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Bigger is better: Improved nature
conservation and economic returns from
landscape-level mitigation
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Stephen Polasky,4,5 James R. Oakleaf,1 Elizabeth M. Uhlhorn,6 Joseph Kiesecker1
Impact mitigation is a primary mechanism on which countries rely to reduce environmental externalities and
balance development with conservation. Mitigation policies are transitioning from traditional project-by-project
planning to landscape-level planning.Although this larger-scale approach is expected toprovidegreater conservation
benefits at the lowest cost, empirical justification is still scarce. Using commercial sugarcane expansion in the Brazilian
Cerrado as a case study, we apply economic and biophysical steady-state models to quantify the benefits of the
Brazilian Forest Code (FC) under landscape- and property-level planning.We find that FC compliance imposes small
costs to business but can generate significant long-term benefits to nature: supporting 32 (±37) additional species
(largely habitat specialists), storing 593,000 to 2,280,000 additional tons of carbon worth $69 million to $265 mil-
lion ($ pertains to U.S. dollars), andmarginally improving surface water quality. Relative to property-level compliance,
we find that landscape-level compliance reduces total business costs by $19million to $35millionper 6-year sugarcane
growing cycle while often supportingmore species and storingmore carbon. Our results demonstrate that landscape-
level mitigation provides cost-effective conservation and can be used to promote sustainable development.
INTRODUCTION

Economic development creates numerous benefits but often comes at the
expense of the environment. For example, business activities have been
estimated to cause annual losses of $7.3 trillion ($ pertains toU.S. dollars)
globally due to pollution and foregone ecosystemservices (1). Amainpolicy
mechanism for countries to balance development with conservation and to
reduce environmental externalities is impact mitigation (2, 3). Worldwide,
mitigation policies strive for no net loss (or ideally net gain) to the environ-
ment by requiring that developers first avoid and minimize impacts and, if
unavoidable, compensate (offset) for residual impacts (4). Inpractice, impacts
on biodiversity aremeasured in terms of species and habitat attributes (5, 6),
but there is growing interest to account for ecosystem services, such as
water quality andcarbon sequestration, alongwithhumanwell-being (7–10).

Although the principles underlying mitigation policy are sound,
its implementation is not without criticism. Mitigation has come under
fire for burdening individual businesses or development sectors (11–13).
It is also carried out on an ad hoc project-by-project basis that fails to ac-
count for cumulative and indirect impacts at a landscape scale and for larger-
scale processes that influence economic activities, biodiversity, and ecosystem
service provision (5, 14). Further, to achieve no net loss, mitigation activities
(for example, restoration or protection) should provide conservation benefits
that would not have otherwise occurred; yet, this condition of additionality is
often not met (5). Thus, mitigation activities frequently result in highly dis-
persedconservationprojects thathave limited ecological effectivenessbut im-
pose substantial oversight burden on the regulatory community (12, 15).
To correct traditional project-by-project decision-making, unpre-
cedented attention is now being given to the adoption of landscape
(watershed or regional)–scale mitigation planning (12, 14, 15). The
United States now officially espouses this new mitigation approach
with the recent SecretarialOrder [DOI (Department of the Interior), no.
3330, 2013], which calls for intra- and interagency mitigation processes
to adopt landscape-scale planning (12, 16). Other countries, such as
Colombia [MADS (Ministerio de Ambiente y Desarrollo Sostenible),
Resolution 1517, 2012] and Peru [MINAM(Ministerio del Ambiente),
Resolution 398, 2014], have followed suit (17). Although landscape-
scale mitigation is expected to provide greater conservation benefits at
a lower cost, empirical justification is still scarce (12).

Using commercial sugarcane expansion in a watershed in the threat-
ened Brazilian Cerrado as a case study (Fig. 1), we apply economic
and biophysical steady-state models to quantify the benefits of the
Brazilian Forest Code (FC; Law no. 12,651, 25 May 2012) under different
compliance scenarios: property (farm)–level (PL) and landscape
(watershed)–level (LL) planning involving habitat protection and/or
restoration. The Brazilian Cerrado biome is a global biodiversity hot
spot (18): It is the world’s most diverse tropical savannah but has lost
more than 50% of its area in recent years because of agricultural con-
version (19).With less than 2.2%under federal- or state-protected areas,
the vast majority of remaining natural vegetation is on private lands and
regulated by the FC, which currently has low compliance in the biome
(13, 20). This policy intends to provide no net loss of habitat and eco-
system services by stipulating that a minimum portion of natural vege-
tation bemaintained on individual properties (13). Although compliance
is traditionally met at the property scale, farms are allowed to offset
their legal requirements by protecting or restoring habitats on other
properties within the same biome (20). The choice of mitigation action
(habitat protection or restoration) can also influence the extent to which
mitigation provides conservation gains (21, 22) and can affect compli-
ance costs (11, 13).
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Here, we assess how the aggregate long-term performance of the FC
can be improved in a cost-effective way.We focus on the steady-state
economic costs and environmental outcomes (biodiversity, water
quality, and carbon sequestration) of different mitigation planning
options for a large commercial sugarcane producer that is expanding
production in the study region. In all of our scenarios, planning is based
on minimizing the costs of environmental compliance and sugarcane
production to mimic what is known to occur in practice (23, 24). The
objective of our study is to show how planning for commercial produc-
tion can be improved, in a way that benefits local ecosystems, while
providing incentives (in the form of cost savings) for commercial pro-
ducers to comply with the law at the same time. Because FC compliance
is yet to be achieved in the region, we evaluate potential outcomes using
empirically based models with spatially explicit parameters adapted to
the local context as well as exceptionally detailed cost data from a local
commercial agricultural producer.
RESULTS

Mitigation benefits can outweigh costs to business
FC compliance requires that some land be taken out of production and
be placed under natural vegetation. Depending on the sugarcane pro-
Kennedy et al. Sci. Adv. 2016; 2 : e1501021 1 July 2016
duction target, compliance is likely to affect 4.2 to 8.4% of the study
region and require only 15 to 22% of the area to be in natural vegetation
(Fig. 2A and table S5). We find that compliance is likely to increase an-
nual costs to a commercial grower by only 4.5 to 8.2%, because of the
costs associatedwith FC compliance and increases in the transportation,
leasing, and transaction costs (see the “Production and FC compliance
costs acrossmitigation scenarios” section in the SupplementaryMaterials).
However, compliance is expected to generate significant benefits in the
long run: supporting, onaverage, about 32 (±37) additional species (largely
forest and cerrado specialists) and ~74% (±8%) of all possible bird and
mammal species in the region (tables S11 and S12). It could also store
an additional 3 to 12% (593,000 to 2,280,000 tons) of carbon worth
$69million to $265millionusing the social value of avoidedCO2 emissions
(table S14). Marginal improvements of ~3% (±0.47%) in the aggregate
surface water quality could also be gained (table S16). It should be noted
that the impacts of the FC depend on the sugarcane production goal:
The larger the agricultural area needed tomeet the sugarcane target, the
larger the benefits (tables S11, S14, and S16).

LL mitigation is cost-effective
Compared to PL compliance, LLmitigation is expected to generate cost
savings of $19million to $35million (mean = $29 million ± $9million)
in a 6-year sugarcane production cycle to a large agricultural producer
Fig. 1. Current land cover and land use in the study region. Current distributions of land cover and land use for the Ribeirão São Jerônimowatershed in
the Brazilian Cerrado in southeastern Brazil.
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regardless of whether the FC requirements are met via habitat restora-
tion, protection, or a combination thereof (Fig. 2B and fig. S5). Reduced
transportation costs are the largest,most consistent source of cost savings;
leasing andhabitat restoration cost savings are also substantial in certain
LL scenarios (fig. S6). Coordination across farms allows for themost pro-
fitable land to be put into agriculture, with the habitat required for com-
pliance located in unsuitable or less profitable areas in the region (Fig.
2A). In contrast, PLmitigationoftennecessitates that profitable landwithin
leased farms be set aside for FC compliance. Thus, more farms (30 to 69
additional farms) and more land (116 to 119 additional hectares) are
needed to meet the sugarcane production targets (fig. S7). For our study
area, thismeans that 30 to 69 farmswill be takenout of cattle ranching and
put into sugarcane production under PL planning relative to LL planning.

Relative to PL compliance, LL compliance is also expected to increase
netbiodiversity in a steady-state equilibrium(Fig. 2B, fig. S12, and tableS11),
Kennedy et al. Sci. Adv. 2016; 2 : e1501021 1 July 2016
resulting in an additional 32 (±34) species on average, which are largely
bird and habitat specialists (table S12 and fig. S13). For every 1000 ha of
protected or restored habitat in the watershed, there is an expected ad-
dition of 15 species under LL planning relative to the 8 species under PL
planning. Notably, these environmental benefits are achieved, although
PL compliance consistently results in 11,500 (±2600) more hectares of
restored/protected land than LL compliance on average (table S5 and
fig. S7). The reason is that LL planning reduces habitat fragmentation
(tables S6 and S7 and fig. S10) and produces fewer small patches (−24 ±
5%), less edge area (−32 ± 4%) across all scenarios, and more core area
(+25 ± 15%) with restoration (fig. S9). Steady-state LL compliance can
also generate additional storage of 151,000 tons of carbon (~1% increase)
in the habitat restoration scenario (Fig. 2B and table S14).

PL and LL compliance result in similar aggregate surface water qual-
ity for the region (Fig. 2B, figs. S15 to S17, and table S16). In general,
Restored habitat Protected habitat Sugarcane

Other natural vegetation Other agriculture

Landscape–restoration  

Property 
Landscape 

protection & restoration 

Landscape–protection 

A B

Fig. 2. Comparison of the property (farm)–level and landscape (watershed)–level planning based on economicmodeling of sugarcane expansion.
(A) Landscape outcomes for themodeled watershed based on an 8.5–million ton sugarcane production target from profit maximization and FC compliance
basedonPLandLLmitigationplanningwith combinedhabitatprotectionand restoration (LL-PR), protectiononly (LL-P), and restorationonly (LL-R). (B)Difference in
cost savings [net present value (NPV) in million U.S. dollars], long-term species richness (number of bird and mammal species), water quality index (WQI), and
additionalmean carbon storage [inmegatons of carbon (MtC)] for LL planning relative to PL planning. See the SupplementaryMaterials for additional results.
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slightly lower total amounts of nitrogen andphosphorus are predicted for
the watershed under PL mitigation relative to LL mitigation (fig. S16).
The reason is that PL planning results in more natural vegetation being
placed close to riparian areas and retains more wetlands, both of which
reduce nitrogen andphosphorus loading. In contrast, LL planning targets
natural vegetation, particularly cerrado, located onhigher slopes that have
higher erosion rates (fig. S8 and table S5). For this reason, it can result in
lower sediment loadings (fig. S17 and table S14).

Mitigation action affects the outcomes
Complying with the FC at landscape scales through a combination of
habitat protection and restoration (LL-PR) produces the greatest cost
savings in the long run (Fig. 2B and fig. S5). In contrast, only restoring
habitat (LL-R) produces slightly smaller monetary benefits but gener-
ates the greatest predicted ecological gains (figs. S12, S14, S16, and S17).
In ourmodels, FC compliance based solely on habitat protection (LL-P)
underdelivers in both economic and environmental terms. The reason
behind this is that remaining vegetation is scarce within the watershed
(Fig. 1); thus, there are few options for patches that can be protected. All
LL mitigation results in vegetation being protected or restored in less
economically productive areas, with preference given to protecting
existing habitat because it tends to be located in cheaper, unproductive
lands.When facedwith a choice between restoration andprotection, the
sugarcane producer in ourmodel resorts to restoration only after cheaper
existing habitat becomes unavailable (see the “Changes in habitat area”
section in the Supplementary Materials).
DISCUSSION

This study provides an evaluation of the FC to inform ways to improve
its aggregate long-term impact before compliance is achieved on the
ground. Contrary to concerns about the potential cost burden of the
FC on agricultural producers (11, 25), we find that compliance imposes
relatively small costs to a commercial producer but generates substan-
tial conservation benefits by supporting greater biodiversity, storing
additional tons of carbon, and marginally improving surface water
quality. Further, we find that in a steady state, FC compliance provides
greater biodiversity and carbon storage benefits in a more cost-effective
waywhen it is implemented at a landscape scale relative to the traditional
property scale. The reason is that in addition to providing new natural
habitat, it allows for better natural habitat configuration (that is, less
fragmentation). Our results are consistentwith those of previous studies
that underscore the strong impacts of the spatial patterns of agricultural
expansion and habitat conversion on both biodiversity and ecosystem
services (26, 27).

The benefits of LL mitigation
The steady-state benefits we detect from LLmitigation are likely to hold
in other similar settings (see the “Generalizability of the results” section
in the Supplementary Materials). Cost savings are expected under LL
planning relative to PL planning because expanding the spatial scale
provides additional options for the placement of crops for production
and natural vegetation for mitigation. The only exception is the case
where all the profitable land is used under PL planning, such that there
is no difference in costs across the different scales. However, this case is
only applicable where there is very little land available and suitable for
agriculture or where the agricultural commodity is consumed only by
Kennedy et al. Sci. Adv. 2016; 2 : e1501021 1 July 2016
the household that has produced it (and not traded on amarket). In real
life, these situations are uncommon.

Long-term ecosystem services and biodiversity benefits are likely
due to LLplanningwhen their biophysical requirements operate at large
geographic extents (for example, larger than a farm) and are unevenly
distributed across a landscape (28–30). When mitigation compliance
leads to landscapes composed of larger, more intact, and more con-
nected patches that are farther from human disturbance, as in our land-
scape scenarios, species diversity at regional (or gamma) scales and
carbon storage have been shown to improve (31, 32). Better landscape
configuration may also enhance the provision of other ecosystem
services, such as nutrient cycling and the provision of nontimber forest
products (31, 33). In contrast, services, such as pollination and soil reten-
tion that can operate at smaller spatial scales and that can bemanaged in
agricultural mosaics (34), may not substantially benefit from landscape-
scale mitigation practices unless they are specifically targeted. For exam-
ple, in our planning scenarios, the aggregate surface water quality was
determined by the location of the natural vegetation with respect to steep
slopes, erodible soils, andwaterways.Whenmitigation planning takes into
account the requirements of such locally supplied services, they can be
enhancedwith cross-property landscapemanagement that targets the spa-
tial configurations of habitats (29). Ultimately, the net impacts of landscape
mitigationonbiodiversity andecosystemserviceswill dependon the starting
conditions (for example, the initial amount, diversity, and configuration of
habitat types in a landscape), the traits of the target species, the spatial dis-
tributions of the biophysical attributes that determine ecosystem function,
and the amount of natural habitat targetedby the policy in any given setting.

Hurdles to implementing LL planning
Although our analysis predicts multiple benefits from LL mitigation
in the long run, this approach is currently not targeted by the FC (13).
Reasons may include lack of flexibility in implementing regulations,
logistical hurdles to multi-landowner coordination, lack of large-scale
assessments andclear land tenure, andpotential spatialmismatchbetween
the perceived beneficiaries and those bearing the costs of compliance.
Overcoming these obstacles requires a viable institutional framework
to provide credible assessments, sufficient compensation, and incentives
for coordination across farms (29, 35,36). Such conditions are oftennot in
place, although the FC allows for landowner compensation through offsets
(where landowners pay others to meet their natural vegetation require-
ments) (13). Although this mechanism may promote cost-effectiveness, it
will have limited conservation benefits if there is no coordination on
where the offsets are allocated. In the case of large-scale commercial agri-
cultural production, these hurdles may be more easily overcome because
the producer has an incentive to coordinate among small holders and to
compensate them for the cost of using their land.

The right mitigation action?
Our results demonstrate that the mitigation actions undertaken in-
fluence the additionality of offsets and can differentially affect biodiversity
and ecosystem services. We find that under landscape mitigation, pro-
tection may be allocated to lands that are not profitable and are there-
fore not under threat from development. Such findings raise concerns
about the additionality (37) and, hence, the impact of FC compliance
that gives preference to protecting existing habitat (20) and reduces res-
toration requirements (13).

Globally, there is considerable variability in how mitigation is imple-
mented. The U.S. wetland and streammitigation programs (4), Mexico’s
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offset law (17), and Brazil’s Atlantic Forest Restoration Pact (38) favor
habitat restoration. In contrast, Germany’s Impact Mitigation Regula-
tion is designed to protect existing natural lands and thus favors preser-
vation (6). Some countries demonstrate no clear preference (for example,
Colombia and Peru) as long as mitigation guarantees effective preser-
vation or restoration of an area equivalent to that which is affected
(17). On the basis of our findings, we emphasize thatmitigation policies
should require compensation methods that provide the greatest addi-
tionality of the impacts of offset actions and that can benefit both bio-
diversity retention and ecosystem service provision.

Important caveats to our conclusions are that our models assume
instantaneous growth and full restoration success and thus do not
distinguish between old-growth and newly restored habitat. The choice
of the appropriate mitigation action in practice should consider the
temporal lag between development impacts and offset actions and
the quality and recoverability of destroyed habitats versus restored
ones. Restored sites, particularly in complex natural systems and in
degraded landscapes, can fail to recover lost biodiversity or do so only
after long time lags (ranging from a few decades to hundreds of years)
(21, 39, 40) and under active management (21, 22). Although the costs
of terrestrial restoration are found to be variable, they can be substantial:
ranging from $300/ha to more than $200,000/ha, depending on the
location, habitat type, and management activities, among other factors
(41). Thus, in cases of low restoration success, long time lags to habitat
maturity, and substantial restoration costs, habitat protectionmay be pre-
ferred. Furthermore, unless restoration precedes development and pro-
tection provides additionality (that is, would not have occurred without
the development offset), temporal losses in biodiversity and ecosystem
services are expected (5).

Expanding the scope and assessments of mitigation
policy impacts
Mitigation policies should consider impacts on all stakeholders in an
affected region (10) to balance the costs and benefits of development
and prevent the displacement or “leakage” of agricultural activities to
other locations (42, 43). Although our analysis quantifies the aggregate
net benefits of planning at landscape scales, it does not account for
human welfare, distributional issues, or the displacement of land con-
version (see the SupplementaryMaterials for further details). Previous
studies provide evidence that conservation may also generate benefits
in terms of improved water availability (44), reduced disease burden
(45, 46), and reduced poverty (47). We provide the first step in highlight-
ing how to improve existing land use policies by showing that planning
at larger scalesmay provide long-term environmental benefits in a cost-
effective way. An important future extension of our work is the empir-
ical validation of the predictions after FC compliance is achieved on the
ground as well as the modeling and evaluation of the policy in terms of
welfare impacts (47). Themodelingwork presented here can inform the
design and data collection of such studies (48).
CONCLUSION

Many countries, such as Brazil, are at a tipping point, struggling to
balance accelerating development pressures with dwindling natural
resources. Improving the effectiveness of mitigation to balance eco-
nomic development with nature conservation is now pivotal (9, 10, 49),
given accelerating large-scale development from sectors such as agri-
Kennedy et al. Sci. Adv. 2016; 2 : e1501021 1 July 2016
culture, energy, mining, and transportation that affect vast lands across
the globe (50, 51). Advancing mitigation by adopting multiobjective
landscape planning can promote cost-effective conservation and more
sustainable development trajectories. It can also complement the grow-
ing global and national commitments to the large-scale restoration of
degraded lands by directing and consolidatingmitigation efforts to re-
store priority areas for biodiversity and ecosystem services (52, 53). Al-
though recent policies and voluntary commitments by governments,
businesses, and financial institutions are positioned to enable and incen-
tivize private developers to adopt the principles of landscape-scale mit-
igation in their planning and practice (7, 8, 12), this approach is not yet
widely implemented (10). Our analysis underscores that LL planning
can improve the long-term performance of land use policies for conser-
vation in a cost-effective way. Because the magnitude of benefits may
depend on the specific context (for example, scale and type of develop-
ment, the biophysical linkages between land use change, biodiversity,
and ecosystem services), it will be critical to conduct rigorous empirical
impact evaluations from multiple contexts to strengthen the evidence
base for business, conservation, and people. Empirical assessments, such
as those proposed for the landscape-scale infrastructure initiatives under
newU.S.mitigation strategies (12, 16) and for restoration efforts on large
versus small landholdings under the Atlantic Forest Restoration Pact
(38, 54), are essential to quantify on-the-ground outcomes. Information
on time and cost savings as well as on the benefits to nature and people
from LL mitigation will help to overcome political, institutional, and
logistical barriers to seeing its widespread adoption.
MATERIALS AND METHODS

Study region, FC requirements, and mitigation scenarios
Our study area encompasses the Ribeirão São Jerônimo watershed,
an approximately 400,000-ha area inMinasGerais State, southeastern
Brazil. This region is currently largely composed of pasture that is being
converted to sugarcane fields (19, 43). Less than 20% of the natural hab-
itat remains and consists of four dominant vegetation types (4% cerrado,
7%cerradão, 3% semideciduous forests, and 4%wetlands) (Fig. 1, fig. S2,
and table S1). All remnant vegetation resides on private land holdings
and is regulated by the Brazilian FC (13, 20).

We used a 25% natural vegetation FC requirement at the PL and
at the LL. Because FC compliance is generally low for small holders in
our study area (13, 20), we assumed that only the commercial sugarcane
producer would comply with the FC. All land that was not rented for
sugarcane production or FC compliance remained unchanged. Thus,
in all scenarios, we assumed that 25% of the farm area rented for sugar-
cane productionmust be placed under natural vegetation. This percent-
age is consistent with the natural vegetation requirements in the region:
both in Legal Reserves, which target ~20% natural area set-asides any-
where on farms to protect biodiversity, and in Permanent Protected
Areas, which target ~5% of vegetation to be placed along stream banks
and steep slopes to protect water quality. Given the resolution of our
data (90-m pixels), our models did not distinguish between Legal Re-
serves and Permanent Protected Areas and instead combined the re-
quired natural areas, which could be allocated anywhere within the
watershed. See the “FC requirements and mitigation compliance op-
tions” section in the Supplementary Materials for further details.

The natural area requirement were met via the protection or res-
toration of the cerrado habitat types historically found in the region
5 of 9



R E S EARCH ART I C L E
(see the “Physiogeographic characteristics” section in the Supplementary
Materials). For PL planning, the choice between restoration and pro-
tection depended on the proportion of natural habitat currently on the
farm. For LL planning, we considered three cases for compliance: (i)
the protection of existing natural remnants and no restoration (LL-P), (ii)
the restoration of nonnatural vegetation (for example, pastures) to
natural habitat types (LL-R) and no protection, and (iii) the protection
and restoration of natural habitats (LL-PR). By assumption, the protec-
tion or restoration of habitat holds in perpetuity, as required by federal
law. Further, because of the lack of studies on cerrado habitat types that
would allow us to differentiate between different types of restoration
(55), we assumed one-time investments in active restoration, instanta-
neous vegetation growth, and perfect and uniform restoration success
for all natural habitat types (see the SupplementaryMaterials for further
details). Thus, our results pertain to a steady-state (long-run) equilib-
rium; we did not model the transitional dynamics.

To calculate the additional impacts of the FC, we used a baseline
scenario that modeled agricultural production in the absence of the
law (that is, no habitat is protected or restored). In all of our scenarios,
planning minimized the costs of environmental compliance and sugar-
cane production to a large commercial producer while meeting a pro-
duction target.

We modeled two annual production targets—2.5 million tons (low
target) and 8.5 million tons (high target)—to reflect the average current
and projected sugarcane processing capacities, respectively, of sugarcane
mills in Brazil (table S2). Because the results for the two targets exhibited
consistent directional trends (as described in the Supplementary Mate-
rials), we present the results only for the larger production target in the
main text. We quantified the long-term biodiversity, water quality, and
carbon benefits from the landscapes that met the sugarcane production
and FC compliance targets at the lowest cost.

Sugarcane profit modeling
The decision of where to grow sugarcane was based on a static and
deterministic model that balances the revenue from growing sugar-
cane with the costs of production and FC compliance. We modeled
the production decisions of a large agricultural producer based on a
spatially explicit sugarcane production model that incorporates the
revenue from sugarcane (the product of the price of sugarcane and
predicted yield) and the costs associated with production (soil prepa-
ration, sowing, harvesting, fertilization, transportation, leasing, clearing,
management, and transaction costs) and FC compliance (transaction,
restoration, and leasing costs) (table S3). The exceptionally detailed cost
data were obtained from a local commercial sugarcane producer in our
study region. In our economicmodels, we did not consider the potential
benefits to sugarcane production from natural vegetation (for example,
pest control, soil fertility and stability, andwater availability for irrigation)
(56) because these have been traditionally very difficult to quantify and
are not typically considered in status quo business decision-making. The
differences in production and compliance costs between the different
planning scenarios are presented in terms of NPV (in million U.S. dol-
lars) and were calculated for a standard sugarcane production cycle of
6 years, with a discount rate of 10.32%. See the “Sugarcane production
model” section in the Supplementary Materials for further details.

Land use optimization
The goal of the optimization procedure was to generate landscapes that
maximized the net returns from sugarcane production subject to (i)
Kennedy et al. Sci. Adv. 2016; 2 : e1501021 1 July 2016
meeting the sugarcane production target and (ii) meeting the require-
ments of the FC. Under the assumption of exogenous yield, the decision
variables were at the extensive margin (that is, which pixels to select for
sugarcane production and FC compliance and, having allocated those,
which farms to lease).We did notmodel decisions at the intensivemar-
gin (that is, howmuch sugarcane to produce on a given pixel by varying
the production inputs). We used an integer programming branch-and-
bound algorithm to select the pixels and farms in a static framework
(57). We did not model the potential displacement of cattle ranching
due to sugarcane expansion in the study area. See the “Landscape op-
timization” section in the Supplementary Materials for more details.

The optimization procedure generated partial landscapes that in-
dicated which farms should be leased and, within those farms, which
pixels should be allocated to sugarcane production and FC compliance
or which should remain under different uses. To produce a final land-
scape, we used local raster tools in ArcGIS and assigned the land cover/
land use currently found in the region if the pixel was not selected for
sugarcane production or natural habitat for FC compliance.Where res-
toration of natural habitat was predicted by the optimization, we used
the predicted vegetation layer (fig. S2) to assign a natural habitat type.

Biodiversity, water quality, and carbon
sequestration models
We assessed the profit-maximizing landscapes under the different
planning scenarios in terms of their potential to support biodiversity,
water quality, and carbon storage. To quantify the expected number
of mammal and bird species, we applied the model from Polasky et al.
(58) that predicts the probabilities of species persistence based on the
habitat area required for a breeding pair, the relative suitability of all
land cover types, and the ability of species to disperse among patches
in the landscape. Focusing on 407 terrestrial bird and 132mammal spe-
cies, we assessed how species richness, composition, and habitat special-
ization shift across the planning scenarios. Owing to the lack of relevant
studies from our study region, we did not consider different habitat suc-
cessional stages and attributed a single value per habitat type for all pa-
rameters. See the “Biodiversity modeling” section in the Supplementary
Materials for further details.

To quantify the water quality benefits, we used the terrestrial nutri-
ent and sediment models from InVEST 2.5.6 (59) and calculated the
total annual predicted loadings of nitrogen (N), phosphorus (P), and
sediment (S) reaching the waterways in the study area. The N, P, and
S loadings were then converted into predicted concentrations and com-
bined into aWQI (60). TheWQI scale ranges from 0 to 100, with an in-
dex change of at least 10 points required for water quality status to shift
between categories (very good, good, fair, poor, and verypoor), depending
on the starting value. See the “Water quality surfacemodels” section in the
Supplementary Materials for further details.

To quantify the long-term carbon sequestration benefits, we used
values frompublished studies for the amount of carbon stored in above-
ground and belowground biomass and soil in steady-state systems in
the Cerrado biome. For each scenario, we determined the additional
mean carbon storage potential per planning scenario and monetized the
value of the ecosystem services using prices from the voluntary carbon
market as a lower bound and recent estimates of the social value of avoid-
ing damages from carbon emissions as an upper bound. See the “Carbon
valuation” section in the Supplementary Materials for further details.

Whenever possible, all biophysical models used spatially explicit
data and parameters from previous studies conducted in the biome.
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We found that the predictions from our biophysical models were con-
sistent with those from published studies on the Cerrado or deemed
reasonable by expert review when studies were not available (see the
Supplementary Materials for further details).
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