

Received 20 March 2016 Accepted 11 April 2016

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; radical cation salt; bis(ethylenedithio)tetrathiafulvalene; rhenium; quadruple metal–metal bond.

CCDC reference: 1473493

Supporting information: this article has supporting information at journals.iucr.org/e

Alexander A. Golichenko,^a* Andrey V. Kravchenko,^b Irina V. Omelchenko,^c Denis M. Chudak,^b Vladimir A. Starodub,^d Boleslaw Barszcz^e and Alexander V. Shtemenko^a

^aDepartment of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipropetrovsk 49005, Ukraine, ^bApplied Chemistry Department, V. N. Karazin Kharkiv National University, 4 Svoboda Square, Kharkiv, 61022, Ukraine, ^cSSI "Institute for Single Crystals" NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine, ^dInstitute of Chemistry, Jan Kochanowski University, 25-406 Kielce, Poland, and ^eInstitute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznan, Poland. *Correspondence e-mail: golichenko_alex@i.ua

The asymmetric unit of the title salt, $(C_{10}H_8S_8)[Re_2Br_6(CH_3COO)]\cdot 0.5C_2H_3Cl_3$, contains one bis(ethylenedithio)tetrathiafulvalene (ET) radical cation, one μ_{2} -acetato-bis[tribromidorhenate(III)] anion and a 1,1,2-trichloroethane molecule with half-occupancy disordered about a twofold rotation axis. The tetrathiafulvalene fragment adopts an almost planar configuration typical of the ET radical cation. The C atoms of both ethylenedithio fragments in the cation are disordered over two orientations with occupancy factors 0.65:0.35 and 0.77:0.23. In the anion, six Br atoms and a μ_2 -acetate ligand form a strongly distorted cubic O₂Br₆ coordination polyhedron around the Re₂ dinuclear centre. In the crystal, centrosymmetrically related ET cations and Re₂O₂Br₆ anions are linked into dimers by $\pi - \pi$ stacking interactions [centroid-to-centroid distance = 3.826 (8) Å] and by pairs of additional Re···Br contacts [3.131 (3) Å], respectively. The dimers are further packed into a three-dimensional network by non-directional interionic electrostatic forces and by C-H···Br and C- $H \cdot \cdot S$ hydrogen bonds. The disordered 1,1,2-trichloroethane molecules occupy solvent-accessible channels along the b axis.

1. Chemical context

In the past few decades, molecular low-dimensional conducting materials have attracted much interest owing to their physical properties, in particular their electrical, magnetic and spectroscopic properties. The packing of radical cations in the crystal and the properties of radical cation salts depend substantially on the type of anions involved (Mori et al., 1999; Mori, 1999). Labile equatorial chloride or bromide groups around the Re_2^{6+} cluster unit are the reactive centres in interactions with other chemical compounds and biological macromolecules (Shtemenko et al., 2013, 2015). Only one radical cation salt containing a rhenium-rhenium quadruple bond has been described so far $\{(ET)_2[Re_2Cl_8] | ET = bis-$ (ethylenedithio)tetrathiafulvalene]; Reinheimer et al., 2008]. In this context, we present the synthesis and crystal structure of a new radical cation salt of ET with the dirhenium(III) anion [Re₂Br₆(CH₃COO)]⁻. Neither acetic acid nor acetate was used in the synthesis of this radical cation salt. Evidently, the acetate ligand arose by hydrolysis of CH₃CN (Cotton et al., 1991). Complex compounds of dirhenium(III) with one equatorial carboxylato ligand are not well studied, the struc-

ture of only three such rhenium compounds having been reported to date (Lau *et al.*, 2000; Vega *et al.*, 2002; Beck & Zink, 2011).

2. Structural commentary

The title compound (Fig. 1) consists of bis(ethylenedithio)tetrathiafulvalene (ET) radical cations, μ_2 -acetato-bis[tribromidorhenate(III)] anions and 1,1,2-trichloroethane molecules in the stoichiometric molar ratio of 1:1:0.5. The solvent molecule is disordered over two orientations of equal occupancy about a twofold rotation axis intersecting the midpoint of the C-C ethane bond. The tetrathiafulvalene fragment adopts an almost planar configuration (r.m.s. deviation = 0.033 Å) that is typical for ET radical cations. The dihedral angle between the five-membered rings is 0.3 (6)°. The carbon atoms of both ethylenedithio fragments (C4/C5 and C9/C10)

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $-\frac{1}{2} - x, y, -z$.] Only one component of the disordered 1,1,2-trichloroethane molecule and the major component of the ET cation are shown. Colour codes: C, grey; H, white; O, red; S, yellow; Cl, green; Br, brown, Re, violet.

Table	1			
Hydrog	gen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5B-H5BA\cdots Br1$	0.98	2.77	3.63 (8)	147
$C9A - H9AA \cdots Br6^{i}$	0.97	2.80	3.60 (3)	140
$C9B-H9BA\cdots S4^{ii}$	0.97	2.75	3.46 (10)	130
$C9B - H9BB \cdots Br6^{i}$	0.96	2.61	3.40 (11)	140
$C10A - H10A \cdots Br4^{iii}$	0.97	2.92	3.83 (4)	156
$C10A - H10B \cdot \cdot \cdot S3^{ii}$	0.97	2.81	3.57 (3)	136
$C10B - H10D \cdots Br4^{iii}$	0.98	2.67	3.61 (11)	161

Symmetry codes: (i) $x, -y - \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y - 1, -z; (iii) $-x + \frac{1}{2}, y - 1, -z$.

are disordered over two sets of sites with occupancy ratios of 0.65:0.35 and 0.77:0.23, respectively.

In the anion, each Re^{III} atom is coordinated by three Br atoms forming ReBr₃ units which are linked by a Re-Re multiple bond [2.2174 (10) Å] and a bridging μ_2 -acetate ligand, forming a strongly distorted cubic O₂Br₆ coordination polyhedron around the Re₂ core. The length of the Re-Re bond is very close to the mean value of 2.222 Å for quadruple bonds (Groom et al., 2016), and the six bromine ligands are arranged into an eclipsed conformation. It is also known that the presence of O,O-bridging ligands in such structures has a negligible effect on the Re-Re bond length [it varies in the range 2.2067 (7)–2.2731 (9) Å for compounds with no bridging ligands and in the range 2.2168 (8)-2.2532 (2) Å for compounds with O,O-bridging ligands (Poineau et al., 2015)]. Thus, the structure of the Re₂Br₆CH₃COO⁻ anion corresponds to the typical structure of compounds with quadruple Re-Re bonds in an Re_2^{6+} core (Cotton *et al.*, 2005). The Re-Br and Re–O bonds vary in the ranges 2.435 (3)–2.451 (3) Å and 2.009 (15)-2.040 (16) Å, respectively. The distortion from an ideal cubic geometry is mainly due to the short distance between the O atoms of the acetate group [2.24 (2) Å], while the $Br \cdot \cdot Br$ separations between adjacent Br atoms vary in the range 3.411 (3)-3.553 (4) Å.

3. Supramolecular features

In the crystal (Fig. 2), pairs of centrosymmetrically related ET cations are linked in a 'head-to-tail' manner into dimers by π - π stacking interactions, with centroid-to-centroid separations of 3.836 (8) Å, perpendicular interplanar distances of 3.518 (6) Å and offsets of 1.52 (2) Å. Pairs of Re₂O₂Br₆ anions are also linked into dimers by additional pairwise Re···Br contacts [Br6···Re2 = 3.131 (3) Å]. Cationic and anionic dimers are packed into a three-dimensional network by non-directional intermolecular electrostatic forces and by C–H···Br and C–H···S hydrogen bonds (Table 1). Solvent-accessible channels along the *b* axis are occupied by the disordered 1,1,2-trichloroethane molecules.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; last update February 2015; Groom *et al.*, 2016) for related

Figure 2

Partial crystal packing of the title compound, with displacement ellipsoids shown at the 50% probability level. Only one component of the disordered 1,1,2-trichloroethane molecule and the major component of the ET molecule are shown. Colour codes: C, grey, H, white, O, red, S, yellow, Cl, green, Br, brown, Re, violet.

compounds of bis(ethylenedithio)tetrathiafulvalene with simple Re-containing anions resulted in eight hits, amongst which one closely related structure containing the ET cation and Re₂Cl₈ anion (Reinheimer *et al.*, 2008). A search for Re₂Hal_xL_y anionic moieties, where Hal is a halogen atom and L is the μ_2 -carboxylic group, resulted in nine hits. Some closely related patterns were found, *e.g.* one containing the (μ_2 -acetato)-hexachloridodirhenate anion exhibiting the same structure of the title compound (Vega *et al.*, 2002), and one containing the di- μ_2 -acetato-bis(dibromidorhenate) anion (Koz'min *et al.*, 1981).

5. Synthesis and crystallization

The synthesis of the radical cation title salt was performed by galvanostatic anodic oxidation of ET (0.002 mol l^{-1}) in a twoelectrode U-shaped glass cell with platinum electrodes. The initial current intensity of 0.1 μ A was increased by 0.05 μ A per day to a final value of 0.45 μ A. A mixture of 1,1,2-trichloroethane/acetonitrile (12:1 ν/ν) was used as solvent. [(C₄H₉)₄N]₂[Re₂Br₈] (0.008 mol l^{-1}) was used as electrolyte. After a period of 6–7 weeks, black shiny plate-shaped crystals of the title salt suitable for X-ray analysis were formed.

С

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed in idealized positions and refined using a riding-model approximation, with C-H = 0.96-0.97 Å, and with $U_{iso}(H)$ = $1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms. The 1,1,2-trichloroethane molecule is disordered over two sets of sites about a twofold rotation axis with equal occupancy. The C4-C5 and C9-C10 groups of the ET cations are disordered over two orientations with occupancy factors of 0.65/0.35 and 0.77/0.23, respectively. These occupancies were initially obtained as free variables by the full-matrix refinement, and were then fixed in the final refinement cycles. The C-C and C-Cl bond lengths in the solvent molecule were constrained to be 1.52 (1) and 1.80 (1) Å, respectively, and the C-Cl bonds of the solvent molecule were restrained to have the same lengths to within 0.01 Å. The C–S and C–C bonds of the disordered fragments of the ET cation were also restrained

Table 2	
Experimental	details.

Crystal data Chemical formula

Μ. Crystal system, space group Temperature (K) a, b, c (Å)

β (°)	100.8440 (17)
$V(Å^3)$	5941.21 (18)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	16.93
Crystal size (mm)	$0.4 \times 0.4 \times 0.1$
Data collection	
Diffractometer	Agilent Xcalibur Sapphire3
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.067, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	36051, 6755, 6304
R _{int}	0.039
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.137, 1.14
No. of reflections	6755
No. of parameters	334
No. of restraints	99
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.77, -1.90

 $(C_{10}H_8S_8)[Re_2Br_6(C_2H_3O_2)]$ --

27.1825 (5), 8.53737 (13),

 $0.5C_2H_3Cl_3$

Monoclinic, I2/a

26.0667 (5)

1362.24

298

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

to have the same lengths to within 0.005 Å. The atoms of each disordered fragment, including the solvent molecule, were restrained to have approximately the same displacement parameters to within 0.02-0.04 Å². DELU restraints to within 0.01 \AA^2 were applied to atoms C4B, C5B, C9B, C10B, C1S and Cl2S. In addition, all non-hydrogen atoms of the solvent molecule were restrained to be approximately isotropic to within 0.03–0.06 $Å^2$. Several outlier reflections (67) that were believed to be affected by the contribution of several unresolved minor twin domains were omitted from the final cycles of refinement, reducing the R factor from 0.061 to 0.052. Attempts to refine the structure using a two-component twin

model were unsuccessful. Moreover, the crystals of the title compound are stable but show a strong tendency to splicing. The poor quality of the available crystal may account for the rather low bond precision of the C–C bonds and the presence of several large residual density peaks.

Acknowledgements

This work was supported by a grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank COST Action CM1105 for supporting this study.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Beck, J. & Zink, G. (2011). J. Chem. Crystallogr. 41, 1185-1189.
- Cotton, F. A., DeCanio, E. C., Kibala, P. A. & Vidyasagar, K. (1991). Inorg. Chim. Acta, 184, 221-228.
- Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271-376. New York: Springer Science and Business Media Inc.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Koz'min, P. A., Surazhskaya, M. D. & Larina, T. B. (1981). Russ. J. Inorg. Chem. 26, 57-60.
- Lau, S. S., Fanwick, P. E. & Walton, R. A. (2000). Inorg. Chim. Acta, 308, 8-16.
- Mori, T. (1999). Bull. Chem. Soc. Jpn, 72, 2011-2027.
- Mori, T., Mori, H. & Tanaka, Sh. (1999). Bull. Chem. Soc. Jpn, 72, 179–197.
- Poineau, F., Sattelberger, A. P., Lu, E. & Liddle, S. T. (2015). Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties, edited by S. T. Liddle, pp. 205-216. Weinheim: Wiley-VCH.
- Reinheimer, E. W., Galán-Mascarós, J. R., Gómez-García, C. J., Zhao, H., Fourmigué, M. & Dunbar, K. R. (2008). J. Mol. Struct. 890, 81-89
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127-134.
- Shtemenko, A. V., Chifotides, H. T., Yegorova, D. E., Shtemenko, N. I. & Dunbar, K. R. (2015). J. Inorg. Biochem. 153, 114-120.
- Vega, A., Calvo, V., Manzur, J., Spodine, E. & Saillard, J.-Y. (2002). Inorg. Chem. 41, 5382-5387.

Acta Cryst. (2016). E72, 712-715 [doi:10.1107/S2056989016006058]

Crystal structure of bis(ethylenedithio)tetrathiafulvalenium μ_2 -acetato-bis-[tribromidorhenate(III)] 1,1,2-trichloroethane hemisolvate

Alexander A. Golichenko, Andrey V. Kravchenko, Irina V. Omelchenko, Denis M. Chudak, Vladimir A. Starodub, Boleslaw Barszcz and Alexander V. Shtemenko

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Bis(ethylenedithio)tetrathiafulvalenium μ_2 -acetato-bis[tribromidorhenate(III)] 1,1,2-trichloroethane hemisolvate

Crystal data

 $\begin{array}{l} (C_{10}H_8S_8)[\text{Re}_2\text{Br}_6(\text{C}_2\text{H}_3\text{O}_2)]\cdot 0.5\text{C}_2\text{H}_3\text{Cl}_3\\ M_r = 1362.24\\ \text{Monoclinic, }I2/a\\ a = 27.1825 \ (5) \text{ Å}\\ b = 8.53737 \ (13) \text{ Å}\\ c = 26.0667 \ (5) \text{ Å}\\ \beta = 100.8440 \ (17)^\circ\\ V = 5941.21 \ (18) \text{ Å}^3\\ Z = 8 \end{array}$

Data collection

Agilent Xcalibur Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1827 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2014) $T_{\min} = 0.067, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.137$ S = 1.146755 reflections 334 parameters 99 restraints F(000) = 4960 $D_x = 3.046 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 18811 reflections $\theta = 2.9-30.7^{\circ}$ $\mu = 16.93 \text{ mm}^{-1}$ T = 298 KBlock, metallic dark violet $0.4 \times 0.4 \times 0.1 \text{ mm}$

36051 measured reflections 6755 independent reflections 6304 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 2.9^\circ$ $h = -35 \rightarrow 35$ $k = -11 \rightarrow 9$ $l = -33 \rightarrow 33$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0534P)^2 + 229.8497P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$

$$\Delta \rho_{\rm max} = 1.77 \text{ e } \text{\AA}^{-3}$$
$$\Delta \rho_{\rm min} = -1.90 \text{ e } \text{\AA}^{-3}$$

Special details

Experimental. Absorption correction: *CrysAlisPro* (Agilent, 2014) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
0.0279 (2)	-0.3844 (7)	0.1248 (2)	0.0486 (13)	
-0.0188 (2)	-0.1562 (6)	0.0484 (2)	0.0411 (11)	
-0.0801 (3)	-0.0100 (7)	0.1157 (3)	0.0532 (14)	
-0.0284 (3)	-0.2886 (8)	0.2057 (2)	0.0602 (17)	
0.0889 (2)	-0.5248 (8)	0.0393 (2)	0.0484 (13)	
0.0408 (2)	-0.2918 (6)	-0.0354 (2)	0.0436 (12)	
0.0915 (3)	-0.3875 (7)	-0.1204 (2)	0.0586 (17)	
0.1502 (3)	-0.6653 (9)	-0.0297 (2)	0.0590 (16)	
0.0209 (7)	-0.313 (2)	0.0627 (7)	0.034 (4)	
-0.0374 (7)	-0.152 (2)	0.1079 (8)	0.037 (4)	
-0.0160 (8)	-0.262 (3)	0.1431 (8)	0.043 (5)	
-0.065 (3)	-0.122 (6)	0.220 (3)	0.064 (11)	0.35
-0.1001	-0.1537	0.2165	0.077*	0.35
-0.0538	-0.0909	0.2563	0.077*	0.35
-0.0391 (15)	-0.084 (3)	0.2196 (15)	0.056 (8)	0.65
-0.0440	-0.0750	0.2554	0.067*	0.65
-0.0094	-0.0242	0.2166	0.067*	0.65
-0.0822 (16)	-0.015 (5)	0.1850 (9)	0.060 (9)	0.65
-0.0864	0.0909	0.1965	0.072*	0.65
-0.1118	-0.0737	0.1893	0.072*	0.65
-0.062 (3)	0.011 (9)	0.1862 (9)	0.061 (12)	0.35
-0.0272	0.0463	0.1933	0.073*	0.35
-0.0817	0.0950	0.1967	0.073*	0.35
0.0472 (7)	-0.372 (2)	0.0258 (7)	0.035 (4)	
0.1061 (8)	-0.523 (2)	-0.0214 (8)	0.039 (4)	
0.0834 (9)	-0.415 (2)	-0.0558 (8)	0.044 (5)	
0.1534 (9)	-0.479 (4)	-0.1154 (13)	0.057 (8)	0.77
0.1634	-0.4736	-0.1492	0.068*	0.77
0.1777	-0.4205	-0.0908	0.068*	0.77
0.134 (4)	-0.548 (10)	-0.130 (4)	0.05 (2)	0.23
	x $0.0279 (2)$ $-0.0801 (3)$ $-0.0284 (3)$ $0.0408 (2)$ $0.0408 (2)$ $0.0915 (3)$ $0.1502 (3)$ $0.0209 (7)$ $-0.0374 (7)$ $-0.065 (3)$ $-0.065 (3)$ $-0.065 (3)$ $-0.0391 (15)$ $-0.0391 (15)$ -0.0440 -0.0094 -0.0864 -0.1118 -0.0272 -0.0817 $0.0472 (7)$ $0.1634 (9)$ $0.1534 (9)$ $0.1634 (4)$	x y $0.0279(2)$ $-0.3844(7)$ $-0.0188(2)$ $-0.1562(6)$ $-0.0801(3)$ $-0.0100(7)$ $-0.0284(3)$ $-0.2886(8)$ $0.0889(2)$ $-0.5248(8)$ $0.0408(2)$ $-0.2918(6)$ $0.0915(3)$ $-0.3875(7)$ $0.1502(3)$ $-0.6653(9)$ $0.0209(7)$ $-0.313(2)$ $-0.0374(7)$ $-0.152(2)$ $-0.0160(8)$ $-0.262(3)$ $-0.065(3)$ $-0.122(6)$ -0.1001 -0.1537 -0.0538 -0.0909 $-0.0391(15)$ $-0.084(3)$ -0.0440 -0.0750 -0.0864 0.0909 -0.1118 -0.0737 $-0.062(3)$ $0.011(9)$ -0.0272 0.0463 -0.0817 0.0950 $0.0472(7)$ $-0.372(2)$ $0.1061(8)$ $-0.523(2)$ $0.0834(9)$ $-0.415(2)$ $0.1534(9)$ $-0.479(4)$ 0.1634 -0.4736 0.1777 -0.4205 $0.134(4)$ $-0.548(10)$	xyz $0.0279(2)$ $-0.3844(7)$ $0.1248(2)$ $-0.0188(2)$ $-0.1562(6)$ $0.0484(2)$ $-0.0801(3)$ $-0.0100(7)$ $0.1157(3)$ $-0.0284(3)$ $-0.2886(8)$ $0.2057(2)$ $0.0889(2)$ $-0.5248(8)$ $0.0393(2)$ $0.0408(2)$ $-0.2918(6)$ $-0.0354(2)$ $0.0915(3)$ $-0.3875(7)$ $-0.1204(2)$ $0.01502(3)$ $-0.6653(9)$ $-0.0297(2)$ $0.0209(7)$ $-0.313(2)$ $0.0627(7)$ $-0.0374(7)$ $-0.152(2)$ $0.1079(8)$ $-0.0160(8)$ $-0.262(3)$ $0.1431(8)$ $-0.065(3)$ $-0.122(6)$ $0.220(3)$ $-0.00374(7)$ -0.1537 0.2165 -0.0538 -0.0909 0.2563 $-0.0391(15)$ $-0.084(3)$ $0.2196(15)$ -0.0440 -0.0750 0.2554 -0.0094 -0.0242 0.2166 $-0.0822(16)$ -0.0737 0.1893 -0.0864 0.0909 0.1965 -0.01118 -0.0737 0.1893 -0.0817 0.0950 0.1967 $0.0472(7)$ $-0.372(2)$ $0.0258(7)$ $0.1061(8)$ $-0.523(2)$ $-0.0214(8)$ $0.0834(9)$ -0.4736 -0.1492 $0.1534(9)$ -0.4736 -0.1492 0.1777 -0.4205 -0.0908	xyz $U_{\rm iso}^{+}/U_{\rm eq}$ 0.0279 (2)-0.3844 (7)0.1248 (2)0.0486 (13)-0.0188 (2)-0.1562 (6)0.0484 (2)0.0411 (11)-0.0801 (3)-0.0100 (7)0.1157 (3)0.0532 (14)-0.0284 (3)-0.2886 (8)0.2057 (2)0.0602 (17)0.0889 (2)-0.5248 (8)0.0393 (2)0.0484 (13)0.0408 (2)-0.2918 (6)-0.0354 (2)0.0436 (12)0.0915 (3)-0.3875 (7)-0.1204 (2)0.0586 (17)0.1502 (3)-0.6653 (9)-0.0297 (2)0.0590 (16)0.0209 (7)-0.313 (2)0.0627 (7)0.034 (4)-0.0374 (7)-0.152 (2)0.1079 (8)0.037 (4)-0.0160 (8)-0.262 (3)0.1431 (8)0.043 (5)-0.065 (3)-0.122 (6)0.220 (3)0.064 (11)-0.1001-0.15370.21650.077*-0.0391 (15)-0.084 (3)0.2196 (15)0.056 (8)-0.0440-0.07500.25540.067*-0.0944-0.02420.21660.067*-0.0852 (16)-0.015 (5)0.1850 (9)0.060 (9)-0.08640.09090.19650.072*-0.0161 (8)-0.323 (2)-0.0214 (8)0.033 (4)-0.02720.04630.19330.073*-0.08170.09500.19670.073*-0.08170.09500.19670.073*-0.08170.09500.19670.073*-0.08170.09500.19670.073*-0.08170.0950

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9BA	0.1153	-0.6449	-0.1362	0.060*	0.23
H9BB	0.1493	-0.5262	-0.1596	0.060*	0.23
C10A	0.1547 (13)	-0.643 (4)	-0.0988 (9)	0.051 (7)	0.77
H10A	0.1857	-0.6902	-0.1045	0.061*	0.77
H10B	0.1272	-0.6987	-0.1202	0.061*	0.77
C10B	0.173 (4)	-0.566 (13)	-0.083 (3)	0.05 (2)	0.23
H10C	0.1860	-0.4639	-0.0715	0.059*	0.23
H10D	0.2006	-0.6266	-0.0923	0.059*	0.23
Re1	0.12639 (3)	0.02771 (9)	0.15999 (3)	0.0325 (2)	
Re2	0.18894 (3)	0.19389 (8)	0.18533 (3)	0.0285 (2)	
Br1	0.05027 (9)	0.1855 (3)	0.15459 (12)	0.0621 (7)	
Br2	0.10600 (9)	-0.1027 (3)	0.23712 (10)	0.0541 (6)	
Br3	0.11180 (11)	0.0172 (4)	0.06499 (10)	0.0623 (7)	
Br4	0.20677 (9)	0.2898 (3)	0.10198 (9)	0.0529 (6)	
Br5	0.15056 (10)	0.4496 (3)	0.19753 (11)	0.0560 (6)	
Br6	0.20369 (9)	0.1635 (3)	0.28134 (8)	0.0476 (5)	
01	0.2381 (6)	0.0139 (18)	0.1841 (6)	0.047 (3)	
O2	0.1742 (6)	-0.1510 (17)	0.1587 (6)	0.046 (3)	
C11	0.2221 (8)	-0.129 (2)	0.1733 (7)	0.039 (4)	
C12	0.2582 (11)	-0.260 (3)	0.1768 (12)	0.066 (7)	
H12A	0.2756	-0.2551	0.1480	0.100*	
H12B	0.2404	-0.3578	0.1756	0.100*	
H12C	0.2819	-0.2533	0.2090	0.100*	
Cl1S	-0.1993 (6)	0.0569 (19)	0.0673 (6)	0.150 (6)	
Cl2S	-0.2811 (11)	0.288 (3)	0.0317 (11)	0.140 (10)	0.50
C1S	-0.2592 (9)	0.090 (4)	0.0257 (5)	0.15 (2)	
H1S	-0.2848	0.0099	0.0239	0.180*	
H1SA	-0.2718	0.1918	0.0336	0.180*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.052 (3)	0.062 (3)	0.035 (2)	0.022 (3)	0.013 (2)	0.012 (2)
S2	0.053 (3)	0.036 (2)	0.037 (2)	0.010(2)	0.016 (2)	0.008 (2)
S3	0.064 (4)	0.044 (3)	0.055 (3)	0.018 (3)	0.022 (3)	0.001 (2)
S4	0.080 (4)	0.065 (4)	0.043 (3)	0.015 (3)	0.032 (3)	0.013 (3)
S5	0.049 (3)	0.065 (4)	0.034 (2)	0.018 (3)	0.014 (2)	0.010 (2)
S6	0.062 (3)	0.036 (2)	0.036 (2)	0.009 (2)	0.017 (2)	0.0036 (19)
S7	0.102 (5)	0.041 (3)	0.040 (3)	0.018 (3)	0.032 (3)	0.006 (2)
S8	0.064 (4)	0.075 (4)	0.042 (3)	0.028 (3)	0.020 (3)	0.008 (3)
C1	0.033 (9)	0.043 (10)	0.028 (8)	0.000 (8)	0.008 (7)	0.002 (7)
C2	0.040 (10)	0.038 (10)	0.036 (9)	-0.002 (8)	0.015 (8)	0.000 (8)
C3	0.049 (11)	0.050 (12)	0.033 (9)	0.010 (9)	0.015 (8)	0.007 (9)
C4	0.071 (17)	0.065 (16)	0.061 (15)	0.002 (14)	0.025 (14)	-0.003 (12)
C4A	0.070 (18)	0.053 (15)	0.057 (15)	0.000 (14)	0.040 (14)	-0.015 (13)
C5A	0.074 (19)	0.059 (17)	0.058 (15)	0.008 (16)	0.043 (14)	-0.007 (14)
C5B	0.066 (18)	0.061 (16)	0.060 (16)	0.000 (14)	0.023 (13)	-0.004 (12)
C6	0.039 (10)	0.039 (10)	0.030 (8)	-0.002 (8)	0.011 (7)	0.002 (7)

C7	0.042 (10)	0.045 (11)	0.031 (9)	0.004 (8)	0.012 (8)	-0.004 (8)
C8	0.067 (14)	0.036 (10)	0.030 (9)	-0.010 (10)	0.014 (9)	-0.007 (8)
C9A	0.07 (2)	0.061 (19)	0.050 (17)	-0.023 (17)	0.030 (16)	-0.004 (15)
C9B	0.05 (2)	0.05 (3)	0.05 (2)	0.000 (17)	0.013 (15)	0.001 (17)
C10A	0.058 (18)	0.050 (17)	0.050 (16)	0.014 (15)	0.025 (14)	0.003 (14)
C10B	0.05 (2)	0.05 (3)	0.05 (2)	0.000 (17)	0.013 (15)	-0.001 (17)
Re1	0.0300 (4)	0.0326 (4)	0.0333 (4)	-0.0033 (3)	0.0025 (3)	0.0011 (3)
Re2	0.0294 (4)	0.0276 (3)	0.0275 (3)	-0.0007 (2)	0.0027 (3)	0.0040 (2)
Br1	0.0443 (12)	0.0641 (15)	0.0752 (17)	0.0068 (11)	0.0042 (11)	0.0085 (13)
Br2	0.0564 (13)	0.0555 (13)	0.0517 (12)	-0.0093 (10)	0.0140 (10)	0.0070 (10)
Br3	0.0602 (15)	0.0809 (18)	0.0408 (11)	-0.0144 (13)	-0.0036 (10)	-0.0037 (11)
Br4	0.0481 (12)	0.0703 (15)	0.0389 (11)	-0.0074 (11)	0.0047 (9)	0.0135 (10)
Br5	0.0561 (13)	0.0389 (11)	0.0737 (16)	0.0048 (10)	0.0142 (12)	0.0065 (11)
Br6	0.0513 (12)	0.0517 (12)	0.0388 (10)	-0.0108 (10)	0.0056 (9)	0.0051 (9)
01	0.050 (9)	0.041 (8)	0.048 (8)	0.002 (7)	0.005 (7)	0.004 (7)
O2	0.056 (9)	0.034 (7)	0.048 (8)	-0.001 (6)	0.009 (7)	-0.004 (6)
C11	0.056 (12)	0.033 (9)	0.031 (9)	0.005 (9)	0.014 (8)	-0.001 (8)
C12	0.074 (18)	0.048 (14)	0.085 (19)	0.023 (13)	0.034 (15)	0.014 (13)
Cl1S	0.133 (11)	0.148 (12)	0.153 (12)	0.021 (9)	-0.014 (9)	-0.014 (10)
Cl2S	0.15 (2)	0.115 (17)	0.14 (2)	0.048 (16)	-0.024 (17)	0.005 (15)
C1S	0.15 (4)	0.12 (2)	0.19 (4)	0.02 (3)	0.05 (3)	-0.01 (3)

Geometric parameters (Å, °)

S1—C1	1.708 (19)	С7—С8	1.35 (3)
S1—C3	1.72 (2)	С9А—Н9АА	0.9700
S2—C1	1.71 (2)	С9А—Н9АВ	0.9700
S2—C2	1.72 (2)	C9A—C10A	1.46 (5)
S3—C2	1.72 (2)	C9B—H9BA	0.9700
S3—C5A	1.82 (2)	C9B—H9BB	0.9700
S3—C5B	1.82 (2)	C9B—C10B	1.46 (14)
S4—C3	1.74 (2)	C10A—H10A	0.9700
S4—C4	1.82 (2)	C10A—H10B	0.9700
S4—C4A	1.82 (2)	C10B—H10C	0.9700
S5—C6	1.72 (2)	C10B—H10D	0.9700
S5—C7	1.73 (2)	Re1—Re2	2.2174 (10)
S6—C6	1.716 (19)	Re1—Br1	2.451 (3)
S6—C8	1.72 (2)	Re1—Br2	2.451 (2)
S7—C8	1.75 (2)	Re1—Br3	2.435 (3)
S7—C9A	1.84 (2)	Re1—O2	2.009 (15)
S7—C9B	1.84 (2)	Re2—Br4	2.454 (2)
S8—C7	1.75 (2)	Re2—Br5	2.465 (2)
S8-C10A	1.84 (2)	Re2—Br6	2.473 (2)
S8—C10B	1.84 (2)	Re2—O1	2.040 (16)
C1—C6	1.40 (3)	O1—C11	1.30 (3)
C2—C3	1.36 (3)	O2—C11	1.30 (3)
C4—H4A	0.9700	C11—C12	1.48 (3)
C4—H4B	0.9700	C12—H12A	0.9600

C4—C5B	1.46 (4)	C12—H12B	0.9600
С4А—Н4АА	0.9700	C12—H12C	0.9600
C4A—H4AB	0.9700	Cl1S—C1S	1.800 (16)
C4A—C5A	1.46 (4)	Cl2S—C1S	1.81 (2)
С5А—Н5АА	0.9700	Cl2S—H1SA	0.8557
С5А—Н5АВ	0.9700	C1S—C1S ⁱ	1.515 (18)
С5В—Н5ВА	0.9700	C1S—H1S	0.9700
C5B—H5BB	0.9700	C1S—H1SA	0.9703
C1—S1—C3	94.9 (10)	С10А—С9А—Н9АА	108.9
C1—S2—C2	95.6 (9)	С10А—С9А—Н9АВ	108.9
C2—S3—C5A	104.3 (14)	S7—C9B—H9BA	109.6
C2—S3—C5B	97 (3)	S7—C9B—H9BB	109.6
C5A—S3—C5B	19 (3)	H9BA—C9B—H9BB	108.1
C3—S4—C4	108 (2)	C10B—C9B—S7	110 (7)
C3—S4—C4A	97.4 (15)	C10B—C9B—H9BA	109.6
C4A—S4—C4	25 (3)	C10B—C9B—H9BB	109.6
C6—S5—C7	94.9 (9)	S8—C10A—H10A	109.0
C6—S6—C8	94.9 (10)	S8—C10A—H10B	109.0
C8—S7—C9A	98.9 (13)	C9A—C10A—S8	113 (2)
C8—S7—C9B	103 (3)	C9A—C10A—H10A	109.0
C9A—S7—C9B	26 (4)	C9A—C10A—H10B	109.0
C7—S8—C10A	102.8 (12)	H10A—C10A—H10B	107.8
C7—S8—C10B	96 (4)	S8—C10B—H10C	109.1
C10B—S8—C10A	28 (4)	S8—C10B—H10D	109.1
S1—C1—S2	116.1 (11)	C9B-C10B-S8	112 (7)
C6—C1—S1	122.7 (15)	C9B-C10B-H10C	109.1
C6—C1—S2	121.1 (15)	C9B-C10B-H10D	109.1
S3—C2—S2	116.0 (12)	H10C—C10B—H10D	107.9
C3—C2—S2	115.7 (15)	Re2—Re1—Br1	104.91 (8)
C3—C2—S3	128.3 (16)	Re2—Re1—Br2	108.99 (7)
S1—C3—S4	116.6 (12)	Re2—Re1—Br3	107.19 (7)
C2—C3—S1	117.5 (15)	Br1—Re1—Br2	88.73 (10)
C2—C3—S4	125.9 (17)	Br3—Re1—Br1	89.29 (11)
S4—C4—H4A	109.2	Br3—Re1—Br2	143.01 (9)
S4—C4—H4B	109.2	O2—Re1—Re2	91.6 (4)
H4A—C4—H4B	107.9	O2—Re1—Br1	163.4 (4)
C5B—C4—S4	112 (5)	O2—Re1—Br2	85.2 (5)
C5B—C4—H4A	109.2	O2—Re1—Br3	86.4 (4)
C5B—C4—H4B	109.2	Re1—Re2—Br4	102.59 (6)
S4—C4A—H4AA	108.8	Re1—Re2—Br5	106.59 (7)
S4—C4A—H4AB	108.8	Re1—Re2—Br6	101.74 (6)
H4AA—C4A—H4AB	107.7	Br4—Re2—Br5	88.72 (9)
C5A—C4A—S4	114 (3)	Br4—Re2—Br6	155.47 (8)
С5А—С4А—Н4АА	108.8	Br5—Re2—Br6	87.39 (9)
C5A—C4A—H4AB	108.8	O1—Re2—Re1	88.9 (4)
S3—C5A—H5AA	108.1	O1—Re2—Br4	89.9 (5)
S3—C5A—H5AB	108.1	O1—Re2—Br5	164.3 (4)

C4A—C5A—S3	117 (2)	O1—Re2—Br6	87.4 (5)
С4А—С5А—Н5АА	108.1	C11—O1—Re2	120.9 (14)
C4A—C5A—H5AB	108.1	C11—O2—Re1	119.9 (13)
Н5АА—С5А—Н5АВ	107.3	O1—C11—C12	120 (2)
S3—C5B—H5BA	107.3	O2—C11—O1	118.4 (18)
S3—C5B—H5BB	107.3	O2—C11—C12	121 (2)
C4—C5B—S3	120 (5)	C11—C12—H12A	109.5
C4—C5B—H5BA	107.3	C11—C12—H12B	109.5
C4—C5B—H5BB	107.3	C11—C12—H12C	109.5
H5BA—C5B—H5BB	106.9	H12A—C12—H12B	109.5
S6—C6—S5	116.3 (11)	H12A—C12—H12C	109.5
C1—C6—S5	122.5 (15)	H12B-C12-H12C	109.5
C1 - C6 - S6	121.2 (15)	C1S— $C12S$ — $H1SA$	89
S5-C7-S8	1145(12)	C11S - C1S - C12S	112 (2)
$C_{8} - C_{7} - S_{5}$	1164(16)	CIIS—CIS—HIS	112 (2)
C_{8} C_{7} S_{8}	129.0 (16)	Clis_Cis_Hisa	109.2
S6 C8 S7	125.0(10) 115.3(13)		109.2
50-6-57	113.3(13) 117.5(16)	$C_{125} = C_{15} = U_{15} $	7 9
$C_{7} = C_{8} = S_{7}$	117.3(10) 127.2(18)	C125 $C15$ $C15$ $C115$	7.0
C/-Co-S/	127.2 (18)		97 (2)
S/-C9A-H9AA	108.9	CIS - CIS - CI2S	104.2 (12)
S/—C9A—H9AB	108.9		108.0
Н9АА—С9А—Н9АВ	107.7	CIS-CIS-HISA	112.0
C10A—C9A—S7	114 (2)	H1S—C1S—H1SA	111.3
S1—C1—C6—S5	0 (3)	C7—S8—C10A—C9A	40 (3)
S1—C1—C6—S6	-177.4 (11)	C7—S8—C10B—C9B	-63 (7)
S2—C1—C6—S5	177.7 (11)	C8—S6—C6—S5	0.2 (14)
S2—C1—C6—S6	0 (2)	C8—S6—C6—C1	178.1 (17)
S2—C2—C3—S1	2 (3)	C8—S7—C9A—C10A	58 (3)
S2—C2—C3—S4	-178.8 (14)	C8—S7—C9B—C10B	-42 (7)
S3—C2—C3—S1	-177.1 (13)	C9A—S7—C8—S6	158.8 (15)
S3—C2—C3—S4	2 (3)	C9A—S7—C8—C7	-22 (2)
S4—C4—C5B—S3	58 (9)	C9A—S7—C9B—C10B	42 (6)
S4—C4A—C5A—S3	-61 (4)	C9B—S7—C8—S6	-175 (4)
S5—C7—C8—S6	1 (2)	C9B—S7—C8—C7	4 (4)
S5—C7—C8—S7	-178.2 (13)	C9B—S7—C9A—C10A	-43 (8)
S7—C9A—C10A—S8	-71 (3)	C10A—S8—C7—S5	174.5 (16)
S7—C9B—C10B—S8	77 (9)	C10A—S8—C7—C8	-4 (3)
S8—C7—C8—S6	179.3 (13)	C10A—S8—C10B—C9B	43 (6)
S8—C7—C8—S7	0(3)	C10B—S8—C7—S5	-158(4)
C1 - S1 - C3 - S4	176 8 (14)	C10B = S8 = C7 = C8	23 (4)
C1 = S1 = C3 = C2	-4(2)	C10B = S8 = C10A = C9A	-40(8)
C1 = S2 = C2 = S3	-1797(12)	Re1 - Re2 - O1 - C11	-32(15)
$C_1 = S_2 = C_2 = C_3$	0.9(19)	Re1 - 02 - C11 - 01	-6(2)
$C_{2}=S_{2}=C_{1}=S_{1}$	-37(13)	$Re1_02_111_12$	1752(17)
$C_2 = S_2 = C_1 = S_1$	178.7(17)	$Re^2 Re^1 O^2 C^{11}$	30(15)
$C_2 = S_2 = C_1 = C_0$	22(4)	$R_{2} = R_{1} = 02 = 011$	6(3)
$C_2 = S_3 = C_3 = C_4 A$	-61(7)	$R_{2} = 01 = 011 = 02$	-1750(17)
U2-33-U3D-U4	01(/)	102 - 01 - 011 - 012	1/3.0(1/)

C3 S1 C1 S2	4.6(14)	Brl Rel Re? Br/	-90.90(10)
C_{3}	177.0 (19)	$D_1 = K_1 = K_2 = D_1^4$	50.50(10)
C3—S1—C1—C6	-1//.8 (18)	Br1—Re1—Re2—Br5	1.54 (11)
C3—S4—C4—C5B	-19 (7)	Br1—Re1—Re2—Br6	92.30 (10)
C3—S4—C4A—C5A	63 (3)	Br1—Re1—Re2—O1	179.4 (5)
C4—S4—C3—S1	168 (3)	Br1-Re1-O2-C11	-174.7 (11)
C4—S4—C3—C2	-11 (4)	Br2—Re1—Re2—Br4	175.23 (10)
C4—S4—C4A—C5A	-54 (6)	Br2—Re1—Re2—Br5	-92.32 (10)
C4A—S4—C3—S1	144.9 (18)	Br2—Re1—Re2—Br6	-1.56 (10)
C4A—S4—C3—C2	-34 (3)	Br2—Re1—Re2—O1	85.6 (5)
C4A—S4—C4—C5B	50 (4)	Br2-Re1-O2-C11	-105.9 (15)
C5A—S3—C2—S2	-169.7 (19)	Br3—Re1—Re2—Br4	3.05 (11)
C5A—S3—C2—C3	10 (3)	Br3—Re1—Re2—Br5	95.49 (11)
C5A—S3—C5B—C4	53 (6)	Br3—Re1—Re2—Br6	-173.75 (10)
C5B—S3—C2—S2	-152 (3)	Br3—Re1—Re2—O1	-86.6 (5)
C5B—S3—C2—C3	28 (3)	Br3-Re1-O2-C11	110.1 (15)
C5B—S3—C5A—C4A	-48 (8)	Br4—Re2—O1—C11	-105.8 (15)
C6—S5—C7—S8	-179.3 (12)	Br5—Re2—O1—C11	169.2 (11)
C6—S5—C7—C8	-0.5 (19)	Br6—Re2—O1—C11	98.6 (15)
C6—S6—C8—S7	178.5 (13)	O2—Re1—Re2—Br4	89.8 (5)
C6—S6—C8—C7	-0.6 (19)	O2—Re1—Re2—Br5	-177.8 (5)
C7—S5—C6—S6	0.1 (14)	O2—Re1—Re2—Br6	-87.0 (5)
C7—S5—C6—C1	-177.7 (18)	O2—Re1—Re2—O1	0.1 (6)

Symmetry code: (i) -x-1/2, y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C5B—H5BA···Br1	0.98	2.77	3.63 (8)	147
C9A—H9AA····Br6 ⁱⁱ	0.97	2.80	3.60 (3)	140
C9 <i>B</i> —H9 <i>BA</i> ····S4 ⁱⁱⁱ	0.97	2.75	3.46 (10)	130
C9 <i>B</i> —H9 <i>BB</i> ····Br6 ⁱⁱ	0.96	2.61	3.40 (11)	140
C10A— $H10A$ ···Br4 ^{iv}	0.97	2.92	3.83 (4)	156
C10A—H10B…S3 ⁱⁱⁱ	0.97	2.81	3.57 (3)	136
C10B—H10 D ···Br4 ^{iv}	0.98	2.67	3.61 (11)	161

Symmetry codes: (ii) x, -y-1/2, z-1/2; (iii) -x, -y-1, -z; (iv) -x+1/2, y-1, -z.