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Abstract: A room-temperature strip-guided “manufacturable” Silicon-on-Insulator (SOI)/GeSn
integrated-photonics quantum-gyroscope chip operating at 1550 nm is proposed and analysed.
We demonstrate how the entangled photons generated in Si Spontaneous Four Wave Mixing (SFWM)
can be used to improve the resolution of a Sagnac interferometric gyroscope. We propose different
integrated architectures based on degenerate and non-degenerate SFWM. The chip comprises several
beam splitters, two SFWM entangled photon sources, a pump filter, integrated Mach–Zehnder
interferometric gyro, and an array of waveguide coupled GeSn/Ge/Si single-photon avalanche
detectors. The laser pumped SWFM sources generate the signal-idler pairs, which, in turn, are used
to measure the two-photon, four-photon, and higher order coincidences, resulting in an increasing of
the gyro resolution by a factor of two and four, with respect to the classical approach.

Keywords: group IV photonics; quantum photonics; integrated interferometer; quantum interference;
integrated quantum gyroscope; Sagnac effect

1. Introduction

This theoretical paper proposes and analyses a fully integrated room-temperature entangled-
photon gyroscope chip that uses path-entangled N00N-states and squeezed vacuum light to provide
super-resolution and phase sensitivity beyond the classical shot-noise limit. The group-IV-on-SOI
(Silicon on Insulator) platform is proposed.

Silicon photonics (SiPh) has already proven to be important for actualizing several integrated
quantum-photonic applications. Group IV photonics is an “expanded version” of SiPh with added
capabilities in on-chip SiGeSn photodetectors and light sources. The group IV approach offers
the possibility of replacing superconducting nanowire detectors with 300 K waveguide-integrated
single-photon avalanche diodes (SPADs) [1]. In the present paper, the strong 1550-nm absorption
capability of GeSn is employed in order to create an efficient separate absorber within such SPADs.

The novelty of the present work consists in the following aspects: (i) manufacturable SOI chip,
including the monolithic integration of all parts of the quantum gyro chip; (ii) room temperature
entangled-photon source using silicon Kerr-effect strip waveguides; (iii) room temperature GeSn/Ge/Si
SPAD arrays that are waveguide-coupled to the interferometer section; and, (iv) an increase of 2×
or 4× over classical gyro resolution using SPAD arrays and multiply-split Sagnac interferometers.
At the present time, the GeSn SPADs are purely theoretical and experiments are required to verify
the predicted efficient 300 K waveguide-coupled operation. Work is currently going on in several
laboratories to provide this verification.
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2. Quantum Photonics Perspective

An examination of recent literature shows that chip-scale integrated photonics provides practical
realizations of complicated quantum functions, such as processing units in photonic quantum
computation/simulation [2–6], sender/receiver modules in quantum communication [7–11], quantum
key distribution [12,13], quantum money [14], and quantum anonymity [15], as well as quantum
communication complexity [16]. The quantum photonic circuit has advantages for scalability and
stability [17–20].

Practical implementations require compatible building-blocks, such as quantum light sources
for biphoton state generation, optical interferometers for pump light manipulation and quantum
state manipulation, and single-photon detectors for quantum state measurement. CMOS-compatible
technologies promise bringing quantum photonics towards higher integration levels. However,
the on-chip suppression of photonic noise leads to substantially higher pump intensity when compared
to that of the photon-pairs. An externalized solution to this problem using fiber or bulk optical
components hinders the compactness and stability of the system. Well-designed waveguided chips
solve the compactness problem.

We have decided to use third-order nonlinear optics to attain an on-chip, room-temperature
telecom-compliant quantum light source. A review of the literature shows several viable approaches,
such as the device that integrates on a single substrate a non-linear photon-pair generator and a passive
pump rejection filter [21], using the CMOS-compatible SiPh platform. Similarly, a hybrid Si waveguide
scheme to avoid the impact of noise photons induced by pump has been investigated [22]. The scheme
is composed of strip waveguide and shallow-ridge waveguide structures and utilizes the difference
of biphoton spectra generated by spontaneous four-wave mixing (SFWM) in these two waveguides.
Also considered is the on-chip integration of identical photon sources with reconfigurable waveguide
circuits. There, an SOI device that combines two four-wave mixing sources in an interferometer with a
reconfigurable phase shifter has been proposed [23,24]. More recently, an array of Si micro-resonator
sources has been proposed [25]. Higher-dimensional quantum states using the higher-order radial
modes of a micro-disk resonator coupled with an integrated waveguide has been also investigated [26].
The quantum source approach followed in this paper is the non-resonant SFWM.

3. Quantum Photonics for Rotation Sensing

Photonic chips for quantum metrology and quantum sensing are also quite feasible. However,
quantum photonic sensing has been less explored than the quantum photonic applications discussed
above. In particular, the quantum gyroscope chip is a new frontier.

Looking at the prior art, optical gyroscopes that are based on the Sagnac effect and optical
interference have proven to be an invaluable tool in sensing and navigation. The Sagnac effect
refers to the relative phase ϕS(Ω) experienced by counter-propagating light waves in a rotating
interferometer [27]. The effect allows us to determine the absolute rotation Ω with respect to the inertial
space [28] and it has found application in navigation systems for spacecraft [29] and aircraft [30], as well
as self-driving vehicles, such as autonomous cars [31]. Many of the above-mentioned applications have
been realized by inducing the Sagnac effect in either a fiber-optic interferometer gyro (IFOG) or a ring
resonator fiber gyro (RFOG). Although the fiber optic gyros guarantee high performances due to their
capability of increasing the optical path [32], they have the drawback of not being fully integrable on a
single chip, i.e., their package is not compact. Thus, it is natural to consider the integrated photonic
gyro as an alternative to IFOG and RFOG, at least in some applications. The potentiality of integrated
optical gyroscopes in both passive and active configuration has been outlined in a review paper [33].
Recently, non-Hermitian systems have gained interest in the field of integrated optical gyroscopes.
In particular, the sensitivity enhancement of an optical gyroscope working near an exceptional point has
been studied in both parity-time [34] and anti-parity-time [35] symmetric microscale optical gyroscopes.
The enhanced Sagnac resonance splitting between two counterpropagating modes has been shown
to be independent of the dimensions of the device, leading to the possibility of realizing integrated
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optical gyroscopes with increased sensitivity with respect to classical Sagnac ones. The effect has been
recently experimentally demonstrated in a Brillouin-based integrated optical gyroscope [36] working
near its exceptional point and in an RLG-based single-cavity parity-time symmetric gyroscope [37].

The most recent research efforts in the field of optical gyros are concerned with the reduction of
noise components to improve the device resolution. High efficiency techniques of signal processing
after the photo-detection step have been pointed out to compensate all of the errors by using a feedback
system, especially in the IFOG based system [32]. However, even under ideal conditions, where
all error sources can be compensated, the uncertainty in the measurement of ϕS is limited by the
shot noise, which is caused by the quantization of the electromagnetic field itself. Therefore, this
uncertainty δϕS is given by the ratio between the photon shot noise and the interference fringe slope
and this is minimum where the fringe slope is maximum. In other words, δϕS = π/

(
√nphηDτ

)
where nph is the number of photons/sec falling on the detector, ηD is the quantum efficiency of the
detector, and τ is the averaging time, depending on the bandwidth of the detection system [32].
Therefore, the shot-noise limit (SNL) constitutes the fundamental boundary for the phase resolution
(∆ϕS) achievable with coherent or thermal states. In this context, the phase resolution can obviously be
enhanced by increasing the average photon rate at the detector. However, large values of optical power
could induce additional phase noise that results from detrimental effects, like the non-linear Kerr effect
or coherent back-scattering [32,33]. As a result, a trade-off between these additional noise sources and
the SNL has to be made to find the optimal operating point in any practical interferometric gyro.

This is true in the case of interferometric gyros under the classical state of light. However, quantum
metrology provides a way to improve the precision of measurement beyond the levels obtained in the
classical domain [38]. Specifically, the sensitivity of the Sagnac interferometer could be considerably
improved by using correlated photons. Indeed, the path-entangled N00N-states leads to an attainment
of a shortened de-Broglie wavelength λ/N (λ is the physical wavelength of the individual photons),
resulting in an increase of the interferometric fringe pattern by a factor of N (super-resolution) without
changing the physical wavelength of the photons [39]. In this context, the theoretical performances of
the fiber quantum gyro have been presented [40], where the entangled photons that are produced in
parametric down conversion have been used to improve the resolution of a Sagnac interferometer. Those
authors have demonstrated that two-photon and four-photon coincidences increases the resolution by a
factor of two and four, respectively. Very recently, the interference between counter-propagating modes
in the IFOG at different rotational speeds, using the canonical two-photon N00N state (N = 2), has been
experimentally demonstrated. This study represents an important step towards the achievement of the
super-resolution IFOG [41].

Some theoretical aspects of the present work are similar to those that are presented in the
literature [40,41]. However, here we have made significant changes, improvements, and expansions,
as follows: (1) we adopted an integrated approach that is arguably more amenable to low-cost
high-volume manufacture, compact package, and reduced size than is the fiber optic platform using
discrete optics; (2) we operate around 1550 nm using the Spontaneous Four Wave Mixing (SFWM)
as a source of entangled photons instead of the Spontaneous Parametric Down Conversion (SPDC),
where the pump photons at 405 nm are converted into pairs of signal and idler photons at 810 nm [40];
(3) we operate with pump, signal, and idler photons having the same state of polarization rather than
horizontal and vertical polarization [40,41]; (4) we adopted the CMOS-compatible integrated quantum
photonic platform operating at the 1550 nm telecom wavelength, however the proposed device is
also suitable to operate if desired at the “new” 2000-nm optical wavelength [42]; (5) our device uses
strip-channel waveguides that are based on Silicon material, integrated beam splitter (BS), integrated
Mach Zehnder interferometer (MZI), rather than fiber-optic bulk beam splitter, mirrors, half wave plate,
and polarizing beam-splitter (our components offer reduced size and weight); and, (6) monolithic
integration of quantum gyro and Single Photon Avalanche Photodetectors (SPADs) is proposed, rather
than the hybrid and discrete solution. In this context we adopt the waveguide-integrated SPAD solution
proposed in our previous work [1], based on GeSn-on-Si platform. Indeed, when compared with
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present Ge-on-Si SPADs, the GeSn-on-Si SPAD gives better wavelength coverage due to its selectable
bandgap. The 1550-nm GeSn-on-Si SPAD has stronger absorbance, higher SPD efficiency, and lower
spatial volume. Another potential advantage of our approach is that hundreds or thousands of SPADs
could be closely integrated on-chip at a low cost of production.

4. Numerical Results

The goal of this section is to theoretically demonstrate the super-resolution beyond the shot-noise
limit for several interferometric quantum gyro architectures. In this context, we will adopt the main
building blocks well standardized in the silicon quantum photonic platform. Indeed, it is largely
recognized that the photonic platform represents an efficient way to realize complicated quantum
functions, such as the applications described in the previous section.

4.1. Device Overview

Figure 1a–d show four proposed integrated-photonic chip architectures and operation schemes.
Figure 1a,b are two alternative solutions giving the same resolution, while Figure 1c,d are designed to
give higher resolution than Figure 1a,b. In each case, the chip area consists of three waveguide-connected
sections for: (i) generation of quantum state, (ii) the interferometric gyro, and (iii) high-efficiency
detection and analysis. Basically, in the generation section, the photonic circuit consists of a beam
splitter (BS-1) to couple the pump laser to the entangled photon sources, two photon-pair sources
(S-1 and S-2), each comprising a long spiraled Silicon strip waveguide in which the SFWM process is
induced; S-1 and S-2 realize the two arms of a MZI that is composed of two beam splitters (BS-1, BS-2)
and a phase-shifter, inducing the phaseθ. The gyro transducer is realized by means of an interferometric
MZI composed of long semi-circular arms (to increase the Sagnac scale factor, see Equation (1)) and by
two beam splitters (BS-3, BS-4). The phase shift that is induced by the angular rotation is represented
by the box with ϕS(Ω) (see Figure 1). The filtering stage for the residual pump is not shown in
the architectures of Figure 1a–d, for editing reasons. However, we think that a micro-ring racetrack
resonator coupled on both sides to silicon bus waveguides can be considered to be an efficient choice
and can then be implicitly assumed in our devices. Typically, ϕS(Ω) is considered to be a consequence
of the difference in the arrival time between the clockwise and counterclockwise propagating waves.
Thus, ϕS(Ω) is given in Equation (1), where A is the interferometer area. In particular, a more general
approach [32] shows that the phase shift does not depend on the shape of the interferometer and it is
proportional to the flux of the rotation vector Ω through the interferometer enclosed area.

ϕS =
8π
cλ

AΩ (1)

Classically, the phase shift ϕS(Ω) is evaluated by means of the interference pattern, proportional
to cos2(ϕS/2) .

Here, we demonstrate how the proposed quantum gyro devices can operate beyond the classical
resolution. The SFWM process creates a signal-idler photon pair (s, I) by annihilating two photons
from a bright pump beam. Non-degenerate pairs are created by a single wavelength pump (p) , while
degenerate pairs require a dual wavelength pump scheme (p1, p2) . In our gyro devices, we consider
both of the approaches. The energy conservation requires 2ωp = ωs +ωI or 2ωs = ωp1 +ωp2 for the
non-degenerate and degenerate cases, respectively. In the following analysis, we set λp(s) = λ0 , and
ωp −ωs = ωI −ωp = ∆ω (ωp2 −ωs = ωs −ωp1 = ∆ω) in the case of a non-degenerate (degenerate)
SFWM process. It is well known that an efficient FWM process requires the phase-matching condition
κ = 0 to be met, where κ is the net phase mismatch as: κ = ∆β + γ(P1 + P2) with γ(P1 + P2)

the phase mismatch due to nonlinear Kerr effects. The terms γ, P1 and P2 indicate the non-linear
parameters depending on the Kerr refractive index n2 and the two pump powers, respectively. It holds
P1 = P2 = P0 for the non-degenerate case. The parameter ∆β = βs + βI − 2βp (∆β = 2βs − βp1 − βp2) is
the mismatch due to both material and waveguide dispersion for the non-degenerate (degenerate)



Sensors 2020, 20, 3476 5 of 15

case, being numerically evaluated by means of full vectorial FEM simulations, including the Sellmeier
equation for Si and SiO2. Among different excitation methods, the most efficient way to realise the
condition κ = 0, is to operate in the anomalous Group Velocity Dispersion (GVD) region.
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In general, low-loss PICs are fundamental in quantum photonic applications. In this context,
low-loss waveguides have been manufactured in several platforms, such as Silicon, Silicon Nitride,
and Silicon Dioxide [43]. Recently, a silicon-rich nitride core waveguide has been proposed and
experimentally demonstrated for non-linear applications to fill the gap between the pure silicon
waveguide and the pure silicon nitride waveguide with respect to the non-linear properties [44–46].
The manufacturing process of this platform is CMOS compatible and the increased silicon content allows
for tensile stress reduction. Moreover, the silicon-enriched nitride presents a measured non-linear Kerr
coefficient n2 of 1.4 × 10−18 m2/W (five times higher than stoichiometric silicon nitride) and a refractive
index of 2.1 at 1550 nm that enables high optical field confinement, allowing high intensity nonlinear
optics and light guidance, even with small bending radii. Despite these advantages, an increase
of the propagation loss from 8.4 × 10−4 dB/cm up to 1 dB/cm is recorded, when changing the SiN
platform from stoichiometric to silicon enriched, respectively. However, here, we mainly focus on
foundry-compatible and CMOS-compatible silicon waveguides. The loss coefficient of 2 dB/cm is
commonly adopted for silicon strip waveguides [22] manufactured with standard CMOS process.
However, a significant improvement in the propagation loss has been experimentally reported [47],
where a record low coefficient of 0.45 dB/cm ± 0.12 dB/cm (adopted in the following simulations)
has been obtained by means of advanced CMOS processes. In this context, we investigate the two
photon-pair source performances for SOI platforms. The silicon waveguide is a strip structure having
height H, width W deposited on the silicon dioxide layer. The cladding is assumed to be SiO2. With
the aim of designing the waveguide cross section to induce the phase matching conditions between
pumps, signal, and Idler waves, we evaluate the SOI GVD coefficient (β2) and the fourth-order
dispersion coefficient (β4) as a function of wavelength, waveguide width, and two values of the
height, H = 220 nm and H = 250 nm. The simulations have been performed by means of a commercial
software based on full-vectorial FEM [48]. Figure 2 shows the GVD coefficient spectrum in the range
1500 nm–1600 nm, for different values of W and assuming the quasi-TE polarization state. For each
case considered, the quasi-TE GVD coefficient presents an anomalous region for wavelengths around
1550 nm, recording larger values for H = 250 nm. Moreover, in the wavelength range considered,
two Zero Group Velocity Dispersion (ZGVD) points (λz1 and λz2, with λz1 < λz2) are achieved for
H = 220 nm and W > 575 nm, or H = 250 nm and W > 590 nm (in Figure 2 we have only presented
the case for W = 650 nm). In addition, the simulations indicate that λz1 and λz2 show a red and blue
shift, respectively, as the waveguide width is increased. Figure 3a,b show the β2 and β4 coefficients at
λ0 = 1550 nm as a function of the waveguide width, for H = 220 nm and H = 250 nm, respectively. The
plots indicate that it is possible to realize the perfect phase matching condition, since β2 is negative and
β2 and β4 present opposite signs.
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In this context, Figure 4a,b show the phase matching parameter κ as a function of frequency
shift ∆ f = ∆ω/2π at λ0 = 1550 nm (λp = λ0 for non-degenerate SFWM and λs = λ0 for degenerate
SFWM), for different values of W, and assuming H = 220 nm and H = 250 nm, respectively. In the
simulations, a continuous wave pump having P0 = 10 mW is assumed inside the spiral waveguides.
The curves indicate that the zero crossing (κ = 0) takes place for two values of

∣∣∣∆ f
∣∣∣ (

∣∣∣∆ f0,1
∣∣∣ and

∣∣∣∆ f0,2
∣∣∣ ,

with
∣∣∣∆ f0,1

∣∣∣ <
∣∣∣∆ f0,2

∣∣∣) increasing while the value of W decreases. It is worth noting that the phase
matching condition takes also into account the effect of forth order dispersion effect (β4). For larger
levels of pump power, the phase mismatch due to the non-linear effect increases, which results in
an increasing of

∣∣∣∆ f0,1
∣∣∣ and

∣∣∣∆ f0,2
∣∣∣ that is needed to realize the condition κ. However, to meet the

experimental needs to operate with relatively narrow ∆ f [23,24], we set the phase matching condition
at

∣∣∣∆ f
∣∣∣ =

∣∣∣∆ f0,1
∣∣∣. The plots of Figure 4a,b record values

∣∣∣∆ f0,1
∣∣∣ that range between 232 GHz (200 GHz)

and 362 GHz (304 GHz), when changing W from 450 nm to 650 nm, for H = 220 nm (250 nm).
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4.2. Nonlinear Source and State Preparation

Hereafter, we assume the following waveguide cross sections: H = 220 nm, W = 500 nm as a
trade-off choice. In this context, we assume for the non-degenerate SFWM process: P0 = 10 mW,
λp = 1550 nm, ∆ f = 240 GHz, λs = 1551.9 nm, and λI = 1548.1 nm. Similarly, for the degenerate
SFWM process, we have: λs = 1550 nm, λp1 = 1551.9 nm, and λp2 = 1548.1 nm. Figure 5 shows the
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colour map of the photon pair generation rate for non-degenerate SFWM sources, as a function of the
spiral waveguide length and frequency shift, as obtained through Equation (1) of ref. [49], where the
modulation instability has been taken into account. However, it is worth outlining that this equation
degenerates in the expression of the square of squeeze parameter (|ξ|2), when the condition γP0L� 1
is satisfied. In the simulations, we have assumed a pump power of 10 mW inside the spiral and the
photon pair generation rate, depending on the effective length (Le f f =

(
1− e−αL

)
/α, where α is the Si

loss coefficient) instead of the geometrical length L. The sharp peaks that are placed at ±19.27 THz
are induced by the perfect phase matching occurring for

∣∣∣∆ f
∣∣∣ =

∣∣∣∆ f0,2
∣∣∣ (see Figure 4a). In Figure 5, the

full width half maximum (FWHM) of the photon pair generation rate ranges between 3.49 THz and
2.52 THz, when changing L from 5 mm to 10 mm, respectively.
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Similar investigations have been performed for SiN material, where SiN strip waveguides
having height H and width W deposited on the silicon dioxide layer have been considered, for both
stoichiometric and Si-enriched SiN platforms. The results are summarized in Table 1, which indicates
the superiority of SOI in terms of the photon generation rate. Moreover, the SOI platform does not suffer
from the spontaneous Raman scattering, which is a significant problem in Silicon Nitride waveguides.

Table 1. Design Parameters for SOI and SiN platforms.

Parameters
Si/SiO2

W = 500 nm;
H = 220 nm

Si/SiO2
W = 500 nm;
H = 250 nm

Si3N4/SiO2
W = 1060 nm;
H = 600 nm

Si-enriched SiN/SiO2
W = 790 nm;
H = 600 nm

λ0 [nm] 1550 1550 1551 1552

∆ f0,1 [GHz]@
P0 = 10 mW 240 215 985 330

Photon pair
generation rate
[Photon/Hz·s]

2.94 × 10−4 @ L =
10 mm,

∆ f = ∆ f0,1

2.53 × 10−4 @ L =
10 mm,

∆ f = ∆ f0,1

1.83 × 10−7 @ L =
30 mm, ∆ f = ∆ f0,1

2.03 × 10−6 @ L = 20
mm, ∆ f = ∆ f0,1

FWHM [THz] 2.52 2.31 8.74 8.4

With reference to Figure 1a, the quantum state at the output of the generation section is given in
the form [23]: ∣∣∣ψ0

〉
= cos(θ)

∣∣∣ψbunch
〉
+ sin(θ)

∣∣∣ψsplit
〉

(2)

where θ is the phase induced by the phase shifter. In Equation (2), the
∣∣∣ψbunch

〉
is the quantum

state describing the photons bunched together in either output mode A (top waveguide) and B
(bottom waveguide). Conversely,

∣∣∣ψsplit
〉

represents the state for which one photon is in each mode. As
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detailed in [23], in the general case of non-degenerate SFWM, the bunch and split states occur with a
probability Pbunch and Psplit, depending on the phase θ , as given in Equation (3): Psplit =

∣∣∣(Γ0 + Γin) sin(θ)
∣∣∣2

PAB
bunch =

∣∣∣(Γ0 + Γin + Γout) cos(θ) ∓ (Γin + Γout)
∣∣∣2 (3)

where the coefficients Γ0 Γin and Γout are defined as in [23] and depend on the squeeze parameter that
is induced by the SFWM effect inside the spiral waveguide sources, input and output waveguides
(BS-1 and BS-2). The numerical simulations for Pbunch and Psplit give the similar information of Figure 5
and are then not reported here for compactness reasons (the same for the degenerate case).

According to Figure 1a, now we analyse the quantum gyro performances, while assuming the
degenerate case. After normalization, the quantum state at the input of the gyro interferometric section
can be written as: ∣∣∣ψ0

〉
= cos(θ)

1
2

(
a†a† − b†b†

)
|00〉+ sin(θ)a†b†|00〉 (4)

where a† (a), b† (b) are the creation (annihilation) operators for photons in spatial mode A and B,
respectively. The operators at the gyro output are given by:[

c
d

]
=

 − j sin
(ϕS

2

)
+ cos

(ϕS
2

)
cos(2θBS) j cos

(ϕS
2

)
sin(2θBS)

j cos
(ϕS

2

)
sin(2θBS) j sin

(ϕS
2

)
+ cos

(ϕS
2

)
cos(2θBS)

[ a
b

]
(5)

where the global phase e jϕs/2 has been dropped. The phase θBS determines the splitting ratio of
the beam splitter BS-3 and BS-4, which is assumed to be equal (design details are shown in the
Supplementary Materials).

4.3. Quantum Interferometer and Coincidence Measurements

In the Heisenberg picture, the expectation values of photon numbers at SPAD-1 and SPAD-2 are
given as:

I1 =
〈
ψ0

∣∣∣c†c∣∣∣ψ0
〉

(6)

I2 =
〈
ψ0

∣∣∣d†d∣∣∣ψ0
〉

(7)

By developing this, we have that the single photon counts at each detector is I1 = I2 = 1, thus no
interference pattern can be measured. In this sense, it can be useful for calculating the two photon
coincidences at the SPAD-1 and SPAD-2, as:

I12 =
〈
ψ0

∣∣∣c†d†cd
∣∣∣ψ0

〉
= cos(θ)

(
cos(θ) sin2(φS) −

1
2 sin(θ) sin(2φS)

)
+ sin(θ)

(
sin(θ) cos2(φS) −

1
2 cos(θ) sin(2φS)

) (8)

Equation (8) shows that for bunch (θ = 0) and split (θ = π/2) quantum states, the two photon
coincidence is equal to sin2(ϕS) and cos2(ϕS), respectively, inducing the two-fold improvement in the
fringe pattern with respect to the classic approach.

In the following, we discuss how the multi-pairs generation can increase further the gyro
resolution performance. In this context, we adopt the gyro configurations, as sketched in Figure 1b–d,
and operating with the non-degenerate SFWM process. The architectures include two micro-ring
resonators in order to filter out the idler photons generated from the source S-1 and S-2. As a result,
the idler photons, detected at the SPAD-1 and SPAD-4 (architecture of Figure 1b) or at the SPAD-1
and SPAD-6 (architecture of Figure 1c,d), are used to herald the presence of signal photons at SPAD-2
and SPAD-3 or at SPAD-2, SPAD-3, SPAD-4, and SPAD-5. It is worth outlining that our architecture
of Figure 1b is similar to the configuration proposed in [24] where the authors have experimentally
demonstrated the high visibility on-chip quantum interference. However, here we discuss the quantum



Sensors 2020, 20, 3476 10 of 15

interference under the Sagnac effect and use Figure 1b as a starting point to propose and analyse the
potential of the improved architecture of Figure 1c,d. It is worth noting that although it is possible to
particularize the architectures of Figure 1b–d in order to operate in the degenerate mode, avoiding the
presence of micro-ring resonators, we will not analyse this approach because the single mode squeezing
is less efficient with respect to the two-mode squeezing. Consequently, fewer pairs for higher pump
power are provided by the degenerate SFWM process. In this context, the reduced density matrix for
the heralded signal photons for each source is:

ρ̂i = Ni(1− xi)
(
xiL(1Ii)|1〉〈1|si + x2

i L(2Ii)|2〉〈2|si

)
(9)

with i = 1, 2. The term Ni is the normalization coefficient, xi is the squeezing parameter, and L(nIi)

takes into account the losses that are experienced by n idler photons emitted by the i-th SFWM source
and lumped with the SPAD loss. In this context, the density matrix for the system with S-1 and S-2 is
given by:

ρ̂ = ρ̂1 ⊗ ρ̂2 = N1N2(1− x1)(1− x2)(
x1L(1I1)|1〉〈1|s1 + x2

1L(2I1)|2〉〈2|s1

)
⊗

(
x2L(1I2)|1〉〈1|s2 + x2

2L(2I2)|2〉〈2|s2

) (10)

Thus, with reference to Figure 1b, the probability of detecting four-fold coincidences is:

PInd(Dis) =
2∑

i, j=1

〈i|D2
〈

j
∣∣∣
D3

(
ρ̂Ind(Dis)

)
|i〉D2

∣∣∣ j〉D3 (11)

where the subscripts D2 and D3 indicate the quantum state at the input of SPAD-2 and SPAD-3,
respectively, while the superscripts Ind and Dis signify the indistinguishable and distinguishable
(separate temporal mode) emitted photons.

By substituting Equation (11) into Equation (10), we obtain:

PInd
4F = A1

(
cos2

(ϕS
2

)
− sin2

(ϕS
2

))2

+A2

[(
sin3

(ϕS
2

)
− 2 sin

(ϕS
2

)
cos2

(ϕS
2

))2
+

(
cos3

(ϕS
2

)
− 2 sin2

(ϕS
2

)
cos

(ϕS
2

))2
] (12)

PDis
4F = A1

[
cos4

(ϕS
2

)
+ sin4

(ϕS
2

)]
+A2

[
2 cos4

(ϕS
2

)(
cos2

(ϕS
2

)
+ 2 sin2

(ϕS
2

))
+ 2 sin4

(ϕS
2

)(
sin2

(ϕS
2

)
+ 2 cos2

(ϕS
2

))] (13)

where:
A1 = N1N2(1− x)2x2η2

I η
2
s

A2 = 4N1N2(1− x)2x3
[
1− (1− ηI)

2
][

1− (1− ηs)
2
]

In the previous relationship, we have set x1 = x2 = x; and, L(1I1) = L(1I2) = ηI, L(2I1) = L(2I2) =

1− (1− ηI)
2, L(1s1) = L(1s2) = ηs, L(2s1) = L(2s2) = 1− (1− ηs)

2.
The next step is to increase the gyro resolution further by measuring higher order coincidences. We

suggest employment of six single-photon detectors SPAD-i (i = 1,2,3,4,5,6), as depicted in Figure 1c,d.
We examine the coincidence of clicking six detectors i.e., the probability given by:

PInd(Dis)
6 = 〈1|D2〈1|D3〈1|D4〈1|D5

(
ρ̂Ind(Dis)

)
|1〉D2|1〉D3|1〉D4|1〉D5 (14)

With reference to the Figure 1c,d, we indicate with v1 and v2 the vacuum ports at the beam splitters
BS-5 and BS-6
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Therefore, from Equations (10) and (14) and for architecture of Figure 1c, we obtain:

P(Ind)
6 = A3r4t4

·

∣∣∣∣∣∣∣
[
sin2

(ϕS
2

)
+ cos2

(ϕS
2

)
cos2(2θBS)

]2
+ cos4

(ϕS
2

)
sin4(2θBS)−

4 cos2
(ϕS

2

)
sin2(2θBS) ·

[
sin2

(ϕS
2

)
+ cos2

(ϕS
2

)
cos2(2θBS)

] ∣∣∣∣∣∣∣
2

(15)

PDis
6 = A3r4t4


[
sin2

(ϕS
2

)
+ cos2

(ϕS
2

)
cos2(2θBS)

]4
+ cos8

(ϕS
2

)
sin8(2θBS)+

4 cos4
(ϕS

2

)
sin4(2θBS) ·

[
sin2

(ϕS
2

)
+ cos2

(ϕS
2

)
cos2(2θBS)

]2

 (16)

where
A3 = 4N1N2(1− x)2x4η4

s

[
1− (1− ηI)

2
]2

and r and t represent the Cross and Bar amplitude coefficient of the beam splitters BS-5 and BS-6,
respectively.

Moreover, Equations (15) and (16) take the effect of the splitting ratio (θBS) of the beam splitters
BS-3 and BS-4 into account. Similarly, for the architecture of Figure 1d, we obtain Equations (17)
and (18).

Under the indistinguishable condition and assuming the optimized case 50:50 for the splitting
ratio of BS-3 and BS-4, Equations (15) and (17) show that the fringe patterns are proportional to
[1 + 3 cos(2ϕS)]

2 and [sin(2ϕS)]
2 for Figure 1c,d, respectively. Thus, a reduction of the fringe period is

obtained, which results in an increase of the resolution of four times with respect to the classical gyro
performance at room temperature, although requiring higher power than the first two architectures,
in order to obtain multi pair generation. As a result, the nonlinear effects (SPM) affect the phase
matching condition ∆β = 0. However, the exact frequency shift, ∆ f , to achieve the generalized
phase matching condition, κ = ∆β+ 2γP0 = 0, can be always found, by setting the parameter ∆β to
an opportune negative value, depending on the pump power. Our simulations record that, when
changing P0 from 10 mW to 300 mW, the condition κ = 0 can be found, by ranging ∆ f between 0.2
and 1.148 THz. Moreover, we believe that the very small temperature change does not induce any
significant detrimental effect on the operative phase matching condition. We have estimated that a
temperature change ∆T = 1 K, induces ∆ f changes from 0.2 and 3.4 THz. However, this effect can be
mitigated using a thermal controller.

The theory before described is summarized in Figure 6 where the normalized fringe pattern as a
function of the Sagnac phase is shown for all cases previously discussed. The plot records that for
indistinguishable photons the visibility is theoretically 100%.

P(Ind)
6 = 9A3

(
r3t2

)2
|B1 + B2|

2 (17)

where

B1 =
[
cos2

(ϕS

2

)
cos2(2θBS) + sin2

(ϕS

2

)]
·

[
− j sin

(ϕS

2

)
+ cos

(ϕS

2

)
cos(2θBS)

]
· cos

(ϕS

2

)
sin(2θBS)

B2 = −
[
− j sin

(ϕS

2

)
+ cos

(ϕS

2

)
cos(2θBS)

]
· cos3

(ϕS

2

)
sin3(2θBS)

PDis
6 = 3A3

(
r3t2

)2
[B3 + B4] (18)

where

B3 =
[
cos2

(ϕS

2

)
cos2(2θBS) + sin2

(ϕS

2

)]2
·

[
− j sin

(ϕS

2

)
+ cos

(ϕS

2

)
cos(2θBS)

]2
· cos2

(ϕS

2

)
sin2(2θBS)

B4 =
[
− j sin

(ϕS

2

)
+ cos

(ϕS

2

)
cos(2θBS)

]2
· cos6

(ϕS

2

)
sin6(2θBS)
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smaller peaks. However, this aspect is solved by the architecture of Figure 1d, where the pure four-
fold increasing of the resolution is obtained having all peaks at the same height. Finally, the 
detrimental effect of the splitting ratio being different from 50:50 is shown in Figure 7, where the 
normalized fringe pattern versus the Sagnac phase, when assuming a splitting ratio equal to 30:70, 
40:60, and 50:50 (optimum), is plotted for the devices of Figure 1c,d, respectively. For the coincidence 
measurements, all of the SPADs must be connected to a picosecond-resolution time tagger, which 
records the photons arrival times. The post-processing of these times-of-arrival is applied to identify 
the fringe pattern. At this stage, it is difficult to estimate the acquisition time without any 
experimental feedback, being strongly dependent on environmental conditions and the measured 
efficiency of the photodetectors. However, from an analysis of the literature [50] the acquisition time 
could range from 10 s to 50 s. In this context, it represents the main drawback with respect to the 
classical approach. Indeed, the review papers indicate that the integration time for classical IFOG is 
around 1 s. We believe that a three-dimensional (3D) rotation sensor can be made easily using three 
of these gyro chips by orienting the chips at 90 degrees to each other, that is the plane of the chip is 
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Figure 6. Normalized fringe pattern as a function of the Sagnac phase, for the integrated gyro
architectures. (a) Dashed line: Classic interference; red square: two photon coincidence, Equation (8) or
four-fold coincidence for indistinguishable photons, Equation (12); (b) Green triangles: six coincidence
for indistinguishable photons, Equation (15); Blue circles: six coincidence for indistinguishable photons,
Equation (17).

We see that the architecture of Figure 1c shows a reduction in the period fringes, but it develops
smaller peaks. However, this aspect is solved by the architecture of Figure 1d, where the pure four-fold
increasing of the resolution is obtained having all peaks at the same height. Finally, the detrimental
effect of the splitting ratio being different from 50:50 is shown in Figure 7, where the normalized fringe
pattern versus the Sagnac phase, when assuming a splitting ratio equal to 30:70, 40:60, and 50:50
(optimum), is plotted for the devices of Figure 1c,d, respectively. For the coincidence measurements,
all of the SPADs must be connected to a picosecond-resolution time tagger, which records the photons
arrival times. The post-processing of these times-of-arrival is applied to identify the fringe pattern.
At this stage, it is difficult to estimate the acquisition time without any experimental feedback, being
strongly dependent on environmental conditions and the measured efficiency of the photodetectors.
However, from an analysis of the literature [50] the acquisition time could range from 10 s to 50 s.
In this context, it represents the main drawback with respect to the classical approach. Indeed,
the review papers indicate that the integration time for classical IFOG is around 1 s. We believe that a
three-dimensional (3D) rotation sensor can be made easily using three of these gyro chips by orienting
the chips at 90 degrees to each other, that is the plane of the chip is XY for chip 1, YZ for chip 2, and ZX
for chip 3.
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5. Conclusions

For operation at 1550 nm, chip-scale room-temperature integrated quantum interferometric gyro
architectures have been proposed for foundry implementation in the Group IV SOI/GeSn technological
platform. The focus of this work has been to demonstrate that integrated architectures can induce
super-resolution with respect to what is obtained with the classic approach. Basically, the proposed
devices present the one-chip co-integration of entangled photon sources (i.e., spiraled waveguides or
micro-ring resonators in which signal-idler pairs are generated by means of the SFWM process), beam
splitters, MZI, phase shifter, gyro interferometer, and an array of single-photon detectors (SPADs).
Moreover, the presented architectures can operate either with degenerate and non-degenerate SFWM
effect. In the first case, the split or bunched (N00N) state has been used to measure the two-fold
coincidences, recording an improvement of two times in the gyro resolution. Alternatively, two different
gyro configurations that are based on two-mode squeezing (induced by non-degenerate SFWM) have
been proposed to operate with four-fold and higher order coincidences. The theoretical investigations
have demonstrated that an increase of a factor of four is also possible with a visibility of 100% for
indistinguishable photons. We think that experiments should be feasible because many two-photon
and four-photon interference effects have been observed in quantum Silicon photonics.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/12/3476/s1,
Figure S1: Schematic top view of proposed quantum optical gyro architecture; Figure S2: Beam splitter coupling
ratio as a function of the coupling region length (interaction length), for different values of gap between the two
strip SOI waveguides; Figure S3: Squared norm of the electric field in the directional coupler. The dashed line
shows the length where the 50% of coupling ratio is achieved; Figure S4: (a) Drop spectrum of the MRR pump
filter; (b) Drop and Pass spectrum around λp(Zoom-in); Figure S5: (a) Drop spectrum of the MRR Idler filter;
(b) Drop and Pass spectrum around λI(Zoom-in).
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