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Abstract: (1) Background: Myofascial pain syndrome (MPS) is a clinical condition characterized by
localized non-inflammatory musculoskeletal pain caused by myofascial trigger points. Diathermy or
Tecar therapy (TT) is a form of noninvasive electro-thermal therapy classified as deep thermotherapy
based on the application of electric currents. This technique is characterized by immediate effects,
and its being used by high performance athletes. (2) Methods: A total of thirty-two participants
were included in the study who were professional basketball players. There was a 15-person Control
Group and a 17-person Intervention Group. TT was applied in the Intervention Group, while TT
with the device switched off (SHAM) was applied in the Control Group. The effects were evaluated
through the Lunge test, infrared thermography, and pressure threshold algometry at baseline, 15,
and 30 min after the intervention. (3) Results: the Intervention Group exhibited a greater increase
in absolute temperature (F[1,62] = 4.60, p = 0.040, η2

p = 0.13) compared to the Control Group. There
were no differences between the groups in the Lunge Test (F[1.68,53.64] = 2.91, p = 0.072, η2

p = 0.08) or
in pressure algometry (visual analog scale, VAS) (F[3.90] = 0.73, p = 0.539, η2

p = 0.02). No significant
short-term significant differences were found in the rest of the variables. (4) Conclusions: Diathermy
can induce changes in the absolute temperature of the medial gastrocnemius muscle.

Keywords: trigger point; sport injuries; gastrocnemius muscle; diathermy; thermography; basketball;
range of motion

1. Introduction

Electrical or electromagnetic stimulation-based physical therapy has been applied in
rehabilitation with successful results. Specifically, resistive capacitive electrical transfer
therapy has been used in physical rehabilitation and sports medicine to treat muscle, bone,
ligament, and tendon injuries [1,2]. Radio frequency energy is currently the most commonly
used energy source to generate therapeutic heat levels [2] in injuries related to muscle
stiffness [2].

Tecar therapy (TT) is a form of non-invasive electrothermal therapy classified as deep
thermotherapy based on the administration of electric currents within the radiofrequency
range, constituting a monopolar capacitive resistive radiofrequency of 448 KHz [1,3–5].
This technique is based on the use of high frequency electromagnetism (less than 3 MHz) [6].
TT is characterized by its speed of action, so it is used in high performance sports [4], as
this tool accelerates the recovery process [7]. Thermal changes produced by TT within the
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neuromuscular structure induce vasodilation, reduce muscle spasms, accelerate cellular
metabolism, and increase soft tissue extensibility [8,9].

Myofascial pain syndrome (MPS) is a clinical condition characterized by localized
non-articular musculoskeletal pain [10] as a consequence of myofascial trigger points
(MTrPs) [11] located in the muscle [12–14]. MPS is considered one of the most common
causes of muscle pain [11]. A total of 85% of patients with chronic pain suffer from MPS [15].
Latent MTrPS can cause motor dysfunction such as stiffness, restricted range of motion,
and muscle fatigability, but it did produce not spontaneous sensory symptoms unless
stimulated by pressure [16].

MPS is caused by trauma or muscle overuse in certain sports or activities. It can also
appear in a weak muscle when demands exceed capacities in terms of the muscle activity
not being able to withstand the strain exerted [17]. In addition, latent MTrPs reduce the
joint range of motion due to muscle shortening from muscle and tendon stiffness [18].

Travell and Simons used the term myofascial trigger points (MTrPs) [11], character-
izing them as the most sensitive palpable nodule in a taut band of skeletal muscle [3,14].
They are hyperirritable points that in the presence of pressure, stimulate MPS, inducing
local, referred pain and stimulus responses [14]. Referred pain was described as a con-
stant, deep, and intense pain, that is reproducible and predictable [19]. From a clinical
perspective, there are two types of MTPs, namely active or latent. On the one hand, active
MTPs produce sensory symptoms and motor dysfunction (i.e., restriction of movement
and decreased range of motion (ROM)). Meanwhile, latent MTPs are able to modify muscle
contraction without sensory symptoms, unless they are stimulated manually. The clinically
evident progression from a nontender taut band to a tender band suggest a change in
the muscle, signifying the development of an MTP [16]. If active MTPs are considered as
peripheral nociceptive sources that are able to maintain a central sensitization state, latent
MTPs have the same characteristics with a lower degree of sensitization (i.e., they do not
manifest spontaneous pain) [16]. For instance, several research studies have shown that
latent MTPs restrict ankle ROM [17,20].

Triceps sural injuries are common in a wide number of sports but are mainly prominent
in soccer [21,22]. There are several studies based on diagnostic imaging [23] through
musculoskeletal ultrasound, which indicate that the most prevalent injuries take place
in the medial gastrocnemius (58–65%) [24]. The gastrocnemius muscle was chosen for
this study because it has been shown to exhibit the highest prevalence of latent MTrPs
in healthy participants [25]. During the examination process, physiotherapists may use
referred pain patterns to understand and recognize how the MPS developed [19].

However, the acute impact of the TT therapeutic tool on the treatment of medial
gastrocnemius related to MTP has not yet been investigated. Thus, the main aim of the
present study was to analyze the acute effect of TT on latent MTPs on skin temperature,
ankle ROM, and pain in professional basketball players. We hypothesized that the use of
TT would produce an acute increase of skin temperature and ankle ROM and, at the same
time, cause a decrease of hyperalgesia associated with MTPs.

2. Materials and Methods
2.1. Design

This is a randomized clinical trial involving thirty-two participants. Once the par-
ticipants completed the preliminary stages, they were randomized using a simple Excel
procedure in two groups: The Diathermy Group and Control Group. The process described
above was managed by a staff member who did not participate in the study. All research
staff were blinded to this allocation process. Single-blinding was used to reduce bias in
the interpretation of the results. The patients were not informed of the treatment being
performed in the immediate post-treatment and successive measurements.
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2.2. Sample

A total of thirty-two (n = 32) amateurs basketball players were involved in the
present study coming from the Picanya national category basketball team (Valencia). The
mean ± SD of age, height, body mass, and body mass index were 22.84 ± 5.86 years;
179.33 ± 7.98 cm; 75.73 ± 11.51 kg; and 23.51 ± 2.81 kg/m2. All of the participants were
previously informed about the procedure and signed the informed consent prior to their
participation. A parental or guardian’s authorization and consent form was attached for
the participants who below 18 years of age. The research was previously registered in
ClinicalTrials.gov (ID: NCT04325750—https://clinicaltrials.gov/ct2/show/NCT04325750
(23 March 2020).

The following exclusion criteria were applied: (a) connective tissue pathology; (b) lym-
phatic disorders (lymphadenopathy); (c) skin injuries (open wounds, infection, psoriasis,
tattoos, hematoma); (d) peripheral neuropathies; (e) previous fractures; (f) previous lower
limb surgeries (in the past 12 months). There were three adverse events during the investi-
gation process (post-treatment skin reactions) resulting in a total of three dropouts who
were excluded from the initial sample.

The inclusion criteria were: (a) be an active national-level male basketball player;
(b) be aged between 16–39 years of age; (c) not having suffered leg injuries in the past
6 months; (d) not having suffered a triceps sural rupture in the past two years; (e) show
a difference of 1.5 cm between limbs in ankle dorsiflexion restriction measured through
the lunge test; (g) be diagnosed with latent MTPs in the gastric–soleus complex through
manual therapy in the dominant side.

Latent TrPs were identified as follows: (1) palpable taut band within the muscle;
(2) presence of a hypersensitive spot in the taut band; (3) presence of a local twitch response
of the taut band with palpation [26].

2.3. Instruments
2.3.1. Tecar Therapy

In the first stage, sociodemographic and anthropometric data were collected. After col-
lecting the data needed to perform the descriptive analysis, the intervention was conducted
on the medial grastrocnemius with the T-CARE TECAR® therapy machine (Florence, Italy)
(see Figure 1). The therapy was applied with the generator emitting 0.5 MHz radiofre-
quency signals at a variable power with a maximum of 300 W. The frequency used was
500 MHz with an intensity of 40% (see Figure 2). The technique should be applied by
direct contact with the body skin according to the protocol described in 2015 since it does
not produce direct radiation [27,28]. The application protocol was implemented based on
previous studies1. The intervention was performed by a physiotherapist with 5 years of
experience in this technique.
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Figure 2. Patient in comfortable prone position, adhesive electrode on anterior tibial area (10 × 15 cm).
Therapist’s hand holding the capacitive head. Therapist’s hand holding the resistive head. Prepared
by the authors.

The head of the device was applied over the treated area for 25 min (15 min of
capacitive head and 10 min of resistive head), maintaining the same intensity and at all
times. It was applied along and in circles over the medial gastrocnemius, generating light
pressure above the muscle belly. The base plate was located below the region of the tibia
to close the current circuit. The head of the device was applied over the entire medial
gastrocnemius and not just over the latent MTP to improve the blood flow speed [29].

At baseline, data were collected through thermography (temperature), algometry
(pain), and the lunge test (ankle ROM) before the intervention. All of the measurements
were repeated immediately, 15′ after and 30′ after treatment. To eliminate any cross-effect
that may interfere with the results, immediately after the post-treatment measurements,
the participants were seated by research staff in a chair with 90◦ hip and knee flexion in a
controlled room at a preset temperature (see Figure 3).
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intervention; P INM: post immediately; P15: after 15 min intervention; PI 30: after 30 min intervention).

2.3.2. Control Group

The same protocol as the Diathermy Group was performed but with the device in off
mode (SHAM).

2.4. Procedures
2.4.1. Thermographic Assessment

The thermography protocols were performed according to the International Academy
of Clinical Thermology [27]. The equipment used were (Flir E6, FLIR Systems, Inc.,
Wilsonville, OR, USA) a step platform for the subject position and a black background to
isolate body temperature.

For the thermographic assessment, the ideal temperature values (18–25 ◦C), relative
humidity (39.8%), and atmospheric pressure (968 hPa were measured with the Ymiko
Wifi digital weather station using a FLIR E60 camera according to Ring and Ammer
(2000) [27,30,31] (see Figure 4).
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The participants were placed barefoot on a 35-cm-high platform (Step) facing the wall
with their hands on their waists with their bare legs 40 cm apart against a neutral black
background so as to not interfere with body temperatures [32].

Images of both triceps surals were taken and interpreted with FLIR Tools software.
Through the analysis, maximum (TMAX), minimum (TMIN), and mean (TMED) absolute
temperatures were obtained from the medial gastrocnemius at the selected times.

2.4.2. Algometry Assessment

A digital force gauge Algometer (model M3-20, 20 lbf, 10 KGF, 100 N) (Mark-10
Corporation, New York, NY, USA) was used by applying a pressure of 45 to 55 newtons on
the MG and by also assessing the patient’s perceived pain using a VAS scale [13,33]. The
Algometer was set to 0.09 kg/cm2 [34]. A 10-point VAS scale was used. The participants
were asked to rate their pain by choosing a value (rating) on the 10-point VAS scale. The
minimum value on the VAS was (0; no pain), meanwhile the maximum value was (10;
maximum pain imaginable). A total of three measurements were taken, and the average
value was taken into account for the analysis [3].

2.4.3. Lunge Test Protocol

First, ankle ROM evaluation was performed using the Leg Motion system (Check
Your Motion ®, Albacete, Spain) based on the ankle dorsiflexion test. This test evaluated
the active ankle dorsiflexion in a standing position. The final test score was the distance
between the first metatarsus and the wall when the participants bent their knee towards
the vertical position without lifting the heel. The final range was measured in cm [35]. This
test has been shown to have good reliability (ICC = 0.93–0.99) for ankle ROM in adults [36].

The reference values of ankle ROM restriction using Leg Motion® has been established
to be <11.5 cm and/or with a difference of 1.5 cm between the ankle ROM of both limbs.
After the first measurement (baseline), a difference of 1.5 cm between limbs was detected
for the ankle ROM restriction test. To become familiar with the test, the participants
performed 3–4 attempts following the therapist’s instructions: (a) do not the heel from the
surface; (b) try to take the knee as far as possible into the midline; (c) of not compensate
the movement with the arms. The highest value of the 3–4 attempts was used for the
analysis [36].

2.5. Statistical Analyses

All of variables were expressed as mean (M) and standard deviation (SD). For the
calculation of the sample size, pain (assessed on VAS) was used as the main dependent
variable. An alpha level of 0.05 and a desired power (beta) of 80% were used with the
minimum value of the difference in VAS of 2.00, which is the minimum change needed
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to be considered clinically relevant [37]. The calculation generated a sample size of at
least 15 participants per group after excluding 15% due to sample losses (3 patients). The
sample size was consistent with a previous intervention study using tecar therapy [1]. To
obtain the required sample size N, G*Power software Version 3 was used. All variables
met the assumption of normality (i.e., Kolmogorov–Smirnov). In order to analyze the
effect of diathermy on the mobility of the ankle joint, a repeated measurement analysis of
covariance (ANCOVA) was performed, using the pre-intervention measurement as the
covariate. On the other hand, a mixed factorial ANOVA was performed to analyze the
effect of diathermy on muscle temperature. If the expected sphericity was not satisfied,
the degrees of freedom were corrected according to the Greenhouse–Geisser correction.
Bonferroni’s post hoc was used to analyze multiple comparisons. On the other hand,
the effect size was expressed as the typified mean change difference, where the formula
denominator used the pre-combined deviation of the two groups. The significance level
was set at p < 0.05. All of the analyses were performed using statistical analysis software
(SPSS Inc., Chicago, IL, USA) (SPSS Statistics 24.0 Mac version).

3. Results

Considering the pain values (i.e., hyperalgesia), the of the mixed factorial ANOVA
showed statistically significant differences in the main effect of Time (F[3.90] = 9.64, p = 0.001,
eta = 0.24), showing no significant differences in the comparison Group x Time (F[3.90] = 0.73,
p = 0.539, eta = 0.02). In the within-group comparison, the Diathermy Group showed
differences in the comparison of post-immediate vs. pre- (MD = 1.75, p = 0.003) and post-15
vs. pretreatment (mean difference; MD = 1.56, p = 0.005). In relation to the Control Group,
Bonferroni’s post hoc showed statistically significant differences in the comparison of post
immediate vs. pre-captures (MD = 1.29, p = 0.046). No statistically significant differences
were found between any of the possible between-group comparisons (p > 0.05).

In regard to ankle mobility, RM ANCOVA showed no statistically significant dif-
ferences (F[1.68, 53.64] = 0.02, p = 0.980, η2

p = 0.001) in the main effect of time (i.e., post
immediate, post 15 min and post 30 min). After transforming the scores of the time variable
regarding to pre-intervention values, the model was corrected to F[1.68, 53.64] = 2.91, p = 0.072,
η2

p = 0.08, without ever obtaining statistically significant differences. Figure 5 summarizes
the MD for each of the conditions.
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The Bonferroni post hoc analysis showed that there were no statistically significant
differences in the comparison of the variables between the groups (e.g., Experimental
Group = 9.36 cm vs. Control Group: CG = 9.10 cm, p = 0.213). However, statistically signif-
icant differences were found in the comparison of the main effect of the time variable (MD
Immediate vs. 30 min (MDimmvs.30m = −0.413 cm, p = 0.001)) and post-15 min vs. 30 min
(MDpost15vs.post30 = −0.236 cm, p= 0.040).

On the other hand, no statistically significant differences were found in the effect
of Group x Time interaction (F[2,64] = 0.16, p = 0.814, η2

p = 0.005). Bonferroni’s post hoc
analysis showed no statistically significant differences for any of the comparisons (i.e.,
post-immediate measurement (CG = 8.93 cm vs. EG = 9.13 cm, p = 0.348), measurements
post-15 min (CG = 9.08 CM vs. EG = 9.34 cm, p = 0.202), and measurements post-30 min
(CG = 9.29 CM vs. EG = 9.59 cm, p = 0.263)). Figure 6 shows the effect size for each of the
comparisons between the Control Group vs. the Experimental Group.
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Regarding muscle temperature, the mixed factorial ANOVA showed significant differ-
ences in the main effect for Group (F[1,62] = 4.60, p = 0.040, η2

p = 0.13) and in the interaction
between Group x Capture (F[3,186] = 7.08, p = 0.001, η2

p = 0.19). Bonferroni’s post hoc analysis
showed statistically significant differences between the Diathermy Group vs. the Control
Group (MD = 0.44 ◦C, p = 0.040, 95% CI = 0.02, 0.85). Figure 7 summarizes the within- and
between-group differences. Figure 8 shows different pre-and post-intervention captures of
a subject.
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4. Discussion

The main objective of the study was to analyze the acute effect of TT on latent MTPs
on skin temperature, ankle ROM, and pain in professional male basketball players. Our
results showed a significant increase in the absolute temperature in the diathermy group,
with no significant differences within and between groups in the rest of the parameters. An
increase in pain (VAS) was shown in the TT group, which describes an increased sensitivity
in the MTP following the application of this technique. Currently, only few studies have
analyzed the effects of TT applied on medial gastrocnemius MTPs in basketball players on
pain. However, to our knowledge, this is the first study to evaluate the effects of TT on
temperature, hyperalgesia, and ankle ROM.

TT produces a thermal effect, assumed to be a biological effect related to hyperthermia.
Our results are similar to previous studies regarding the temperature due to its increase after
applying the technique [4]. For instance, the study of Benito et al. [17] found no significant
differences between groups in skin temperature assessed by thermography, as was also
the case in our study. The interaction of radiofrequency currents with biological structures
results in an increase in endogenous temperature [38]. In our study in particular, changes in
the neuromuscular region corresponding to latent MTPs were evidenced. Previously, it has
been stablished that high-intensity treatments increased the temperature and significantly
raised blood vascularization in the Achilles tendon [24].

By contrast, other investigations found no significant changes when TT was applied
over other anatomical regions. For instance, TT did not alter the circulation in the peri-
tendinous region of the Achilles tendon [5].

Furthermore, the present study noted that after 15 min of the application, there is
a 1.5◦ drop from the absolute temperature peak. According to Kumara and Watson’s
study on the thermophysiological effects of the skin after applying TT, this technique
was compared to pulsed short-wave therapy, which obtained better results than those in
the TT group [39]. These findings are consistent with those obtained in our work, where
after applying TT, the temperature immediately rose by 1.5 points to generate changes
and improvements in tissues, which were mediated by the impact of pyogenic precursor
cells [3]. The increase in temperature immediately after the intervention has been studied
and evaluated in connection with the clinical effects of brachioradial pain [40]. A significant
difference was also generated 15 min after the intervention.

Regarding ankle mobility, we did not find any significant improvement, which was
in contrast with previous investigations. MTPs may adversely affect clinical effects on
restricted ROM [41]. According to Hong-You et al., restricted joint ROM is commonly
observed in health people when latent MTPs [16] are present because they can produce a
series of neuromuscular disorders, such as inefficient muscle contraction [42].

Current evidence describes an increase in tissue elasticity after TT [4]. Such increased
tissue flexibility was not evident in ankle ROM measurements in the current study. Un-
doubtedly, the importance of the presence of latent MTPs as a potential dysfunction must
be highlighted [13]. In contrast, one study established a positive association between skin
temperature and MPS-related ROM [43]. Accordingly, the evaluation of dorsal flexion in
our study was justified by the lunge test.

Various treatments for MTPs have been shown to improve clinical outcomes, including
improved muscle strength, ROM, and pain reduction [44]. For example, ROM improved
after the application of other therapies used to treat MTP, such as dry needling [45].
Grieve et al. achieved a 5-degree improvement in ankle dorsiflexion after treating active
and latent MTPs in the soleus muscle [46].

Applying TT alone on a MG latent MTP does not produce changes in ROM when
it is measured with the lunge test. On the other hand, Draper et al. reported that the
combination of TT and joint mobilization is considered to be an effective treatment to
recover joint ROM in elbow extension in post-surgical patients [47].

Despite our results, other studies that have used the same treatment technique have
found an increase in ROM in other joints, such as in the right rotation of the cervical
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spine [3]. However, it should be noted that these were chronic effects, not acute as they
were in our study, since they were obtained after eight sessions.

Regarding pain, we did not find any changes in pain assessed by VAS scale. This result
is in line with the study of Aguacil I et al. [3], which did not find significant differences
between the Control Group and the SHAM group after TT [3]. However, other authors [1]
have shown that TT is able to accelerate the fatigue recovery in runners [1]. Moreover,
Paulocci et al. [4] described that TT can reduce pain and can improve quality of life [4].

The assessment of the sensitivity of the palpable nodule in the latent MTP through
algometry justifies the VAS measurement evaluation of this study. An advantage of TT was
that pain scarcely increased compared to other techniques commonly used in physiotherapy,
although an increase in hyperalgesia was noted in the post-immediately measurement.

Some possible factors that can explain the reduction of hyperalgesia on VAS thirty
minutes after treatment that we can find are the natural evolution of the disease [48];
the specific perceived pain of each subject and how this develops over time [48,49]; and
the active physiological mechanisms originating from psychological processes (placebo
effect) [49]. These factors can also explain why there were small differences between the
two groups. However, a 10% decrease in mechanical hyperalgesia was observed when
stimulated by treatment 30 min after the intervention (P30).

Contrary to our results, other similar treatments were effective in reducing mechanical
hyperalgesia compared to control groups. The main difference was that the technique was
applied on active MTPs rather than on latent MTPs [50]. Despite this clinical difference, an
increase in generalized hyperalgesia pressure can be found in asymptomatic participants
with latent MTPs [51], and their treatment may reduce latent MTP hyperalgesia.

Furthermore, previous studies have shown that pressure inhibition treatment reduced
pain in MTPs in the upper trapezius [42]. These studies are not in line with our results
since hyperalgesia was observed immediately after the intervention but was normalized
after 30 min. Thus, TT produces immediate but momentary hyperalgesia.

If we extrapolate the effects of TT in patients diagnosed with different pathologies, the
literature shows that TT is a useful therapy for reducing pain in patients with osteoarthri-
tis [9]. In other words, pain reduction is one of the main effects of TT, although more
research is needed regarding other physiological aspects. The increase in temperature
reduces pain by promoting the vasodilation of tissues affected by pain mediators, such as
bradykinin, serotonin, and prostaglandin [8].

Although no promising changes in the studied variables were obtained, it has been ob-
served that currently, there are a wide range of standardized protocols for the application of
this technique [52]. This means that it is important to highlight the difficulty of establishing
the most specific protocol [8]. Although the effect of TT on latent MTPs assessed through
the variables analyzed in the present study was small, it is possible that the evaluation
of other parameters or the application of other parameters (protocol) could determine
the effectiveness of TT on myofascial pain. New lines of research should be explored
in relation to the development of the technique associated with specific pathologies. It
is necessary and highly important to agree on a standardized TT protocol according to
specific pathologies.

The theoretical consequences of this work entail the need to evaluate this technique
using other methods or assessment tests and to verify or contrast our results. The im-
portance of this lies in the possibility of a new hypothesis and new experimental studies.
Possible practical applications of this study are related to the treatment of muscle stiffness
in athletes in a non-invasive, painless, and effective way of using TT.

The present study is not without limitations. Although thermography is an innovate
technique for measuring skin temperature, we extrapolate that the external temperature
reflects the internal or muscle temperature. In addition, the lack of reliability analysis of
the algometer assessment could be also considered to be a limitation.

Future research with larger sample sizes should examine further does–response re-
lationships between TT and other physiological parameters in latent and active MTPs.
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In addition, further studies are needed to compare the effects of TT against other treat-
ment modalities.

5. Conclusions

In conclusion and according to our results, TT can induce temperature changes in
the medial gastrocnemius in professional male basketball players, generating an increase
of local temperature and a decrease of local pain (VAS) at the MTP after treatment. In
addition, TT does not affect the ankle dorsiflexion ROM.

These results suggest that use of TT could be useful to improve muscle recovery.
Further studies with similar characteristics and implemented during an experimental
period to assess chronic adaptations would be needed to gain in-depth knowledge of the
advantages of this technique.
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