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A B S T R A C T   

Exploring coordinated pathways that can promote not only the sustainable development of the 
industrial economy but also air quality is of great significance for the prevention and control of air 
pollution in China. Currently, the joint development pathways of the industrial economy- 
environment nexus remain unclear and poorly evaluated. In this study, we proposed a compre-
hensive performance evaluation combining objective and subjective weighting to identify in-
dustrial enterprises’ economic-environment nexus benefits. It would be one of the most important 
steps to explore the coordinated pathways. Based on data envelopment analysis (DEA), the 
proposed method integrated with the index integration was used to evaluate the comprehensive 
performances of 41 industrial sectors in China’s 13th five-year plan (2016–2020). Evaluation 
results showed that the comprehensive performances of the economy-environment nexus of the 
industrial sectors varied significantly, with the five-year average comprehensive technical effi-
ciency (TE) of 0.11–1. Overall, the best two performances were realized by the industries of 
equipment manufacturing and living consumption, whereas the worst one belonged to the in-
dustry of bulk raw materials, with average comprehensive TE values of 0.50, 0.43, and 0.19, 
respectively. The results of the quantitative evaluation were consistent with those of the quali-
tative analysis in terms of the developmental status of the industrial sectors. According to the 
analyses of pure technical efficiency and scale effect, the proposed method identified the in-
dustrial sectors with the highest developmental value and with the highest need to control air 
pollution. Compared with those of the original DEA model, the results of the proposed method 
showed pronounced differences in terms of the performances of industrial sectors with high en-
ergy consumption and high particulate matter (PM) emissions and with low energy consumption 
and low PM emissions. The proposed evaluation method combining the weighting was suitable 
for identifying the comprehensive performance of the industrial economy-environment nexus and 
provides the basis for the prevention and control of air pollution.   
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1. Introduction 

In recent years, air quality in China has been improving continuously, but with plenty of room for further improvement. In 2021, in 
339 major cities, the average number of days with good air quality reached 87.5%, 64.3% of which met the air quality standards [1]. 
However, there remains a large degree of spatiotemporal imbalance in air quality across China. For example, the number of days with 
good air quality was 67.2% in the Beijing-Tianjin-Hebei region and its surrounding areas and 70.2% in the Fen-Wei plain. Some cities 
still suffer from severe or even worse pollution in winter. In the recently revised Global Air Quality Guidelines (2021) (AQG-2021), the 
World Health Organization further lowered the average annual target value of fine particulate matter (PM2.5) to 5 μg/m3 [2]. Relative 
to AQG-2021, the ambient air quality standards in China are considered relaxed. Thus, there remains plenty of room for air quality 
improvement in China. 

The direct cause of air pollution is that pollutant discharge exceeds the atmospheric carrying capacity [3]. Therefore, the 
continuous reduction of air pollutant emissions remains a fundamental way to improve air quality. According to the source appor-
tionment results for atmospheric particulates, industrial enterprises are an important contributor. PM2.5 apportionment results of 
major cities in China issued by the State departments, such as Beijing [4], Tianjin [5], Nanjing [6], Hangzhou [7], Shanghai [8], and 
Guangzhou [9], revealed that the contribution ratio of industrial sectors to ambient PM2.5 varied between 12% and 30%. Previous 
studies have also pointed out that industrial sectors exert a significant influence on air quality. For example, it reviewed more than 200 
studies of source apportionment since 1986 and pointed out that industry is the largest contributor to ambient PM2.5 in the northern, 
northeastern, and central regions of China during 2007–2016, with an average contribution ratio of 22.2–28.7% [10]. In the east, 
south, northwest, and southwest regions of China, the industry is also the main contributor with an average ratio of 12.9–17.2%. And it 
was estimated from more than 400 studies of source apportionment during 2014–2019 that industrial sectors are the global main 
contributor to ambient PM2.5 with an average ratio of 17% [11]. 

In the coupled industrial process of production and pollution control, the coordinated development pathways of the industrial 
economy-environment nexus remain unclear. Performance evaluation may play an important role in solving this problem. It should be 
one of the most important steps to promote the coordinated development of the industrial economy and its air pollution control. 
Performance evaluation has widely been applied in the field of environmental quality. The indicator of pollutant emission per unit 
output value was used to evaluate the pollutant control performances of industrial enterprises and emphasized the importance of 
performance evaluation as an effective method to integrate and quantify their economic and environmental benefits [12]. Overall, all 
methods of performance evaluation include the following three key procedures: the development of an indicator system and its 
weighting and performance [13]. Some examples of common methods of performance evaluation include the analytic hierarchy 
process [14], the entropy method [15], and fuzzy comprehensive evaluation [16]. Data envelopment analysis (DEA) is one of the 
performance evaluations most extensively used in industry [17, 18], agriculture [19,20], transportation [21,22], energy [23,24], and 
environment [25,26]. According to the search results in the core collection database of the Web of Science (Fig. S1), the numbers of 
publications using DEA to carry out environmental performance evaluation were on the rise and reached 3,921 in 2022 and exceeded 
those obtained using other methods. 

DEA is commonly used to estimate production efficiency in various fields but faces a prominent issue when applied to air pollution 
control as it is an objective weighting method. In other words, it assigns weights to indicators solely based on the characteristics of data 
without consideration of the actual weight preference, which may lead to inconsistency between the weighting results of indicators 
and their actual importance. For example, under different spatiotemporal conditions, air pollutants with a greater impact on ambient 
air quality should get a greater weight, whereas those with a smaller impact on ambient air quality should get a smaller weight. In most 
places in China, the impact of particulate matter (PM) on ambient air quality is significantly greater than that of SO2. For the original 
DEA model, all input and output indicators are regarded as equally important, as also stated by many studies [27–29]. Therefore, how 
integrating DEA with subjective preferences to combine subjective and objective weighting remains an important issue facing the 
application of the DEA model to air pollution control. 

To this end, this study aimed to integrate the DEA and index integration methods to combine the subjective and objective weighting 
for developing a comprehensive performance evaluation of the industrial economy-environment nexus and apply it to 41 industrial 
sectors in China according to the 13th five-year plan (2016–2020). In addition, this study explored the applicability of this method in 
terms of guiding industrial development and quantifying its comprehensive performance. The proposed method and results of this 
study can provide insights into promoting the coordinated development of the industrial economy and its air pollution control across 
China. 

2. Materials and methods 

2.1. DEA model 

Based on linear programming according to multiple input and output indices, DEA is a method used to evaluate the relative 
effectiveness of comparable decision-making units (DMUs). Its evaluation result is essentially the production efficiency of DMU; 
namely, the ratio of output (weighted sum) to input (weighted sum), which has the same connotation as the comprehensive perfor-
mance of the economy-environment nexus examined in this study. DEA uses various environmental and economic factors as input and 
output indicators, respectively, and quantifies the degree of match between input and output as well as the degree of collaboration 
between the industrial economy and environmental protection. Compared with other performance evaluations, the DEA model has 
several unique advantages. First, when the production efficiency of multiple inputs and multiple outputs is evaluated, DEA bases 
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indicators on the input-output relationship and does not need to establish a complex indicator system. Second, there is no need for the 
DEA to estimate or assume the form of the production function in advance, thereby avoiding the influence of various subjective factors. 
Finally, DEA has a diversification function in that, in addition to measuring the production efficiency (i.e., performance) of a DMU, it 
can extract abundant information, such as pure technical efficiency (PTE), scale effect (SE), productivity change, and technological 
progress. 

The earliest DEA model was the CCR-DEA model proposed by Chames and Copper [30]. In the following 45 years, the CCR-DEA 
model paved the way for a variety of derivative models with various functions according to the needs of applications, including the 
super-efficiency model [31], directional distance function (DDF) [32], network DEA model [33], and slack-based measure model 
(SBM-DEA) [34]. In this study, the SBM-DEA model with an undesired output was selected as the data processing module and 
expressed as follows [34]: 

min ρ=
1 − 1

m

∑m
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S−

i

/
xik

1 + 1
q

∑q

r=1
S+

r

/
yrk

(1)  

s.t. Xλ+ S− = xk (2)  

Yλ − S+ = yk (3)  

∑n

j=1
λj = 1 (4)  

λ, S− , S+ ≥ 0 (5)  

i= 1, 2…,m; r = 1, 2…, q; j = 1, 2…, n (6)  

where ρ is the comprehensive performance of DMU; n DMUs to be measured are denoted as DMUj (j = 1, 2 … n); DMU to be measured is 
denoted as DMUk; each DMU has m inputs denoted as xi (i = 1, 2 … m); q outputs are denoted as yr (r = 1, 2 … q); and S− , S+, and Sb−

are the relaxation variables of input, desirable output, and undesirable output, respectively. 
In the development process of the DEA model, the following three indicators were proposed: comprehensive technical efficiency 

(TE), pure technical efficiency (PTE), and scale effect (SE) [35]. Both TE and PTE reflected the comprehensive performance of the 
economic-environment nexus, of which TE may be more indicative. As a comprehensive performance indicator of DMU, TE was 
defined as the ratio of the weighted sum of output to that of input, whereas PTE referred to technical efficiency after the effect of the 
scale was excluded; i.e., the technical efficiency estimated by placing all DMUs at the same scale. The TE, PTE, and SE values ranged 
from 0 to 1. When the value reached 1, the technology is deemed effective. The relationship among them was expressed as TE = PTE ×
SE, where TE was estimated from Eqs. (1)–(3) and 5–6), while PTE was calculated from Eqs. (1)–(6). 

2.2. Development of indicator system 

This study established an indicator system for evaluating the comprehensive benefits of the economy-environment nexus of in-
dustrial sectors. The proposed system aimed to guide the industry to invest less resources and energy, emit fewer pollutants, and 
produce higher economic benefits; namely, low input, high output, and less pollution. Based on this goal, this study referred to Song 
et al. [36], Wu et al. [28], and Wang and Feng [37] and used fixed asset investment, energy consumption, and employment as the input 
indicators. Industrial output was considered an indicator of desirable output, whereas pollutant emission was the indicator of un-
desirable output. The categories of atmospheric pollutants include SO2, NOx, and particulate matter (PM). The above indicators 
together constituted the input-output system of the industry, covering all kinds of input factors involved in industrial generation and 
output factors that we pay attention to. Among them, industrial output value, fixed asset investment, and employment represented the 
economic benefits, whereas energy consumption and pollutant emissions represented the environmental benefits. It should be pointed 
out that the industrial output in this study is the gross industrial output value, rather than the industrial added value. Gross industrial 
product is the total value of all the products that have been produced by various industrial sectors. Industrial added value is the in-
dustrial output value after deducting the cost of raw materials, which is more accurately used to represent the economic benefits of 
enterprises. If the data are available, the use of industrial added value as an indicator of desirable output is more recommended. Since 
the added value data of various industrial sectors in China cannot be obtained in this study, only gross industrial output value is taken 
as an example to demonstrate the application of the performance evaluation method. 

2.3. Index integration method 

Previous studies on the DEA model have not often considered the difference in the relative importance of indicators and treated 
them as equally important in the performance evaluation process. This process may strengthen the secondary indicators and weaken 
the influence of the primary indicators on the results in the process of assigning weights. Therefore, to strengthen the primary 
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indicators and weaken the secondary indicators, this study proposed to use the index integration method to combine subjective and 
objective weighting for the performance evaluation. This method mainly refers to the evaluation method of complex DEA systems by 
Ma et al. [38]. The study of Ma et al. [38] was not used for industrial air pollution prevention, but his ideas inspired us. This method 
was divided into three steps. First, all the indicators were treated as first-level indicators and divided into the three categories of input, 
desirable output, and undesirable output. Second, in each category, initial weights and sums were calculated based on the importance 
of each level of indicators, the second-level indicators in this study. Finally, each second-level indicator was inputted into the DEA 
model for the final performance estimation. The initial weights required for the integration of each first-level indicator could be 
derived from AHP, an expert-knowledge method, or other methods that could reflect the relative importance of indicators. Thus, all the 
indicators could fully be taken into account, while the primary and secondary status of each indicator could be reflected to avoid 
underestimating the primary indicators or overestimating the secondary indicators, thus making the results more comprehensive and 
objective. Eventually, the integration of subjective and objective weighting based on the DEA model was realized. 

For example, in this study, fixed asset investment, energy consumption, and employment numbers were regarded as the first-level 
inputs. SO2, NOx, and PM emissions were the first-level undesirable outputs, while the industrial output value was the first-level 
desired output. The second-level input, second-level undesired outputs, and second-level desirable outputs were estimated by the 
following Eqs. 7–10:  

Second-level input = a × (fixed asset investment) + b × (energy consumption) + c × (employment number)                                          (7)  

Second-level undesirable output = e × (SO2 emissions) + f × (NOx emissions) + g × (PM emissions)                                                  (8)  

Second-level desirable output = industrial output                                                                                                                            (9)  

a + b + c = 1 and e + f + g = 1                                                                                                                                              (10) 

The second-level input, second-level undesired outputs, and second-level desirable outputs synthesized by each first-level indicator 
were then incorporated into DEA. When there are many first-level indicators, multiple second-level indicators may exist. The initial 
weights required for the integration of first-level indicators, such as a, b, c, d, e, f, and g, can be derived from AHP, the Delphi method, 
or any other method that can reasonably reflect the relative importance of the indicators. 

In this study, the initial weights of SO2, NOx, and PM were assigned based on the impacts of SO2, NO2, and coarse particulate matter 
(PM10) on ambient air quality in China, according to the calculation method of air quality sub-index in “Technical Regulations on 
Ambient Air Quality Index (on trial) (HJ 633–2012)”. The annual air quality sub-index of each pollutant (SO2, NO2, and PM10) was 
calculated based on the concentration-monitoring data of 337 major cities in China. The proportions of the air quality sub-index of SO2, 
NO2, and PM10 in the total index were taken as the initial weights of SO2, NOx, and PM (Table 1). The following two assumptions were 
adopted in this procedure: (1) although, according to “HJ 633–2012,” the calculation method of air quality sub-index is only used for 1- 
h and 24-h time scales, this study used this method for annual-scale estimation, ignoring possible errors; and (2) the air quality sub- 
index of NO2 and PM10 could approximately represent the impacts of industrial NOx and PM pollutants on the air quality. 

For the three inputs of energy consumption, fixed asset investment, and employment number, the estimation process of weight 
coefficients, such as AHP and the Delphi method, was temporarily omitted, and their combined weights were preliminarily assigned as 
0.5, 0.35, and 0.15, respectively, through qualitative analysis. Since energy consumption is directly related to pollutant discharge, it is 
of great significance to air pollution control. In the context of carbon peak and carbon neutrality, reducing fossil fuel consumption is 
essential to reducing pollution and carbon emissions. Therefore, energy consumption was the most important of the three indicators. 
Fixed-asset investment and industrial output represented the main economic cost and benefit of the industry, respectively, and were 
secondary to energy consumption. Employment exerted a relatively small impact on economic and environmental benefits, thus 
carrying the least importance. 

Since the index integration method needs to carry out the weighted summation of multiple indexes when it is used, but each index 
has different dimensions and orders of magnitude, it is necessary to normalize the original data. Various normalization methods may 
have different influences on the evaluation results. There is no universally effective normalization method. Different normalization 
methods can be tested to select the one whose results are most consistent with reality, to limit the uncertain influence of normalization 
on results. In this paper, the Min-max normalization method was used to convert each index into a value between 10 and 100. The 
specific normalization algorithms of each input index x and output index y are as follows (equations (11) and (12)). The x and y 
respectively represent the original input and output indicators, while x’ and y’ respectively represent normalized input and output 

Table 1 
The results of the initial weights of undesirable output (air pollutants).  

Year Average annual concentrationa Air quality sub-index Initial weight result 

SO2 NO2 PM10 SO2 NO2 PM10 SO2 NOx PM 

2016 22 30 82 22 37.5 66 0.17 0.3 0.53 
2017 18 31 75 18 38.75 62.5 0.15 0.33 0.52 
2018 14 29 71 14 36.25 60.5 0.13 0.33 0.54 
2019 11 27 63 11 33.75 56.5 0.11 0.33 0.56 
2020 10 24 56 10 30 53 0.11 0.32 0.57  

a The data from the “Bulletin of Ecological Environment Quality” of the Ministry of Ecology and Environment of China. 
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indicators. 

x’=
x − xmin

xmax − xmin
× 90 + 10 (11)  

y’=
y − ymin

ymax − ymin
× 90 + 10 (12)  

2.4. Data source 

The data on fixed asset investment, energy consumption, and industrial output in industrial sectors during the 13th five-year plan 
(2016–2020) were obtained from the China Statistical Yearbook for 2016–2020. Employment data were gathered from the China 
Population and Employment Statistical Yearbook. Pollutant emission data on SO2, NOx, and PM were collected from China Envi-
ronmental Statistical Yearbook. Since this study mainly explored the role of performance evaluation in guiding the prevention and 
control of industrial air pollution and the price changes during the 13th five-year plan were relatively small, an equivalent conversion 
of industrial output value was not carried out. 

3. Results and discussion 

3.1. Qualitative analysis of the development status of industrial sectors 

According to “Industrial Classification for National Economic Activities (GB/T4754-2017)”, industries involved in pollutant 
discharge were divided into 41 sectors according to the following broad categories: mining, manufacturing, electricity, heat, gas, and 
water generation and supply. Table 2 lists the classification names and identifications (IDs) of the 41 industrial sectors in China. 

During the 13th five-year plan, the development level of China’s industrial sectors represented by the indicators and their growth 
rate is shown in Fig. 1 and Fig. S2, respectively. Due to their large number, to summarize their characteristics and draw conclusions, the 
sectors were divided into the following five categories based on the focus of the study: (a) equipment manufacturing, (b) bulk raw 
materials, (c) living consumption, (d) mining, and (e) other industries. The production resources of fixed asset investment, energy 
consumption, and employment were concentrated in the industries of equipment manufacturing and bulk raw materials. In 2020, fixed 
asset investment and employment in the industry of equipment manufacturing accounted for 36% and 42% of the national total, 
respectively. Fixed asset investment, energy consumption, and employment in the industry of bulk raw materials accounted for 29%, 
76%, and 20% of the national total, respectively. These two industries are the pillars of China’s industrial economy, with the outputs of 
the industries of equipment manufacturing and bulk raw materials accounting for 39% and 26% of the national total, respectively. The 
shares of the resources in living consumption, mining, and other industries were relatively low. 

Overall, the industrial sectors of equipment manufacturing yielded higher technology and higher value-added products, such as 
computer communication equipment (S34), automobile manufacturing (S31), and electromechanical equipment (S33), with its high 
contribution to industrial output maintaining a strong growth trend in recent years. During the 13th five-year plan, the industrial 
output of equipment manufacturing grew by 19.36%, whereas the growth rates of bulk raw materials, living consumption, and mining 
were 5.29%, − 1.38%, and − 8.15%, respectively. The industry of equipment manufacturing had a relatively low energy demand. In 

Table 2 
Classification of industrial sectors in China.  

Sector ID Sector name Sector ID Sector name 

S1 Coal mining and washing S22 Pharmaceutical manufacturing 
S2 Oil and gas extraction S23 Chemical fiber manufacturing 
S3 Ferrous metal mining S24 Rubber and plastic products 
S4 Non-ferrous metals mining S25 Non-metallic mineral products 
S5 Non-metallic mining industry S26 Ferrous metal smelting and rolling 
S6 Mining professional and ancillary activities S27 Non-ferrous metal smelting and rolling 
S7 Other mining S28 Metal products industry 
S8 Agricultural and sideline food processing S29 General equipment manufacturing 
S9 Food manufacturing S30 Special equipment manufacturing 
S10 Alcoholic beverage and tea manufacturing S31 Automobile manufacturing industry 
S11 Tobacco manufacturing S32 Non-road transport equipment 
S12 Textile S33 Electromechanical equipment 
S13 Textile and garment S34 Computer communication equipment 
S14 Leather and fur products S35 Instrumentation manufacturing 
S15 Wood processing S36 Other manufacturing 
S16 Furniture manufacturing S37 Waste resources utilization 
S17 Papermaking S38 Mechanical equipment repair 
S18 Printing and recording media reproduction S39 Electricity and heat production 
S19 Cultural, sports, and entertainment articles S40 Gas production 
S20 Oil and coal processing S41 Water production 
S21 Chemical industry    
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recent years, under the trend of replacing coal with natural gas, electricity, and other clean energy, the consumption of coal, natural 
gas, and other primary energy dropped significantly, with the emissions of the pollutants declining. Overall, in terms of energy 
consumption and pollutant emissions per unit output value, the industry of equipment manufacturing performed well. In 2020, energy 
consumption per unit output value of the industrial sectors of equipment manufacturing ranged from 0.1 to 0.9 tons of standard coal/ 
10,000 RMB (an average of 0.63), slightly worse than that of the industry of living consumption (an average of 0.41) and significantly 
better than that of the industries of bulk raw materials (an average of 4.50) and mining (an average of 20.84). The pollutant emissions 
per unit output value of the industry of equipment manufacturing ranged from 0.89 to 54.54 tons/100 million RMB (an average of 
12.35), slightly worse than that of the industry of living consumption (an average of 17.14) and significantly better than that of the 
industries of bulk raw materials (an average of 249.18) and mining (an average of 124.45). 

In the industry of bulk raw materials, essential to the normal production and living of society, steel, cement, glass, non-ferrous 
metals, petrochemical products, and chemical products covered a broad application market, with a high scale of output value. 
Since the production process of these industrial sectors required a large quantity of primary energy, such as coal and natural gas, to 
provide heat, the emissions of SO2, NOx, PM, and other pollutants from these sectors accounted for a very high proportion of the 
national total. 

The industrial sectors of living consumption had relatively low technical thresholds and low value-added products but a large 
consumption demand. Some of their production processes required high temperatures, which consumed a moderate quantity of en-
ergy. Therefore, the output value of the industry of living consumption remained at a medium or high level, while its pollutant 
emission was at a medium or low level. 

Given the resources and energy consumed by the industrial sectors and their industrial outputs and pollutant emissions, pre-
liminary qualitative evaluations could be conducted for the industries. The industry of equipment manufacturing exhibited the highest 
comprehensive performance, which was consistent with the evaluation class of low input, high output, and less pollution, whereas the 

Fig. 1. The development levels of China’s industrial sectors at the end of the 13th five-year plan (up to 2020): (a) equipment manufacturing, (b) 
bulk raw materials, (c) living consumption, (d) mining, and (e) other industries. 
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industry of living consumption ranked in the middle. As the focus of industrial air pollution control, the comprehensive performance of 
the industry of bulk raw materials remained relatively poor. 

3.2. Quantitative results of comprehensive performance evaluation of industrial sectors 

Based on the development of the industrial sectors in China during the 13th five-year plan, the applicability of the DEA method to 
the comprehensive performance evaluation was explored quantitatively. The results of the comprehensive performance evaluation of 
the industrial sectors over the study period are presented in Table 3.  

(1) Evaluation results of comprehensive technical efficiency (TE) 

The performance evaluation results showed two characteristics. First, there was a large gap among the comprehensive TEs of the 
industrial sectors, with the five-year average TE varying between 0.11 and 1. Second, the overall performance results of the industry of 
equipment manufacturing were best, followed by the industry of living consumption, whereas those of the industries of mining and 
bulk raw materials were worst. The average annual TEs of the four categories of industries are shown in Fig. 2, with their five-year 
average TEs being ranked as follows: equipment manufacturing (0.50) > living consumption (0.43) > mining (0.20) > bulk raw 
materials (0.19). 

In the industry of equipment manufacturing, the TE values of computer communication equipment (S34), automobile 
manufacturing (S31), and electromechanical equipment (S33) ranked in the top four every year. The industrial sectors of computer 
communication equipment (S34) and automobile manufacturing (S31) maintained a TE value of 1, regardless of the year of the study 
period, indicating that they were among the most valuable industrial sectors in China. The TE values of both general equipment (S29) 

Table 3 
The results of the comprehensive performance evaluation of the industrial sectors in terms of technical efficiency (TE) according to the 13th five-year 
plan.  

Industrial sectors 2016 2017 2018 2019 2020 Mean Ranking 

Tobacco manufacturing 1 1 1 1 1 1 1 
Computer communication equipment 1 1 1 1 1 1 1 
Automobile manufacturing industry 1 1 1 0.93 1 0.99 3 
Pharmaceutical manufacturing 0.78 0.91 1 1 0.97 0.93 4 
Electromechanical equipment 0.81 0.82 0.73 0.73 0.82 0.78 5 
Alcoholic beverage and tea manufacturing 0.45 0.45 0.44 0.45 0.44 0.45 6 
General equipment manufacturing 0.44 0.45 0.31 0.33 0.46 0.40 7 
Special equipment manufacturing 0.39 0.41 0.30 0.32 0.46 0.38 8 
Food manufacturing 0.37 0.34 0.29 0.31 0.30 0.32 9 
Agricultural and sideline food processing 0.42 0.37 0.26 0.27 0.27 0.32 10 
Oil and coal processing 0.36 0.35 0.32 0.25 0.21 0.30 11 
Coal mining and washing 0.26 0.36 0.33 0.29 0.26 0.30 12 
Non-road transport equipment 0.33 0.30 0.23 0.27 0.27 0.28 13 
Instrumentation manufacturing 0.29 0.30 0.26 0.24 0.26 0.27 14 
Cultural, sports, and entertainment articles 0.30 0.29 0.25 0.26 0.27 0.27 15 
Rubber and plastic products 0.31 0.29 0.23 0.24 0.26 0.27 16 
Textile and garment 0.30 0.27 0.24 0.22 0.23 0.25 17 
Metal products industry 0.28 0.25 0.20 0.21 0.25 0.24 18 
Textile 0.29 0.25 0.20 0.20 0.22 0.23 19 
Chemical industry 0.26 0.26 0.23 0.19 0.19 0.23 20 
Oil and gas extraction 0.16 0.22 0.30 0.27 0.19 0.23 21 
Leather and fur products 0.25 0.24 0.21 0.21 0.21 0.22 22 
Papermaking 0.22 0.23 0.20 0.21 0.22 0.22 23 
Printing and recording media reproduction 0.23 0.23 0.20 0.20 0.21 0.21 24 
Chemical fiber manufacturing 0.21 0.21 0.19 0.20 0.20 0.20 25 
Non-ferrous metals mining 0.21 0.22 0.20 0.19 0.19 0.20 26 
Ferrous metal mining 0.22 0.20 0.18 0.19 0.20 0.20 27 
The non-ferrous metal smelting and rolling 0.23 0.21 0.16 0.17 0.17 0.19 28 
Gas production 0.19 0.19 0.18 0.19 0.19 0.19 29 
Furniture manufacturing 0.21 0.20 0.16 0.17 0.18 0.18 30 
Mechanical equipment repair 0.18 0.18 0.17 0.18 0.19 0.18 31 
Non-metallic mining industry 0.19 0.18 0.16 0.16 0.17 0.17 32 
Wood processing 0.21 0.19 0.14 0.15 0.16 0.17 33 
Other mining 0.17 0.17 0.16 0.16 0.17 0.16 34 
Waste resources utilization 0.18 0.17 0.15 0.15 0.16 0.16 35 
Mining professional and ancillary activities 0.15 0.16 0.16 0.16 0.17 0.16 36 
Non-metallic mineral products 0.18 0.17 0.14 0.16 0.16 0.16 37 
Ferrous metal smelting and rolling 0.14 0.16 0.15 0.13 0.12 0.14 38 
Other manufacturing 0.15 0.14 0.12 0.13 0.14 0.14 39 
Water production 0.12 0.12 0.11 0.11 0.10 0.11 40 
Electricity and heat production 0.12 0.10 0.10 0.12 0.11 0.11 41  
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and special equipment (S30) ranked 7th–9th over the years, while those of non-road transportation equipment (S32), instrumentation 
manufacturing (S35), and metal products (S28) ranked 10th–25th. Overall, as analyzed in Section 3.1, the industry of equipment 
manufacturing yielded high technology and high value-added products, which best fit the evaluation class of low input, high output, 
and less pollution, thus exhibiting a highly comprehensive performance according to the evaluation system proposed in this study. 

In the industry of living consumption, tobacco manufacturing (S11) was technologically efficient (TE = 1) over the study period, 
featuring low cost, high added-value, and low emissions, followed by pharmaceutical manufacturing (S22), which also yielded 
relatively high technology and high value-added products. As the industrial output value substantially increased on an annual basis, 
the TE value of pharmaceutical manufacturing (S22) gradually rose from 0.78 in 2016 (ranking 5th) to 0.97–1 in 2018–2020. The TE 
values of alcoholic beverage and tea manufacturing (S10), food manufacturing (S9), and agricultural and sideline processing (S8) 
ranked 6th–15th in the past years, whereas those of textile and garment (S13) and leather and fur products (S14) ranked 15th–23rd. 

The industry of bulk raw materials mainly provides all kinds of basic raw materials and energy products for the Chinese industry. As 
its overall production process involved high temperatures, it led to high energy consumption and pollutant emissions, thus belonging 
to the typical evaluation class of industry with high pollution and high energy consumption. Its industrial sectors had a certain scale of 
industrial output, high energy consumption, and high pollutant emissions per unit output. According to the results of the compre-
hensive performance evaluation during the study period, the TE value of oil and coal processing (S20) ranked 8th–15th, whereas all the 
other industries ranked poorly. In particular, the three sectors of non-metallic products (S25), ferrous metal smelting and rolling (S26), 
and electricity and heat production (S39) resulted in the highest emission of the pollutants, with TE < 0.3 rankings 33rd–41st. 

Overall, the ranking of the TE values of all the industrial sectors of mining was concentrated between the 30th and 40th, mainly 
because the output value was low and accompanied by a certain degree of energy consumption and pollutant emissions, in particular, 

Fig. 2. The average comprehensive technical efficiency (TE) of the four major categories of industries according to the 13th five-year plan.  

Fig. 3. Distributions of average pure technical efficiency (PTE) and scale effect (SE) of the industrial sectors in China during the 13th five-year plan.  
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PM.  

(2) Evaluation results of pure technical efficiency (PTE) and scale effect (SE) 

Based on the average PTE and SE levels, all the industrial sectors were grouped into the following four categories (Fig. 3): 
High PTE-high SE: In this group, tobacco manufacturing (S11), automobile manufacturing (S31), and computer communication 

equipment (S34) were most prominent, followed by alcoholic beverage and tea manufacturing (S10), pharmaceutical manufacturing 
(S22), and electromechanical equipment (S33). Overall, these sectors belonged to high-end manufacturing with higher technology or 
profit margins (e.g., alcohol and tobacco manufacturing) and with higher added-value products. In terms of the specific input-output 
indicators, the above sectors showed higher output values, lower energy consumption, and lower pollutant emissions and belonged to 
the industries of equipment manufacturing and living consumption. 

High PTE-low SE: This group primarily included mining activities (S6), textiles and garments (S13), printing (S18), and instru-
mentation manufacturing (S35). The production scale of these sectors was relatively small, and the indicators of industrial output 
value, pollutant emissions, and energy consumption were not outstanding. These sectors with high PTE but low SE values resulted in 
low TE values but exhibited high potential and value of the development. An appropriate expansion of the production scale in these 
sectors can be considered to achieve greater expected returns. 

Low PTE-high SE: This group mainly included coal mining and washing (S1), oil and coal processing (S20), chemicals (S21), non- 
metallic mineral products (S25), ferrous metal smelting and rolling (S26), non-ferrous metal smelting and rolling (S27), general 
equipment manufacturing (S29), special equipment manufacturing (S30), and electricity and heat production (S39). All the industrial 
sectors of bulk raw materials were included, with the lowest overall PTE value. Their low TE, low PTE, and high SE values pointed to 

Table 4 
The results of the comprehensive performance evaluation of the industrial sectors before and after index condensation in 2019.  

Sectors Original DEA Combined weighting Efficiency difference Ranking difference 

TE Ranking TE Ranking 

Tobacco manufacturing 1 1 1 1 0 0 
Pharmaceutical manufacturing 1 1 1 1 0 0 
Computer communication equipment 1 1 1 1 0 0 
Instrumentation manufacturing 1 1 0.24 16 − 0.76 15↓ 
Other mining 1 1 0.16 33 − 0.84 32↓ 
Textile and garment 0.60 6 0.22 18 − 0.38 12↓ 
Printing and recording media reproduction 0.33 7 0.20 22 − 0.13 15↓ 
Mechanical equipment repair 0.26 8 0.18 29 − 0.08 21↓ 
Water production 0.20 9 0.11 41 − 0.09 32↓ 
Automobile manufacturing industry 0.18 10 0.93 4 0.74 ↑6 
Cultural, sports, and entertainment articles 0.17 11 0.26 14 0.09 3↓ 
Non-road transport equipment 0.16 12 0.27 13 0.11 1↓ 
Special equipment manufacturing 0.13 13 0.32 8 0.19 ↑5 
General equipment manufacturing 0.08 14 0.33 7 0.24 ↑7 
Gas production 0.07 15 0.19 27 0.12 12↓ 
Oil and coal processing 0.06 16 0.25 15 0.19 ↑1 
Alcoholic beverage and tea manufacturing 0.06 17 0.45 6 0.39 ↑11 
Electromechanical equipment 0.05 18 0.73 5 0.68 ↑13 
Oil and gas extraction 0.04 19 0.27 12 0.23 ↑7 
Food manufacturing 0.03 20 0.31 9 0.28 ↑11 
Leather and fur products 0.03 21 0.21 20 0.18 ↑1 
Furniture manufacturing 0.03 22 0.17 31 0.14 9↓ 
Coal mining and washing 0.02 23 0.29 10 0.26 ↑13 
The ferrous metal smelting and rolling 0.02 24 0.13 39 0.10 15↓ 
Agricultural and sideline food processing 0.02 25 0.27 11 0.25 ↑14 
Chemical industry 0.02 26 0.19 25 0.17 ↑1 
Waste resources utilization 0.02 27 0.15 36 0.13 9↓ 
Ferrous metal mining 0.02 28 0.19 26 0.17 ↑2 
Non-ferrous metals mining 0.02 29 0.19 28 0.17 ↑1 
The non-ferrous metal smelting and rolling 0.02 30 0.17 30 0.15 0 
Chemical fiber manufacturing 0.02 31 0.20 24 0.18 ↑7 
Non-metallic mining industry 0.02 32 0.16 34 0.14 2↓ 
Rubber and plastic products 0.02 33 0.24 17 0.22 ↑16 
Non-metallic mineral products 0.02 34 0.16 35 0.14 1↓ 
Papermaking 0.02 35 0.21 21 0.19 ↑14 
Metal products industry 0.02 36 0.21 19 0.20 ↑17 
Electricity and heat production 0.01 37 0.12 40 0.10 3↓ 
Wood processing 0.01 38 0.15 37 0.13 ↑1 
Textile 0.01 39 0.20 23 0.19 ↑16 
Other manufacturing 0.01 40 0.13 38 0.12 ↑2 
Mining professional and ancillary activities 0.01 41 0.16 32 0.16 ↑9  
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the low PTE as the main reason for the low TE. If the basic role of these sectors in the industrial chain was not considered, their 
development value was not as good as that of the high PTE sectors. Overall, these sectors caused large production scales, high energy 
consumption, and pollutant emissions, the focus of industrial governance. Therefore, these sectors were the focus of industrial air 
pollution control, in particular, considering energy conservation, emission reduction, innovative technology, and other measures to 
improve PTE. 

Low PTE-low SE: This cluster mainly included oil and gas extraction (S2), ferrous metal mining (S3), non-ferrous metal mining 
(S4), non-metallic mining (S5), wood processing (S15), and furniture manufacturing (S16). These sectors led to a relatively small 
production scale and low industrial output and were accompanied by a certain degree of pollutant emissions and resource and energy 
inputs. Without consideration of the basic role of these sectors in the industrial chain, their current development value and potential 
remained relatively low. This group also deserved special attention in terms of industrial air pollution control but may receive less 
attention than the group of low PTE-high SE due to its relatively low energy consumption and low pollutant emissions. 

Overall, the quantitative results of the comprehensive performance evaluation of each industrial sector were consistent with the 
results of the qualitative analysis of the developmental status of each sector in Section 3.1. The industry of equipment manufacturing, 
as represented by computer communication equipment (S34), electromechanical equipment (S33), and automobile manufacturing 
(S31), yielded the best performance, which best described the characteristics of high-end manufacturing with high technology, high- 
added value, low pollution, and low emission. The industry of living consumption, as represented by tobacco manufacturing (S11) and 
pharmaceutical manufacturing (S22), benefited from China’s broad consumer market and social development and led to a relatively 
large industrial output value, with its comprehensive performance being second only to that of the equipment manufacturing industry. 
Overall, all the industrial sectors of bulk raw materials belonged to the typical evaluation class of industry with high pollution and high 
energy consumption and were best described as the group of low TE, low PTE, and high SE, the focus of industrial air pollution control. 
Therefore, in the future industrial development of bulk raw materials, much effort should be made to improve its comprehensive 
performance through energy saving, emission reduction, innovative technology, and other measures. The results of this study were 
consistent with those of Yang et al. [39] and Wang et al. [40]. In their focus on industrial waste gas control in China, the total factor 
efficiency and eco-efficiency of the industries of electrical and mechanical equipment manufacturing, computer communication, and 
tobacco products were found to be better, whereas those of the industries of metal and non-metal products (e.g., ferrous metal, 
non-ferrous metal, and non-metallic mineral products) and chemicals remained generally poor. 

3.3. Verification of the combined weighting 

In this study, the index integration method was adopted to combine the subjective and objective weighting for the performance 
evaluation based on the DEA model. The rationality and necessity of the index integration method were verified by comparing the 
obtained results with those of the original SBM-DEA model. The data in 2019 with the most prominent difference in the results were 
selected as an example. The comparison results are presented in Table 4. The results of the index integration method significantly 
differed from the original model results, with the efficiency and ranking of many industrial sectors exhibiting a great degree of rise and 
fall. The sectors with significant changes in efficiency and ranking are shown in Fig. 4. Their characteristics were summarized below. 

Fig. 4. Industrial sectors with a significant change in efficiency and ranking.  
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(1) The effective industrial sectors (TE = 1) in the original DEA model results included tobacco manufacturing (S11), pharma-
ceutical manufacturing (S22), computer communication equipment (S34), instrumentation manufacturing (S35), and other 
mining (S7). The TE values of the other industrial sectors ranged from 0.01 to 0.60. The index integration method resulted in 
only three effective industrial sectors: tobacco manufacturing (S11), computer communication equipment (S34), and phar-
maceutical manufacturing (S22). The TE values of the other industrial sectors ranged from 0.11 to 0.93.  

(2) The TE values and ranking of the industries of equipment manufacturing and living consumption significantly rose by 0.24–0.74 
and 6–14, respectively, including automobile manufacturing (S31), electromechanical equipment (S33), alcoholic beverage and 
tea manufacturing (S10), food manufacturing (S9), agricultural and sideline food processing (S8), and general equipment 
manufacturing (S29).  

(3) The TE value of the industry of bulk raw materials improved, but its ranking remained the same or decreased. The ranking of oil 
and coal processing (S20), chemicals (S21), non-ferrous metal smelting and rolling (S27), and non-metallic mineral products 
(S25) remained the same, whereas the ranking of electricity and heat production (S39) and ferrous metal smelting and rolling 
(S26) significantly dropped 3 and 15 places, respectively. 

The index integration method exhibited the above characteristics compared with the original model results since it adjusted the 
relative weights between the input indicators and undesired output indicators. For example, due to the high fixed assets investment 
and the large number of employments, some industrial sectors of equipment manufacturing and living consumption, such as auto-
mobile manufacturing (S31), electromechanical equipment (S33), alcoholic beverage and tea manufacturing (S10), and food 
manufacturing (S9), yielded low performance in the original model results. This study weakened the weights of fixed assets and labor 
force and strengthened the weight of energy consumption through combined weighting. Therefore, the comprehensive performance of 
these industrial sectors improved significantly. The strengthened weight of energy consumption and the adjusted relative weight of the 
three pollutants (the increased weight of PM emissions) caused the ranking of the industrial sectors of bulk raw materials, such as 
electricity and heat production (S39) and ferrous metal smelting and rolling (S26) to fall significantly. 

The combined weighting of the performance evaluation proposed in this study aimed to provide technical support for precise 
control over industrial air pollution by comprehensively examining industrial economic and environmental benefits. Compared with 
the original model results, the evaluation results after the index integration showed that the performance ranking of the industrial 
sectors with low energy consumption, high output, and less pollution improved, whereas the efficiency ranking of the industries with 
high energy consumption and high pollution declined. Therefore, the combined weighting based on the DEA model established by the 
index integration method solved the issue that the DEA model assigned indicator weights entirely based on the characteristics of data, 
and thus, became more in line to promote precise control over industrial air pollution. 

4. Conclusion 

Evaluating the industrial economic and environmental benefits was the primary procedure to explore the coordinated development 
pathways of the industrial economy and its air pollution control. This study proposed a combined subjective and objective weighting 
for the performance evaluation. In the development of this method, based on the DEA, the index integration method was further 
integrated to solve the problem that weight preference was not considered in current performance evaluation studies. Fixed asset 
investment, energy consumption, employment number, industrial output value, and pollutant emissions that represent the economic 
and environmental benefits of industrial enterprises were selected to construct indicator systems. The performance evaluation of the 
41 industrial sectors in the 13th five-year plan was conducted as a case, to verify the rationality and effectiveness of its application in 
providing technical support for the coordinated development of the industrial economy and its air pollution control. The main con-
clusions reached were as follows:  

(1) The proposed method yielded the quantitative results of the comprehensive performance evaluation of the economy- 
environment nexus of each industrial sector. 

The quantitative evaluation results were consistent with the qualitative analysis results of the development status of the industrial 
sectors, which in turn verified the rationality and feasibility of the proposed method. The industries of equipment manufacturing and 
living consumption led to the highest performance, whereas the industry of bulk raw materials caused the worst performance, with 
their five-year average comprehensive performances being estimated at 0.50, 0.43, and 0.19, respectively.  

(2) Based on the combined analyses of TE, PTE, and SE of the industrial sectors, where to specifically emphasize industrial air 
pollution control was further clarified. 

The group of high PTE-high SE yielded the most development value, such as tobacco manufacturing, computer communication 
equipment, and automobile manufacturing. The groups of low PTE-high SE and low PTE-low SE were the focus of industrial air 
pollution control. The group of low PTE resulted in a lower level of economic output under the same energy consumption and pollutant 
emission level. In particular, the industrial sectors with large production scales, such as electricity and heat production, ferrous metal 
smelting and rolling, and non-metallic mineral products, exhibited relatively large potential for energy conservation and emission 
reduction. 
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(3) By comparing the evaluation results before and after the index integration method, the necessity of applying combined 
weighting to the prevention and control of air pollution was verified. 

After the index integration method was adopted, the overall TE values and ranking of the industrial sectors with high energy 
consumption and high PM emissions fell in varying degrees, whereas those of the industrial sectors with low energy consumption and 
low PM emission rose. The index integration method solved the issue that the DEA model assigned indicators weights entirely based on 
the characteristics of the data, and thus, realized the purpose of flexibly carrying out performance evaluation according to the focus of 
air pollution control, more in line with the needs of air pollution control.  

(4) There was still optimization space for the indicator system. 

The indicator system needed to fully and accurately evaluate the economic and environmental benefits of each industrial sector. If 
the data were available, it was suggested to use "industrial added value" instead of "gross industrial output value" used in this study, 
which was more suitable to represent the economic benefits of the industrial sector. Meanwhile, this study only took each industrial 
sector as an example, and the data used were all statistical data from industrial enterprises above the designated size. In the future, the 
method in this study needs to be accurately applied to different regions such as provinces, cities, and counties, as well as large, me-
dium, and small enterprises of different sizes. Then, the indicator system needs to be adjusted accordingly, which is exactly the di-
rection of the following research. 
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