2Cnom − C f ade∫
Ad exp

[
− Ea

RT(t)

]
dt

(12)

Reliability evaluation of lithium-ion batteries can be implemented by applying the
stochastic degradation model. Given that the mean and standard deviation of the random
variable Cfade are µfade and σfade, and the number of samples is n, the upper and lower limits
of the capacity degradation CIfade can be calculated by the following equations:

CI f ade = µ f ade ± Zα/2 ·
(
σ/
√

n
)
, n ≥ 30 (13)

CI f ade = µ f ade ± tα/2 ·
(
σ/
√

n
)
, n < 30 (14)

where α is the confidence level, and 0 < α < 1, Zα/2 and tα/2 are obtained according to the
Z-critical and t-critical value, respectively. Based on the upper and lower limits of capacity
degradation, the interval of RUL can be calculated by Equations (11) or (12).

3.3. Bayesian-Based Adaptive Evolution Method for Battery Models

The mission profiles and environmental loads of batteries varies from individual to
individual, which will make the degradation trajectory and model different. Therefore, the
battery model needs to be continuously revised according to the measured data to improve
the prediction ability of degradation and reliability. In practice, lithium-ion battery capacity
can be estimated indirectly or measured regularly, then transferred to the digital twin. The
models and parameters of the digital twin will be updated by using the model evolution
method. According to Refs. [50,51], the Bayesian model shows good performance in the
description of dynamic characteristics. Therefore, a Bayesian-based adaptive evolution
model is established for the digital twin as shown in Figure 2.

(1) Data preprocessing

Due to the influence of technological level, connection conditions, environment, and
other factors, there will be some points with large deviation in the battery degradation
data, these are outliers. The outliers will reduce the accuracy of the prediction model and
should be eliminated. The Letts criterion method is used to identify the outliers, the method
description is as follows:

In a row of measurement results with equal precision, if the absolute value of residual
Vi corresponding to the measurement value Xi meets |Vi|max > 3σx, the value Xi is an
outlier, which should be removed. The calculation equation of residual and standard
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deviation is as follows: Vi = Xi − X, σ =

√
n
∑

i=1
V2

i /(n− 1). In this paper, the capacity fade

per cycle is taken as the measured value, and X is the average value of the capacity fade
from 1 to i cycle.

Figure 2. Flow chart of the Bayesian-based evolution method for the digital twin model.

(2) Adaptive evolution method

In the proposed adaptive evolution method, the cycle of model evolution will be
dynamically adjusted according to the error between the predicted and measured results.
The initial cycle of model evolution is n, and the acceptable range of error is determined to
be Er%. If the error is within the acceptable range, the evolution cycle will be maintained or
extended to n + n/2. Otherwise, the evolution cycle should be reduced to n/2.

(3) Bayesian estimation algorithm

To continuously estimate the parameters of the accumulated usage data of lithium-ion
batteries, the Bayesian algorithm is introduced. If the historical degradation data of lithium
batteries obey the normal distribution N (µ0, σ0

2), the measured usage data obey the
normal distribution N (µ, σ2). The Bayesian estimation algorithm for normal distribution is
described as follows:

When σ2 is known and the conjugate prior distribution of µ is the normal distribution
N (µ0, σ0

2), the posterior distribution of µ can be deduced by the following equation:

µ| x ∼ N
(

a, b2
)

, a =

1
σ2

0
µ0 +

n
σ2 x

1
σ2

0
+ n

σ2

,
1
b2 =

1
σ2

0
+

n
σ2 (15)

When µ is known, the conjugate prior distribution of σ2 is the inverse gamma distri-
bution IGa(α, β), then S2

µ is the sufficient statistic, and the posterior distribution of σ2 can
be deduced by the following equation:

h
(

σ2
∣∣∣ s2

µ

)
∝
(
σ2)−(α+ n

2 +1)e
β+

3µ
2

σ2 . . . (16)
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∧
σ2 =

2β + s2
µ

2α + n− 2
(17)

When µ and σ2 are both unknown and independent, the Monte Carlo method can be
used to estimate the parameters.

4. Experiment and Model Verification
4.1. Experimental Setup and Design

To verify the digital twin model for the reliability of lithium-ion batteries, a battery
experimental platform is constructed with its structure shown in Figure 3.

(1) LAND battery test system was adopted as the charge and discharge device. The
technical specifications are as follows: current range of 1 mA–5000 mA, current
accuracy of 0.1% RD ± 0.1% F.S, voltage range of 2 V–15 V, voltage accuracy of 0.1%
RD ± 0.1% F.S;

(2) TOPRIE TP9000 was used as the battery data acquisition system with measurement
accuracy of ±0.2% F.S;

(3) A ZX GDJS was used as a thermostat with a temperature fluctuation range of ±0.5 K,
and temperature homogeneity of ±2 K;

(4) K-type thermocouples were used to collect the temperature with the range of 173 K~1645 K,
and measurement accuracy of ±0.05% rdg, ±0.6 K;

(5) The monitoring system consists of a computer and LAND battery network/local
integrated testing software. The device specifications are Intel(R) Core (TM) i5-10210U
CPU @ 1.60 GHz 2.11 GHz.

Figure 3. Experimental setup.

To study the randomness and dispersion of degradation, 18 batteries from the same
batch of 18,650 lithium iron phosphate batteries, with nominal voltages of 3.2 V and nominal
capacity of 1400 mAh, were used for capacity degradation tests. The anode, cathode, and
electrolyte material are graphite, LiFePO4 and EC-EMC (3:7) solvent with LiPF6. The
18 battery cells are equally divided into three experimental groups, named L, M, and H. The
labels are (L1~L6), (M1~M6) and (H1~H6), respectively. The experimental design scheme
is shown in Table 1, where the temperature collection point is the center point of the side
surface of the cylindrical battery.
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Table 1. Experimental scheme for capacity degradation.

Group Number Battery Number Experimental Conditions Test Methods [51,52]

L L1~L6
Ambient temperature: 298.15 K

Charge and discharge rate: 1 C-rate a

Depth of discharge: 100%

(a) Charge with a constant current of 1 C-rate to
the cut-off voltage (3.65 V), then charge with
a constant voltage of 3.65 V until the current
drops to 1/20 C-rate, rest for 1 h;

(b) Discharge at a constant current of 1 C-rate to
the cut-off voltage (2 V), rest for 1 h;

(c) Repeat the charge and discharge process
295 times and record the discharge capacity;

(d) 5 times charge and discharge test for battery
capacity measurement: charge with a
constant current of 0.5 C-rate to the cut-off
voltage (3.65 V), then charge with a constant
voltage of 3.65 V until the current drops to
1/20 C-rate, rest for 1 h; discharge at a
constant current of 0.5 C-rate to the cut-off
voltage (2 V), rest for 1 h.

M M1~M6
Ambient temperature: 318.15 K

Charge and discharge rate: 1 C-rate
Depth of discharge: 100%

H H1~H6
Ambient temperature: 333.15 K

Charge and discharge rate: 1 C-rate
Depth of discharge: 100%

a C-rate is the measurement of the charge and discharge current with respect to its nominal capacity.

4.2. Experimental Results and Analysis

According to the above experimental scheme, the capacity degradation test has been
carried out. A total of 18 sets of the battery capacity degradation data are plotted in Figure 4,
and some temperature results are shown in Figure 5.

Figure 4. Experimental result of capacity degradation.

It can be seen from Figure 4 that the battery capacity degrades rapidly in a higher
ambient temperature. This is because the reaction equilibrium inside the battery will be
broken through at a higher temperature, which results in the acceleration of side reaction
rate and loss of active substances. It is worth noting that the battery capacity degradation
curve jumps regularly. The regular jump phenomena occur at the periodical test node. It
is probably because the battery recovers its reversible capacity by resting for a relatively
long time at the periodical test node. This phenomenon is more pronounced at a lower
temperature (298.15 K), which may be due to the slower degradation rate and the easier
recovery of reversible capacity.
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Figure 5. Experimental result of battery temperature; (a) ambient temperature 298.15 K; (b) ambient
temperature 318.15 K.

In addition, comparing the initial discharge capacity of the batteries at the ambient
temperatures of 298.15 K, 318.15 K, and 333.15 K, it is found that the higher the ambient
temperature, the greater the discharge capacity. This is because, within a certain tempera-
ture range, a higher temperature will stimulate Li+ activity, accelerate the chemical reaction
rate and the transmission speed of electrolytes, improve the chemical reaction efficiency of
active substances and increase the battery capacity.

From Figure 5, it can be found that the temperature rise gradually increases under
the same working conditions with the degradation of the battery, which indicates that the
degradation will lead to the increase of heat production during the discharge of the battery.

4.3. Model Verification

(1) Verification of degradation model

To verify the accuracy of the degradation model, the model parameters were obtained
by fitting the battery capacity degradation data at ambient temperatures of 298.15 K,
318.15 K, and 333.15 K. The corresponding modeling and coding were implemented with
Python 3.9.8.

The degradation data of L1, M1, and H1 batteries are used in this case. Accord-
ing to Equation (2), the obtained model parameters Ea and Ad are 27628.4 J·mol−1 and
1.818 mAh·s−1, respectively. The battery temperature T(t) in Equation (2) is fitted by the
polynomial method. By substituting Ea and Ad into Equation (2), the fitting results of the
degradation model are shown in Figure 6. The results show that the fitted curve is in good
agreement with the experimental results of lithium-ion battery capacity degradation.

(2) Verification of the stochastic model

For randomness, the normal distribution model is taken as an example. The stochastic
model parameters of the L1 battery are calculated according to Equations (7) and (8) with
a mean value of 0.08 and a variance of 0.57, denoted as N (0.08, 0.57), and the co-efficient
of variation κ = 7.125. The normal distribution of L1 battery capacity degradation data is
tested by the Kolmogorov–Smirnov test method and shown in Figure 7. The probability
of degradation data obeying normal distribution is 0.943, much higher than the critical
value of 0.05. Thus, the degradation data of the L1 battery can be considered to obey
normal distribution.



Materials 2022, 15, 3331 11 of 22

Figure 6. Comparison of fitting and experimental results.

Figure 7. The normal distribution for L1 battery capacity degradation data.

For dispersion, the Weibull distribution model is taken as an example. If battery
capacity degradation is considered as a linear process, the corresponding linear degradation
function can be obtained by linearly data fitting. The slope of the function is the degradation
rate ξ, which can be obtained by the least square fitting shown in Table 2.

Table 2. Battery capacity degradation rate.

Group Number
Capacity Degradation Rate ξ (mAh N−1)

1 2 3 4 5 6

L 0.0787 0.0776 0.0920 0.0749 0.0806 0.0951

M 0.1573 0.1978 0.1642 0.1759 0.1813 0.1902

H 0.53 0.5356 0.5506 0.4218 0.4539 0.4215

Subsequently, the parameters of the Weibull distribution are obtained by fitting the
capacity degradation rate data, with the results shown in Table 3 and Figure 8. The
probability of the degradation rate data obeying the Weibull distribution is 0.865, much
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higher than the critical value of 0.05. Thus, these six sets of degradation rate data can be
considered to obey the Weibull distribution.

Figure 8. The Weibull distribution for the battery capacity degradation rate data.

Table 3. The parameters of the Weibull distribution.

Group Number
Weibull Distribution

β η

L 11.3380 0.0868

M 14.6119 0.1842

H 10.6606 0.5101

According to Equations (9) and (10), the parameters of the stochastic degradation
model that describe the degradation dispersion are calculated as follows:

β(T) = 0.7374T − 55.4245 (18)

η(T, t) =
ξ · t

Γ
(

1 + 1
β(T)

) (19)

5. Case Study and Analysis
5.1. Life Prediction of Lithium-Ion Batteries Based on the Digital Twin

Based on the above digital twin for the reliability of lithium-ion batteries, combining
the temperature information collected by the sensor, the life prediction, and reliability eval-
uation has been performed, including remaining cycle life prediction and the randomness
and dispersion of capacity degradation. In this case, the experimental data of the L1 battery
was used, including temperature, capacity degradation, and operating conditions.

(1) Cycle life prediction

The data of the first 300 cycles is used as a priori knowledge after eliminating the
outliers. The parameters of the degradation model are then fitted, corresponding to
Ea = 17468.12 J·mol−1, and Ad= 0.039 mAh·s−1. The temperature data is considered as the
real-time data collected by the sensor (part of which is shown in Figure 5), which is the
input of the degradation model. According to the framework and method of the digital
twin, the life of the L1 battery can be predicted. Before model evolution, the predicted and
measured values of the remaining battery capacity of the 596th to 600th cycles are shown
in Table 4. Combining the measured value of the 596th to 600th cycles, the digital twin
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model for reliability is evolved by using the Bayesian-based evolution method, as shown in
Figure 9. After model evolution, the predicted and measured values of the 1196th to 1200th
cycles are shown in Table 5.

Figure 9. Evolution of the digital twin model for the reliability of batteries.

Table 4. The predictive and measured value of L1 battery capacity.

Cycle Period
Initial Model

Mean Error
596 597 598 599 600

Predictive value (mAh) 1291.7 1291.578 1291.456 1291.334 1291.212
12.054

Measured value (mAh) 1303.59 1303.59 1303.79 1303.38 1303.2

Table 5. The predictive and measured value of L1 battery capacity after model evolution.

Cycle Period
Evolutionary Model

Mean Error
1196 1197 1198 1199 1200

Predictive value (mAh) 1241.822 1241.719 1241.616 1241.513 1241.41
4.846

Measured value (mAh) 1236.89 1237.11 1236.85 1236.5 1236.5

According to Equation (12), the remaining cycle life of the L1 battery is predicted
by using the evolved digital twin model. After 900 cycles, the L1 battery operates under
the ambient temperature of 298.15 K, the charge and discharge rate of 1 C-rate, and the
discharge depth of 100%. The remaining cycle life is expected to be about 1846 cycles.

(2) Randomness of degradation

According to the stochastic degradation model, the historical degradation data of the
first 300 cycles of the L1 battery is fitted. The result shows that the data obey the normal
distribution N(0.12, 0.891), and the confidence interval is [0.019, 0.221] with the confidence
of 95% of the mean value. The confidence interval of the L1 battery capacity degradation is
deduced as shown in Figure 10. The upper limit of the predicted remaining life is about
3397 cycles, and the lower limit is about 1040 cycles. The real degradation trajectory of the
L1 battery is within the confidence interval, which means that the stochastic model of the
normal distribution can better describe the randomness of the capacity degradation process
of a single battery.
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Figure 10. The prediction result of the randomness of battery degradation.

(3) Dispersion of multi-cell degradation

In engineering, the lithium-ion battery cells need to be used in groups to meet power
demand. The same type and batch of battery cells with higher consistency are usually
used to ensure the overall performance of the battery pack. However, the inconsistency of
degradation cannot be avoided due to differences in the production process, connection,
installation, and manufacturing level. Moreover, it is uneconomical and unrealistic to
obtain the operating parameters of all battery cells in practical applications. Thus, the
dispersion of multiple battery cell degradation can be used to evaluate the degradation of
the battery pack.

The data of the first 300 cycles of L1~L6 batteries are selected as historical data for
dispersion analysis. The parameters of the degradation model are obtained corresponding
to Ea= 13205.57 J·mol−1, and Ad = 0.0078 mAh·s−1. The capacity degradation rates of L1~L6
batteries are calculated as shown in Table 6. According to the stochastic degradation model,
the dispersion of the capacity degradation rate is fitted and obeys the Weibull distribution
(β, η) of W(4.497, 0.171).

Table 6. Capacity degradation rate of L1~L6 batteries.

Number L1 L2 L3 L4 L5 L6

Capacity degradation rate ξ 0.1353 0.1452 0.2055 0.125 0.1148 0.2087

According to the above stochastic degradation model for dispersion, the prediction
for the degradation of the battery pack is carried out with the results shown in Figure 11.
The results show that the degradation of the L6 is the fastest, which may be caused by
multiple stochastic factors. It means the Weibull distribution is more suitable to describe
the randomness of degradation. In given load conditions of the ambient temperature of
298.15 K, the charge and discharge rate of 1 C-rate and the discharge depth of 100%, the
mean value, upper limit, and lower limit of the RUL of the cells inside the battery pack are
obtained according to Equation (12), which are 1496, 2146, and 1294 cycles, respectively.
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Figure 11. The prediction result of the dispersion of multiple battery degradation.

5.2. Analysis of the Model Evolution Cycle

Real-time and accurate mapping between the physical and digital space is the key
characteristic of the digital twin. The accuracy of its digital twin model for the reliability
of the battery directly determines the accuracy of life prediction and reliability evaluation.
The model evolution cycle will affect the accuracy of the evolved model. To analyze the
influence of the model evolution cycle, the strategies of model evolution with the fixed and
adaptive cycle were analyzed in this case.

(1) Model evolution with fixed cycle

The strategy of 600 fixed cycles is used to update the digital twin model for reliability.
The data of the L1 battery is selected for analysis, and the result is shown in Figure 12.
In the life cycle of L1, the model evolves 3 times. The errors between the predicted and
the measured value at the evolution points are shown in Table 7. The error equation is
as follows:

E =

∣∣∣Cm − C f

∣∣∣
C f ade

· 100% (20)

where Cm and Cf are the measured value and predicted value of capacity, respectively.

Figure 12. Model evolution with fixed cycles.
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Table 7. The result of model evolution with fixed cycles.

Evolution Times Predictive Value (mAh) Measured Value (mAh) Error

The first time 1254.612 1266.67 12.38%

The second time 1201.321 1217.45 11.00%

The third time 1158.772 1181.89 12.69%

It can be seen from Table 7 that the errors in the whole life cycle are about 11%–12%
when the model is evolved with 600 fixed cycles. This means that the error cannot be
reduced by regular model evolution, and it is not conductive to improving the accuracy of
the digital twin.

(2) Model evolution with adaptive cycles

The initial evolution cycle and the acceptable range of error are assumed as 600 cycles
and 10%, respectively. The analysis results are shown in Figure 13.

Figure 13. Model evolution with adaptive cycles.

It can be seen from Table 8 that the error between the predicted and the measured
value shows a decreasing trend with the adaptive evolution algorithm, about 2% to 8%.
Comparing the results of the fixed and the adaptive evolution shows that the proposed
adaptive evolution method is better than the evolution method with a fixed cycle.

Table 8. The result of model evolution with adaptive cycle.

Evolution Times Predictive Value (mAh) Measured Value (mAh) Evolutionary Cycle Interval Error

The first time 1254.612 1266.67 600 12.38%

The second time 1233.861 1236.5 300 2.07%

The third time 1204.383 1217.45 300 8.91%

The fourth time 1187.96 1199.61 300 7.09%

The fifth time 1172.01 1181.89 300 5.42%

The sixth time 1155.79 1165.73 300 5.01%

(3) Life prediction and model evolution based on open-source datasets

The data of the first 200 cycles of battery batch 8_CH1 is selected to validate the digital
twin model according to the open-source datasets [5]. The initial evolution cycle and the
acceptable range of error are assumed as 200 cycles and 10%, respectively. The analysis
results are shown in Figure 14. The errors between the predicted and the measured value
at the evolution points are shown in Table 9.
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Figure 14. Evolution of the digital twin model based on open-source datasets.

Table 9. The result of model evolution based on open-source datasets.

Evolution Times Predictive Value (mAh) Measured Value (mAh) Error

The first time 1055.74 1052.87 35.88%

The second time 1050.84 1047.83 23.08%

The third time 1046.48 1044.87 10.06%

The fourth time 1043.41 1042 7.47%

The fifth time 1037.1 1034.32 10.47%

The sixth time 1032.42 1029.69 8.76%

The seventh time 1020.49 1015.61 10.78%

The eighth time 1007.41 1003.21 7.28%

The ninth time 951.706 939.086 10.36%

The tenth time 912.936 900.914 7.52%

It can be seen from Table 9 that the error between the predicted and the measured
value shows a decreasing trend with the adaptive evolution algorithm, about 7% to 10%.

5.3. Analysis of Digital Twin-Based Predictive Maintenance Decision

The capacity of the lithium-ion battery system will continuously decline during use. It
is assumed that the system cannot meet the power supply requirements when the remaining
capacity is less than 80% of the initial capacity, which can be regarded as a failure. The
predictive maintenance of a lithium-ion battery system can improve the reliability of the
system in the whole life cycle. In this paper, the digital twin for reliability is applied to
guide the predictive maintenance of the lithium-ion battery. The contrastive analysis of the
cost of operation and maintenance with and without digital twin is implemented below.

Without a digital twin for reliability, the model will not evolve in the whole life
cycle. The history degradation data of the battery is usually used to construct the average
degradation model for prediction. The degradation data of L1–L6 and M1–M6 batteries
are used in this case. According to the above data, the model parameters are obtained
corresponding to Ea = 30273.4 J·mol−1 and Ad = 5.479 mAh·s−1.

Based on the digital twin for reliability, the L1 and L6 batteries are taken as two
typical examples for comparative analysis. The digital twin models are evolved by the
adaptive method with 600 initial cycles. The remaining cycle life of the L1 and L6 batteries is
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predicted under the conditions of an ambient temperature of 298.15 K, charge and discharge
rate of 1 C-rate, and discharge depth of 100%. The results are shown below.

(1) Excessive maintenance

The life prediction and maintenance cost analysis results of the L1 battery are shown in
Table 10, and the results of model evolution based on a digital twin are shown in Figure 15.

Figure 15. The results of model evolution of L1 batteries.

Table 10. Life prediction and maintenance cost analysis of L1 batteries.

Scheme Predicted Value (Cycle) Actual Value (Cycle) Maintenance Cost

Without digital twin 2615 2878 263 V

Digital twin-based 2778 2878 100 V

It can be seen from Table 10 that the predicted life of the L1 battery with and without a
digital twin is 2778 and 2615 cycles, respectively. It shows that the predicted life based on the
historical data is shorter than the actual life of the L1 battery of 2878 cycles. The predictive
maintenance of the L1 battery based on the predicted life will cause cost waste. Assuming
that the battery usage cost per cycle is V, the maintenance cost of digital twin-based and
without a digital twin is 100 V and 263 V, respectively.

(2) Insufficient maintenance

The life prediction and maintenance cost analysis of the L6 battery are shown in
Table 11, and the results of model evolution based on a digital twin are shown in Figure 16.

Table 11. Life prediction and maintenance cost analysis of L6 batteries.

Scheme Predicted Value (Cycle) Actual Value (Cycle) Maintenance Cost

Without digital twin 2615 2200 415 P

Digital twin-based 2397 2200 197 P
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Figure 16. The results of model evolution of L6 batteries.

It can be seen from Table 11 that the predicted life of the L6 battery with and without
a digital twin is 2397 and 2615 cycles, respectively. It shows that the predicted life based
on the historical data is longer than the actual life of the L6 battery of 2200 cycles. The
predictive maintenance of the L6 battery based on the predicted life will cause a system
failure. Assuming that the economic loss per cycle is P, the maintenance cost of digital
twin-based and without a digital twin is 197 P and 415 P, respectively.

Based on the digital twin for reliability, the maintenance cost of the L1 and L6 batteries
have costs reduced by 62.0% and 52.5%, respectively. Thus, digital twin-based predictive
maintenance is more economical.

6. Conclusions

In this paper, a framework for the use of digital twins for the reliability of lithium-ion
batteries based on remaining useful cycle life prediction was proposed. The digital twin
model was constructed by establishing the stochastic degradation model, the life prediction
model, the reliability evaluation model, and the Bayesian-based adaptive evolution method
for the model. The degradation experiments of several cells were carried out to verify
the accuracy of the models. Finally, the life prediction and reliability evaluation based
on digital twins has been conducted, followed by the analysis of the evolution cycle and
predictive maintenance decision. The following conclusions are obtained:

(1) Based on the concept of a digital twin, the data collected by sensors can be fully
utilized to evolve the models. Considering the randomness in engineering, the life
prediction, and reliability evaluation can be more accurate.

(2) A Bayesian-based adaptive evolution method for the model was proposed. The
accuracy of lithium-ion battery life prediction and reliability evaluation is improved
effectively by adaptively adjusting the evolution cycle.

(3) Based on the digital twin for reliability, the excessive and insufficient maintenance of
the battery system can be prevented, and the maintenance cost can be reduced.

In practice, the real-time acquisition of data and the dynamic evolution of models
are the keys to realizing digital twins for the life prediction of lithium-ion batteries. The
proposed models and method in this work provide the framework, stochastic degradation
model and effective evaluation method for the realization of the digital twin, which can
accurately describe the dynamic evolution and random uncertainty characteristics of the
battery’s whole life cycle.
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Due to the limitations of the experiments, there are still further studies that need to
be conducted, including the deeper utilization of physical models and processes with a
digital twin, as well as the application and verification of the digital twin for reliability
under complex working conditions.
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Nomenclature

Ad concentration degradation rate, mAh·s−1

Cfade, N accumulated capacity fade in the Nth cycle, mAh
CIfade upper and lower limits of the capacity degradation
Cnom nominal capacity
Ea activation energy, J·mol−1

N number of cycles that the battery has experienced
n number of samples
R ideal gas constant, 8.314J mol−1·K−1

T(t) time-dependence average battery temperature, K
tN end time of the discharge process, s
Vi measurement value
Xi residual value
X average value of the capacity fading from 1 to i cycle
α confidence level
µ location parameter of normal distribution
µfade mean of the random variable Cfade
σ scale parameter of normal distribution
σfade standard deviation of the random variable Cfade
β shape parameter of Weibull distribution
η scale parameter of Weibull distribution
κ relative co-efficient of variation
ξ battery degradation rate
SEI solid electrolyte interface
BTMS battery thermal management system
PDF probability density function
RUL remaining useful life
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