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1  |  INTRODUC TION

Thrombopoietin receptor (TpoR), also called c-MPL (cellular-
myeloproliferative leukaemia), is a cytokine receptor found on hae-
mangioblasts, hematopoietic stem cells (HSCs), megakaryocytes and 
platelets.1,2 TpoR was first discovered in 1992 by Vigon et al. in the 
prospect of finding the human homolog of murine v-mpl that was 
known to cause an acute myeloproliferative syndrome in mice.3,4 
Subsequently, the ligand for TpoR called thrombopoietin (TPO) 
was cloned by several groups in 1994.5–10 Among them, Wendling 
et al.10 utilized post-irradiated (cytopenic) mouse sera and observed 
selective growth of TpoR-expressing cells. Interestingly, an in-
crease in serum TPO has also been detected in c-mpl−/− mice.11–14 
TPO is involved in the process of self-renewal of HSCs and the 
production of platelets.11–13,15–17 TPO binds with high efficiency to 

TpoR on the platelet surface, leading to the destruction of TPO by 
platelets. This, in turn, regulates plasma TPO levels. Interestingly, 
hepatocyte-specific knock-out of Thpo resulted in decreased plate-
let counts, raising the possibility for a cross-organ regulation of the 
production of TPO by circulating platelets.18 Circulating plasma TPO 
drives megakaryopoiesis, thereby regulating platelet counts.19,20 
TpoR is structurally similar to members of the class I cytokine re-
ceptor superfamily, which includes erythropoietin receptor (EpoR), 
growth hormone receptor (GHR), granulocyte colony-stimulating 
factor receptor (G-CSFR) and granulocyte megakaryocyte colony-
stimulating factor receptor (GM-CSFR). TpoR consists of 635 amino 
acids and can be divided into three functional regions: extracellular 
domain, transmembrane domain and cytoplasmic domain (Figure 1).

The extracellular domain exhibits a size of 466 aa and is nearly 
double the size of the extracellular domains of the homologous 
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Abstract
Thrombopoiesis had long been a challenging area of study due to the rarity of mega-
karyocyte precursors in the bone marrow and the incomplete understanding of its 
regulatory cytokines. A breakthrough was achieved in the early 1990s with the discov-
ery of the thrombopoietin receptor (TpoR) and its ligand thrombopoietin (TPO). This 
accelerated research in thrombopoiesis, including the uncovering of the molecular 
basis of myeloproliferative neoplasms (MPN) and the advent of drugs to treat throm-
bocytopenic purpura. TpoR mutations affecting its membrane dynamics or transport 
were increasingly associated with pathologies such as MPN and thrombocytosis. It 
also became apparent that TpoR affected hematopoietic stem cell (HSC) quiescence 
while priming hematopoietic stem cells (HSCs) towards the megakaryocyte lineage. 
Thorough knowledge of TpoR surface localization, dimerization, dynamics and sta-
bility is therefore crucial to understanding thrombopoiesis and related pathologies. 
In this review, we will discuss the mechanisms of TpoR traffic. We will focus on the 
recent progress in TpoR membrane dynamics and highlight the areas that remain 
unexplored.
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EpoR and GHR. This is due to the presence of two cytokine recep-
tor modules (CRM-1 and CRM-2). The extracellular domain essen-
tially constitutes a sensor. Each of the CRMs is composed of a pair 
of fibronectin-III (FNIII)-like domains (D1 and D2 in CRM-1 and D3 
and D4 in CRM-2) and two pairs of cysteines. A conserved WSXWS 
box characteristic of type I receptors is present at the membrane-
proximal end of CRM-2.21 The fibronectin-III-like domain present 
in each CRM is composed of 7 antiparallel β strands and is inter-
connected by the hinge region.21,22 D261 and L265 residues23 within 
CRM-1 (D2) are the primary site for TPO binding,24 and D128 and 
P136 residues between D1 and D2  maintain the conformation of 
ligand-binding elbow.25 Hence, deletion of CRM-1 results in loss of 
TPO binding.24 Deletion of the WSXWS conserved motif of CRM-1 
does not affect TPO-binding capacity.23 Instead, the WSXWS motif 
present at the base of the extracellular domain is known to stabilize 
the ligand-binding conformation of type I receptors.26,27 Analysis 
of selected mutations from congenital amegakaryocytic thrombo-
cytopenia (CAMT) patients and structure-guided mutagenesis re-
vealed that F45, L103, R102 and F104 are potential ligand-binding 
sites.23,28 Among these, TpoR R102P found in CAMT patients is 

restricted in the endoplasmic reticulum (ER). Interestingly, TpoR 
R102P is rescued for traffic to the cell surface and subsequent acti-
vation by TpoR agonist eltrombopag29 when coexpressed with CALR 
exon 9 mutants (found in myeloproliferative neoplasm). Recently, a 
novel TpoR mutation (TpoR R464G) has been detected in patients 
diagnosed with CAMT.30 TpoR R464G could not be detected on the 
surface of platelets in these patients although low levels of surface 
expression coupled with limited activation by TPO were observed 
when expressed in Ba/F3 and UT-7 cell lines. However, unlike TpoR 
R102P, co-expression of CALR mutant could not rescue the traffic 
defect of TpoR R464G. The exact mechanism of action of CALR mu-
tants on these traffic-deficient TpoR, however, remains elusive.

The transmembrane and juxtamembrane domain (22aa) folds 
into an α-helix and acts as the control centre for dimerization and 
activation of the receptor. This region may also exist in differ-
ent dimeric-conformational orientations.31 Experiments by fus-
ing Put 3 coiled-coil domains to the transmembrane region of the 
TpoR and engineering the junction of dimeric coiled-coil and TpoR 
showed that it could signal from 6 different orientations. The ex-
tent of signalling may differ, as evidenced by the differences in the 

F I G U R E  1  Schematic TpoR structure depicting the position of the important residues. The conserved WSSWS motifs (shown in red) in 
the extracellular domain of receptor and Box 1 (green) and Box 2 (blue) part of the cytosolic domain are indicated. Four N-glycosylation 
N117, N178, N298 and N358 (in green) and residues mutated in hereditary thrombocytosis R102, F104 and P106 (in violet) are shown. 
The hydrophobic patch in the TpoR extracellular domain is indicated in yellow. Eltrombopag-binding site at residue H499 of human TpoR is 
indicated in magenta. Human H499 and its equivalent murine L492 are shown along with the position S505 (human) and S498 (murine) for 
comparison
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proliferation of Ba/F3 and UT-7 cell lines expressing these con-
structs.31 Although the transmembrane region is composed of a 
relatively short stretch of amino acids when compared to the full re-
ceptor, this region plays a crucial role in halting ligand-independent 
activation of TpoR. Specifically, H499 and RW515QFP are two es-
sential motifs for the prevention of ligand-independent activation of 
TpoR.32,33 Incidentally, eltrombopag, an agonist of TpoR which binds 
at position H499, is used to treat thrombocytopenia.32,34,35 W515, 
part of the RW515QFP motif located at the juxtamembrane region, is 
responsible for maintaining TpoR in an inactive state in the absence 
of its ligand. Hence, mutation at W515 to any residue except pro-
line and cysteine (W515P and W515C) results in constitutive activa-
tion of TpoR.36 In fact, myeloproliferative neoplasm (MPN) patients 
with essential thrombocythemia (ET) and primary myelofibrosis 
(PMF) were found to harbour activating transmembrane domain 
mutations W515L/K/R/A, S505N and V501A.37 Of these, S505 and 
V501 appear at the dimeric interphase and maintain the inactive 
conformation of the receptor. Recently, saturation mutagenesis of 
the transmembrane domain revealed that second site mutations in 
the same domain modulated the effects of these driver mutations. 
For example, R514K enhanced the ligand-independent activation of 
S505N.38 Moreover, aberrant activation of the TpoR extracellular 
domain by oncogenic mutations S505N and W515A/L/K was found 
to depend upon W491 residue of the extracellular domain.39 Taken 
together, amino acids at dimeric interface (V501, S505) and juxtam-
embrane region (W515, L498) prevent ligand-independent activa-
tion of the receptor.38,39

Of note, the transmembrane domain of murine TpoR has higher 
propensity for dimerization in comparison with human TpoR. This 
has been attributed to the absence of the H499 residue in murine 
TpoR that results in an uninterrupted helical conformation of the 
transmembrane domain favouring the activation of murine TpoR.32 
Indeed, such a scenario is observed in v-MPL, an oncoprotein pres-
ent in murine myeloproliferative leukaemia virus (MPLV).3 v-MPL 
was observed to lack most of the extracellular domain of murine 
TpoR that possibly blocks activation of the receptor in the absence 
of its ligand. Instead, the oncoprotein contained the transmembrane 
and intracellular domain of murine TpoR fused to a 100 amino acid 
segment of Friend murine leukaemia virus envelope protein, result-
ing in transformation of haematopoietic progenitors, autonomous 
cell growth and robust myeloproliferation.

The cytoplasmic domain is the signalling hub of the receptor. It 
consists of 122aa and has many unique features such as conserved 
box 1, box 2 and the presence of 5 tyrosine residues (Y521, Y542, 
Y591, Y626 and Y631, for the human TpoR). Boxes 1 and 2 are es-
sential for recruiting JAK2.40,41 Because TpoR does not exhibit in-
trinsic tyrosine kinase activity, the receptor depends on cytoplasmic 
non-receptor tyrosine kinases such as JAK2 and TYK2 for trigger-
ing activation and signal transduction. Following ligand binding, the 
cytoplasmic domain initiates the signalling cascade through confor-
mational changes in the receptor. Ligand-dependent signalling in-
duces strong dimerization of the receptor in the presence of JAK2.42 
JAK2 phosphorylates TpoR on Y626 and Y631 and then cross 

phosphorylates each other.43–45 Consequently, STAT 1/3/5 binds to 
phosphorylated receptor through SH-2 domains and JAK2 further 
phosphorylates STATs.46–48 Phosphorylation of STATs leads to their 
dimerization. Dimerized STATs finally enter the nucleus to carry out 
TpoR-specific transcription. Moreover, JAKs have also been shown 
to activate other pathways such as MAPK49 and PI3K50 pathways.

2  |  RECEPTOR DIMERIZ ATION

Previously, it was thought that TpoR exists on the surface as pre-
formed dimers or in a monomer-dimer equilibrium. Biophysical stud-
ies using the transmembrane and juxtamembrane domains indicated 
that unstimulated human TpoR might be monomeric, while the mu-
rine TpoR might exist at least partially as preformed dimers.32 These 
differences between the murine and human TpoR were attributed to 
the H499 residue in the transmembrane domain that is unique to the 
human receptor.32,51 Indeed, H499 interrupts the alpha helix that 
might be required for preformed dimerization in an inactive orienta-
tion.32 Dimerization of TpoR has also been detected in cells using 
various methods such as cysteine cross-linking assay, TOXCAT or 
FRET-based protein-protein interaction assays.31,52 However, these 
approaches may give rise to a false interpretation of preformed di-
mers as these techniques can detect weak interactions between the 
receptor monomers.52 Besides, elevated cell surface expression of 
TpoR and ensuing crowding and weak interactions of monomers 
cannot be ruled out.42 Recently, utilizing physiological expression 
and single-molecule co-locomotion imaging of post-translationally 
labelled full-length surface monomers, it has been shown that class 
I cytokine receptors TpoR, EpoR and GHR predominantly exist on 
the surface as monomers which form stable signal-transducing di-
mers only when bound to their ligands.42 It is important to note that 
using a similar technique, low-affinity IL6-R ligand (C7 and A1 IL6 
engineered variants) displayed low to no dimerization but carried out 
strong STAT5 activation indicating that signalling and dimerization 
may be uncoupled at least for low-affinity IL6-R ligands.53

When bound by its ligand, stable dimerization of TpoR occurs 
aided by the dimerization of the JAK2 pseudokinase (PK) domain. 
This paves the way for the activation of the C-terminal tyrosine ki-
nase domain of JAK2. Deletion of the PK domain leads to reduced 
stability of active TpoR dimers, while the absence of JAK2 causes 
lower levels of intrinsic dimerization of TpoR.42 A stabilizing interac-
tion between JAK2 PK domains has been hypothesized by Wilmes 
et al. to be important for the dimerization of cytokine receptors. 
Along these lines, the FERM domain mutation of JAK2 (JAK2 L224E), 
which inhibits the PK-PK interaction, significantly inhibits TpoR di-
merization even in the context of the activating PK domain mutation 
JAK2 V617F (driver mutation in MPN). Therefore, the extent of TpoR 
dimerization and signalling is determined by FERM and PK domains 
of JAK2 as shown by L224E and V617F mutations, respectively.42 
Furthermore, experiments with TpoR W515L and JAK2 V617F have 
provided insight into factors affecting ligand-independent dimeriza-
tion of TpoR. W515L has been shown to induce strong dimerization 
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in the presence of JAK2, only transient weak dimerization in the 
absence of JAK2, while minor dimerization has been observed with 
TYK2. JAK2  V617F drives effective ligand-independent dimeriza-
tion of TpoR and EpoR,54 while substantially less dimerization was 
observed for GHR. Similar to TpoR, and for all the three IL-4 recep-
tor complexes, IL-4:IL-4Rα/IL-13Rα1 (type 2 complex), IL-13:IL-4Rα/
IL-13Rα1 (type 2 complex) and IL-4:IL-4Rα/IL-2Rγ (type 1 complex); 
fluorescence cross-correlation spectroscopy, as well as intramem-
brane dissociation constants, indicated the formation of short-lived 
transient dimers which are incapable of triggering signalling in the 
absence of the ligand.55 Taken together, TpoR appears to exist as sig-
nalling competent dimers only in the presence of its ligand. Ligand-
independent TpoR dimers are stabilized by specific mutations in 
JAK2 (JAK2  V617F) that enhances PK-PK interactions of adjacent 
JAKs or TpoR juxtamembrane mutations (TpoR W515) that relieve 
conformational inhibition.

3  |  REGUL ATION OF TPOR SIGNALLING

Ligand stimulation leads to stable dimerization of TpoR. Dimerization 
triggers downstream signalling molecules such as STATs causing 
TpoR-specific transcription that maintains HSC population11,12,15,16 
as well as platelet production.13,17 Having such an important role in 
haematopoiesis, TpoR signalling must be tightly regulated through 
multiple mechanisms. TpoR signalling is known to be regulated by 
two means. The first involves activation of the negative regulators 
of TpoR signalling cascade such as suppressor of cytokine signalling 
(SOCS), and 56,57 PIAS58,59-PIAS inhibits STAT DNA-binding activity, 
LYN60 and LNK.61 Further details may be found in the reviews.62–64 
The second method is by internalization of the active receptor com-
plexes followed by degradation or recycling of the receptor to the 
surface resulting in attenuation of downstream signalling.65 TpoR in-
ternalization has been followed by co-staining the cells for transferrin 
endocytosis.66 Such experiments showed that endocytosed TpoR ac-
cumulates in early-endosomal vesicles. TpoR endocytosis is regulated 
by dynamin as chemical inhibition using Dynasore-blocked TpoR 
internalization.29 Importantly, Dnm2  knock-out mice showed pro-
nounced macrothrombocytopenia with impaired TpoR endocytosis.67 
Impaired endocytosis was accompanied by sustained TpoR signalling 
and JAK2 phosphorylation. Therefore, internalization of active TpoR 
complexes is essential to attenuate TpoR signalling. Additionally, 
the phenotype of macrothrombocytopenia appears to be paradoxi-
cal, suggesting that excessive signalling by TpoR may have negative 
consequences.66,68 TpoR cytoplasmic domain associates with AP2 
to induce TPO-stimulated and clathrin-mediated endocytosis of the 
receptor.65 Internalization of TpoR is controlled by two intracellular 
motifs Y626 (fourth cytoplasmic tyrosine residue) and box 2 region 
(L567 L568 E569I570 L571) containing dileucine motifs (L567 L568 and I570 
L571). However, box 2 exhibits internalization independent of JAK2 
activation.69 This is consistent with the study done by Royer et al. 
concluding that only box 1 and sequence between box 1 and box 2 
(Q532Y533L534 in murine homologue) are required by FERM domain of 

JAK2 to enhance cell surface expression as well as internalization of 
TpoR.70 When stimulated with TPO, TpoR is ubiquitinated at K553 and 
K573 resulting in degradation of the receptor.71 This is mediated by E3 
ubiquitin ligases such as CBL. Crucially, CBL mutations are frequently 
detected in MDS/MPN.72 It may be noted that G-CSFR continues sig-
nalling even after internalization in early endosomes.73 As observed 
in the case of K5R mutant of G-CSFR where all the cytoplasmic 
lysines are mutated to arginine, STAT5 and ERK activation increases 
after internalization to early endosomes without being localized into 
late endosomes and lysosomes. Similarly, engineered high-affinity 
IL6  ligands (HyIL6) co-localized in early-endosomal compartment 
while low-affinity ligands displayed little or no colocalization in the 
same compartment. This correlated with robust STAT1/3 activation 
by HyIL6 as compared to low-affinity ligands.53 Recent data have re-
vealed that MPN-associated CALR mutants induced early-endosomal 
localization of TpoR.29 Whether early-endosomal localization con-
tributes towards increased signal amplitude remains unexplored for 
TpoR-mutant CALR complexes.

Platelet surface TpoR acts as a rheostat by regulating the avail-
ability of free circulating TPO in the blood. Similar to megakaryo-
cytes, platelet TpoR binds to serum TPO resulting in the endocytosis 
of the complex. Endocytosis is mediated by Dynamins as evidenced 
by impaired TPO-induced TpoR endocytosis resulting in increased 
serum TPO levels in Dnm2−/− mice.67 Additionally, mislocalized 
early-endosomal markers (EEA1) and abnormal clustering of clathrin 
away from the plasma membrane were observed in Dnm2−/− mega-
karyocytes. Together, these data indicate a clathrin and dynamin-
dependent endocytosis of platelet surface TpoR. Platelets also 
show the presence of recycling endosomes74 along with a charac-
teristic TpoR surface recovery kinetics following TPO stimulation.67 
However, very little information is available regarding the other mo-
lecular components involved in endocytosis of the TPO-TpoR com-
plex and recycling/degradation of TpoR, which may be different in 
HSCs and early MK progenitors. Importantly, TpoR expression cor-
relates with the number of hematopoietic stem cells,12 megakaryo-
cyte progenitors, megakaryocytes and platelets.75,76 Mice lacking 
TPO or TpoR are severely thrombocytopenic and deficient in mega-
karyocytes and their progenitors.75 When TpoR is expressed in pro-
genitors but not in megakaryocytes and platelets, platelet numbers 
increase due to lack of internalization and clearance of TPO from cir-
culation.76 Additionally, TPO has been shown to prime HSCs towards 
the megakaryocyte lineage.77 This explains the paradoxical throm-
bocytosis observed in mpl−/− mice engineered to express low levels 
of TpoR wherein excess serum TPO enhances megakaryopoiesis.78 
Similarly, two partially traffic-deficient TpoR, viz. TpoR K39N and 
P106L mutants, result in hereditary thrombocytosis due to the pres-
ence of excess TPO in circulation, which stimulates megakaryocyte 
progenitor proliferation.79 A recent study by Favale et al. on TpoR 
P106L showed low surface expression of the receptor in megakaryo-
cyte progenitors and UT-7 cells.79 TpoR P106L accumulates in the ER 
and can traffic to the surface, possibly through a Golgi-independent 
route.79 Low TpoR P106L activity is correlated with low surface ex-
pression and an internalization defect. Of note, the region between 
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R102 and P106 is important for cell surface expression of TpoR as 
well as its ligand-binding activity. While R102P is blocked in the ER 
and is unresponsive to TPO, P106L shows the partial response to 
the ligand.79

4  |  TPOR AC TIVATION BY AGONISTS

TpoR agonists have been designed to tune TpoR signalling by ei-
ther decreasing the distance between the monomers or changing 
the dimeric-conformational interface or dimeric topology, mak-
ing the receptor active to various extents. These include eltrom-
bopag, romiplostim and diabodies. Eltrombopag was first identified 
in a high-throughput screen of small molecule compounds capable 
of activating STAT in Ba/F3 cells expressing TpoR.80 Crucially, el-
trombopag was found not to compete with Tpo for binding to TpoR. 
Instead and as previously described, eltrombopag was observed to 
bind to H499 residue of human TpoR resulting in effective dimeri-
zation and activation of the receptor.32 The dependency on H499 
residue also marks a crucial difference between murine and human 
TpoR whereby only human TpoR containing H499 is activated by 
eltrombopag. Moreover, asparagine-scanning mutagenesis of the 
transmembrane domain of murine TpoR revealed that mutation at 
several residues was capable of activating the receptor. However, 
only S505N was found to activate the human TpoR. This differ-
ence was attributed to the presence of H499 which induced a local 
non-helical conformational around H499. Binding of eltrombopag 
resulted in induction of helical conformation around H499 favour-
ing dimerization and activation of the receptor. Similarly, a pep-
tide screening assay to identify peptides that bound to TpoR with 
high affinity leads to the identification of a 14 amino acid peptide 
(IEGPTLRQWLAARA). Dimerization of this peptide by a carboxyl-
terminal linkage to a lysine branch yielded peptides having almost 
equal affinity to TpoR as the natural ligand TPO.81 This knowledge 
was later used to develop Romiplostim which is a recombinant fu-
sion protein consisting of two identical subunits, each having IgG1 
Fc domain linked to two TpoR binding domains. Romiplostim was 
found to bind to the TpoR at regions similar to its natural ligand 
TPO. Moreover, romiplostim induced strong internalization of the 
receptor along with the activation of STAT, Akt and Erk signalling.82 
Presently, both eltrombopag and romiplostim are used in the treat-
ment of idiopathic thrombocytopenic purpura (ITP).

Diabodies on the other hand are dimeric, bivalent antibody frag-
ments constructed by joining heavy chain variable region and light 
chain variable region genes with five-mer linker sequences. They are 
designed to bind to the extracellular domain of the receptors. Due 
to their close binding sites, diabodies induce effective dimerization 
and activation of the receptor. The binding epitope of different di-
abodies may differ. This translates into different signalling output 
as well as varying levels of competition with the natural ligand. In 
a recent study, Cui et al.83 tested the binding of three diabodies 
AK111, AK113 and AK119 to the TpoR and their effects on receptor 
dimerization, activation and signalling. While AK111 reduced TPO 

binding up to 100%, AK119 showed robust dimerization and activa-
tion of the downstream signalling pathways. Thus, diabodies can ef-
fectively induce graded TpoR activation and signalling. It is possible 
that diabodies could also induce different levels of receptor internal-
ization which could translate into different degrees of activation of 
the receptor. Such a possibility needs to be explored in future.

Another method to fine-tune the dimeric topology of the recep-
tors involves the use of designed ankyrin repeat protein (DARPin) 
scaffolds that bind with high affinity to receptors of interest. Such 
a study on EpoR revealed that topological orientation of the extra-
cellular domain could alter the proximity, orientation and topology 
of the associated JAKs leading to changes in signalling amplitude.84 
Indeed, DARPins may be useful in deciphering the topological ori-
entations of TpoR extracellular domain relative to the intracellular 
signalling pathways especially in terms of the various activating 
mutations of the transmembrane domain of TpoR. The importance 
of topological orientation is highlighted by a recent study on TpoR 
R464G. The TpoR R464G was observed to be unresponsive to TPO 
or eltrombopag.30 However, upon co-expression of CALR del52, 
TpoR R464G showed selective activation with eltrombopag alone. It 
is possible that R464G mutation locks TpoR in an inactive topologi-
cal orientation which is relieved upon binding to CALR del52 making 
it accessible to eltrombopag.

5  |  TPOR SURFACE LOC ALIZ ATION IS 
MEDIATED BY JAK 2 AND T YK 2

TpoR has four sites for N-glycosylation (N117, N178, N298 and N358). 
While core glycosylation at the four Asn residues occurs in the ER, 
the addition of mature glycans requires passage through the Golgi. 
TpoR is expressed on the surface as mature Golgi processed, as 
well as immature glycosylated forms. JAK2 and TYK2 regulate the 
ratio of mature to immature form and promote surface localization 
of the mature Golgi processed form of the receptor by enhancing 
the recycling and stability of the receptor.70 Additionally, JAK2 and 
TYK2 increase the total protein level of TpoR by protecting against 
proteasomal degradation. Mutant JAK2  V617F exhibits down-
modulation of surface TpoR and total TpoR levels.66,85 The decrease 
in cell surface expression of TpoR in the presence of JAK2 V617F 
mutant is accompanied by impaired recycling of TpoR to the surface. 
Furthermore, the internalization of TpoR in JAK2 V617F mutant is 
much more pronounced, as compared to JAK2 WT. JAK2 V617F me-
diates down-modulation of TpoR through enhanced ubiquitination 
and degradation of the receptor. Hence, inhibitors of JAK2 and pro-
teasomal degradation have been shown to restore surface expres-
sion of TpoR in JAK2 V617F mutant cells. Insight into the mechanism 
of JAK2/TYK2-mediated enhanced half-life of receptors is obtained 
from the type 1 IFN receptor complex. IFNAR1  subunit internali-
zation is uniquely regulated by TYK2. In this receptor, TYK2 masks 
the internalization motif, thereby inhibiting ligand or ubiquitination 
independent internalization.86 In the absence of the ligand, TYK2 
prevents the interaction between the internalization motif (Y466) on 
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IFNAR1 and AP50 (subunit of AP2). These observations show that 
the masking effect of TYK2 reduces the basal internalization rate, 
thereby increasing the half-life of IFNAR1.86

6  |  GOLGI- INDEPENDENT TR AFFIC OF 
TPOR

TpoR utilizes both Golgi-dependent and Golgi-independent routes 
for traffic to the cell surface (Figure 2). The Golgi-dependent route 
of TpoR traffic marks exits through the ER-Golgi to the cell mem-
brane (anterograde secretion pathway) and is used by complex gly-
cosylated TpoR. The Golgi-independent pathway is utilized by TpoR 
containing immature glycosylation and is believed to be processed 
through autophagosomes to the cell surface.87 A recent study pub-
lished by Cleyrat et al.87 indicates that TpoR colocalizes with low pH 
and autophagic multivesicular body markers LC3, LAMP1 and Rab11 
in K562 and HEL cells. Additionally, autophagy inducers (Rapamycin 
and GRASP 55) led to increased immature form of TpoR, suggesting 
that a fraction of TpoR bypasses the Golgi and utilizes autophagy-
dependent unconventional secretory pathway for traffic to the sur-
face. On the other hand, addition of calcium ionophores (PMA and 
A23187) caused the reappearance of mature TpoR on the surface pre-
sumably due to accelerated fusion of vesicles. Therefore, both Golgi-
dependent and autophagy-dependent traffics of TpoR may co-exist 
in cells. Interestingly, analysis of the ligand-induced recovery of the 

receptor revealed rapid recycling of immature TpoR as compared to 
the mature form of TpoR. The authors suggested that a pool of imma-
ture TpoR was present in vesicles near the cell membrane that had by-
passed the Golgi and trafficked through LAMP1 + and/or LC3+ vesicles 
in K562 and HEL cell lines expressing TpoR. Like TpoR, IL-4R subunits 
localize in early and recycling endosomes, with very low localization 
in late endosomes and lysosomes in the absence of ligand. This shows 
that a significant fraction of receptors such as TpoR and IL-4R remain 
in cortical endosomes, which contribute towards the rapid recycling 
of receptors.55 Association of TpoR with JAK2 is essential for the 
presentation of mature TpoR to the surface through an anterograde 
secretion pathway.87 It is known that JAK2 and TYK2 increase the 
half-life of the mature form of TpoR.70 However, mutant JAK2 V617F 
coexpressed with TpoR in Ba/F3 cell line has been shown to increase 
the half-life of the immature form of TpoR rather than mature TpoR.66 
Although surface expression of immature TpoR appears to be corre-
lated with Golgi-independent traffic, it remains to be verified in the 
case of TpoR associated with CALR exon 9 mutants and JAK2 V617F. 
Further details of surface expression, N-glycosylation status and traf-
fic routes for the various mutants are provided in Table 1.

7  |  C ALRETICULIN MUTATIONS IN MPN

CALR is an ER-resident chaperone with three distinct functional 
domains.88 The N-terminal domain contains glycan-dependent and 

F I G U R E  2  TpoR traffic routes. The classical Golgi-dependent (solid lines), autophagosome-lysosome dependent (dashed lines) traffic 
routes and the endocytic pathway (in green arrow) are depicted. Glycosylation status of TpoR—immature (in red) and mature (in blue) are 
indicated throughout the TpoR traffic routes
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glycan-independent polypeptide-binding sites essential for its chap-
erone activity. The high-affinity Ca2+-binding site containing proline-
rich P-domain interacts with the thiol oxido-reductase Erp57 and is 
involved in glycan-independent chaperone activity. The acidic C-
terminal domain contains multiple high capacity, low-affinity Ca2+ 
binding sites that regulate ER Ca2+ buffering and homeostasis. The 
C-terminus ends with the KDEL retrieval sequence for retrograde 
transport of CALR from the Golgi and ER-Golgi intermediary complex 
(ERGIC) to the ER lumen. Functionally, CALR in concert with calnexin 
ensures proper folding of mono-glycosylated high mannose contain-
ing glycoproteins.89 CALR mutations were first identified in patients 
with MPN namely essential thrombocythemia and primary myelofi-
brosis in 2013.90,91 In these patients, CALR mutations resulted in 
megakaryocyte hyperplasia and myeloproliferation. The exon-intron 
organization of the CALR gene shows that the N-terminal domain 
is encoded by exons 1–4, and P-domain is encoded by exons 5– 7 

whereas exons 8 and 9 encode the C-terminal domain. Strikingly, 
MPN-associated +1 frameshift mutations cluster in the exon 9 of 
CALR. The two most common mutations in CALR include CALR del52 
(type I) and CALR ins5 (type II). These mutations differ in the length 
of the WT C-terminus tail that is retained in the mutant protein with 
CALR ins5 retaining a portion of the WT exon 9 sequence. Further 
details of the various genetic alterations associated with MPN may 
be found in the review.92 CALR mutations result in partial (CALR ins5) 
or near-complete (CALR del52) elimination of the acidic C-terminal 
domain along with elimination of the KDEL retrograde transport 
signal. The novel tail is rich in positively charged amino acids Met 
and Arg. It has been suggested that alterations in ER Ca2+ buffering 
capacity of the mutants along with defective interaction with store-
operated calcium entry (SOCE) proteins result in mobilization of ER 
Ca2+.93,94 Interestingly, CALR mutants selectively activated TpoR 
and to a weaker extent G-CSFR.95 Furthermore, shRNA-mediated 

TA B L E  1  Effects of the expression of WT and mutant TpoR, JAK2 and CALR on the cell surface expression of TpoR

Mutations
TpoR surface 
expression

TpoR 
glycosylation

Pre-dominant 
pathway for traffic References

JAK2 WT High (++++) Mature Secretory Cleyrat et al. (2014)87; Royer et al. (2005)70; 
Pecquet et al. (2012)66

TYK2 WT Moderate (++) Mature Secretory Royer et al. (2005)70

JAK2 V617F Moderate (++) Immature Lysosomal Cleyrat et al. (2014)87; Pecquet 
et al. (2012)66

CALR WT High like TpoR WT 
(+++)

Mature Secretory Pecquet et al. (2019)29

CALR del52 Moderate (++) Immature Secretory Pecquet et al. (2019)29

CALR ins5 Moderate (++) Immature Secretory Pecquet et al. (2019)29

TpoR K39N Low (+) Mature 
+Immature

Unknown Pecquet et al. (2019)29; Moliterno 
et al. (2004)107

TpoR R102P Absent (-) N/A N/A Varghese et al. (2014)25

TpoR R102C Absent (-) N/A N/A Ballmaier et al. (2001)108; Varghese 
et al. (2014)25

TpoR F104S High like TpoR WT 
(+++)

Mature Secretory Stockklausner et al. (2015)109;Varghese 
et al. (2014)25

TpoR P106L Low (+) Immature Lysosomal Stockklausner et al., 2015109; Favale 
et al. (2016)79

TpoR D128Y High like TpoR WT 
(+++)

Unknown Unknown Varghese et al. (2014)25

TpoR P136L Moderate (++) Unknown Unknown Varghese et al. (2014)25

TpoR P267T (murine) Moderate (++) Unknown Unknown Varghese et al. (2014)25

TpoR G434R (murine) Low (+) Unknown Unknown Varghese et al. (2014)25

TpoR G509N Low (+) Immature Unknown Pecquet et al. (2019)29; Leroy et al.32

TpoRCysless (cysteine 
mutants-folding 
deficient)

Absent (-) N/A N/A Pecquet et al. (2019)29

TpoR D1D2 Absent (-) N/A N/A Pecquet et al. (2019)29

TpoR box 1/box 
2 mutant

Absent (-) N/A N/A Royer et al. (2005)70

TpoR R464G Low (+) Immature Unknown Basso-Valentina et al. (2021)30

Note: Effects of the expression of WT and mutant TpoR, JAK2 and CALR on the cell surface expression and glycosylation status of TpoR has been 
indicated. The major route (Glogi dependent/Lysosomal) for TpoR traffic in the various conditions has been shown. N/A indicated not applicable.
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knock-down of JAK2 or TpoR resulted in decreased number of 
CD34+ cell-derived TPO-independent CFU-Mk from CALR del52 
and CALR ins5 harbouring ET patients.95 These data point towards a 
mutant CALR-TpoR-JAK2 axis-driven myeloproliferation. Moreover, 
it explains the phenotypic observation of dysregulated megakary-
opoiesis in mutant CALR-driven MPN.

8  |  C ALRETICULIN MUTATIONS AND 
TR AFFIC OF TPOR

CALR mutations associated with exon 9 of CALR resulted in a posi-
tively charged tail devoid of the ER retention signal KDEL. Therefore, 
it was speculated that the mutants might exit ER in high numbers. 
Indeed, data from multiple groups have conclusively shown that 
CALR mutants follow the classical Golgi-dependent secretory 
pathway.29,96,97 The mutants have been observed in the ER, Golgi, 
ER-Golgi intermediary compartment (ERGIC), endosomal vesi-
cles, plasma membrane and even in the nucleus.29,95,98 Moreover, 
recent data have indicated that the CALR mutants are heavily se-
creted and not only can modulate immune response96 but may also 
act as trans-acting paracrine factors for TpoR stimulation.99 Recent 
publications have indicated that MPN-associated CALR mutants 
downmodulate the expression of TpoR.95,100 Mutant CALRs show 
multiple effects on TpoR structure and function. Interaction of TpoR 
with CALR mutants begins inside the ER lumen where the lectin-
binding domain of mutant CALRs associates with high affinity to 
(GlcNAc)2(Man)9Glc residue on TpoR.29 Therefore, mutant CALRs 
specifically co-immunoprecipitated with immature high mannose 
containing TpoR.95 The mutant CALR-TpoR interaction is possibly 
retained as the complex exits ER and traverses through the Golgi to 
the cell surface. This has been attributed to the stable binding of mu-
tant CALR to the immature glycan, especially on N117 of TpoR. The 
complex between mutant CALR and TpoR prevents further process-
ing of N117-linked sugars during passage through the Golgi.29 While 
this has been observed in insect cells coexpressing mutant CALR 
and the soluble TpoR extracellular domain, whether such a scenario 
is indeed responsible for the surface appearance of immature gly-
cosylated TpoR remains to be explored. Oligomerization of mutant 
CALRs aided by its novel C-terminal tail induces signalling compe-
tent dimerization of cell surface TpoR.101 Hence, the TpoR-mutant 
CALR complex induces JAK2-STAT1/3/5 signalling. Moreover, endo-
somal localization of active TpoR complexes has also been detected 
in the presence of CALR mutants.29 Interestingly, inhibition of TpoR 
endocytosis increased mutant CALR-dependent STAT5 signalling.29 
Thus, it appears that surface expression of the TpoR-mutant CALR 
complex is necessary for TpoR signalling.29,97 Mutant CALR induced 
dimerization of TpoR in the presence of JAK2 but failed to do so 
for EpoR, indicating specificity for the association between mutant 
CALR and TpoR.95,102 Interaction between CALR mutant and TpoR is 
primarily dependent upon N-glycosylation (especially N117 residue). 
The N117 residue is also conserved in murine TpoR. A hydrophobic 
patch present at the extracellular domain of TpoR was also found to 

regulate mutant CALR-dependent TpoR signalling.29 Alanine muta-
tion in the hydrophobic patch (TpoR 8A) led to diminished signalling 
activity and thermal stability of TpoR in the presence of CALR mu-
tants but retained interaction with mutant CALRs. Mutant CALRs 
have been found to destabilize the protein-protein interaction 
characteristic of CALR WT such as formation of the peptide load-
ing complex and interactions with Erp57.103,104 Yet, a stabilizing ef-
fect of mutant CALRs especially CALR del52 has been observed on 
TpoR.29 CALR del52 increased the thermal stability of TpoR both in 
cell lines and in primary Calr del52 knock-in mouse platelets. This has 
a direct consequence on the surface expression of traffic-deficient 
TpoR mutants. CALR del52 induced traffic and surface expression of 
TpoR R102P and enhanced surface expression of TpoR P106L. Thus, 
a chaperone-like effect of mutant CALRs was observed on these 
traffic-deficient TpoR mutants.

9  |  PERSPEC TIVES

Defects in TpoR traffic are associated with multiple pathological 
conditions. Yet, the exact mechanisms of TpoR traffic and sorting 
post-receptor endocytosis remain unknown. Recent reports on fi-
brinogen endocytosis in platelets have implicated Arf6 (small Ras-
like GTP-binding protein) and VAMP-3 (v-SNARE) proteins in the 
process.74,105 It remains to be seen whether these effectors also 
modulate endocytosis of TpoR. Although the conventional antero-
grade transport of TpoR has been widely studied, we are just begin-
ning to appreciate the unconventional autophagosome-lysosomal 
route. It is not clear how much each of these routes contributes to-
wards surface TpoR expression in HSCs, progenitors and platelets. 
Moreover, how these routes affect the pathophysiology of TpoR 
in relation to TpoR/JAK2/CALR mutations needs to be explored. 
For example, the unconventional autophagosome-lysosomal traf-
fic of TpoR could be detected in cells with JAK2  V617F or TpoR 
P106L.66,79 However, it remains to be established whether block-
ing the unconventional traffic of TpoR affects the disease pathol-
ogy. Unconventional traffic that bypasses Golgi would necessitate 
changes in TpoR N-glycosylation. Of note, mutations targeting indi-
vidual Asn residues responsible for N-glycosylation of TpoR showed 
little effect on its surface expression and response to TPO.106 
However, combinatorial mutations did indeed decrease surface ex-
pression and TpoR signalling. Nevertheless, we do not understand 
whether the N-glycosylation status affects receptor internalization 
and membrane dynamics. Answers to these questions will serve to 
better understand paradoxical thrombocytosis and aid in the devel-
opment of effective TpoR agonists/antagonists.
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