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As glucose is the regulator of both the milk yield and mammary oxidative status, glucose
supply is considered to play important nutritional and physiological role on mammary
gland (MG) metabolism. However, inconsistent results were observed from different
infusion methods to evaluate the effect of glucose on MG glucose metabolism. Thus,
precise method should be developed to learn how availability and intracellular metabolic
pathways of glucose in the MG are altered by the direct mammary glucose supply. In
addition, limited information is available on the role of mammary glucose supply in milk
synthesis in lactating ruminants under an energy-deficient diet. Direct glucose supply
to the MG was implemented in the current study through the external pudendal artery
infusion under an energy-deficient diet. Six doses of glucose (0, 20, 40, 60, 80, and
100 g/d) were infused through the external pudendal arteries, which is the main artery
to the MG, to six lactating goats fed with basal diet meeting 81% energy requirement in
a 6 × 6 Latin square design. Milk and lactose yields were both quadratically increased
with increased glucose infusion, whereas the milk yield changed inconsistently with the
increased energy balance (EB), indicating local glucose supply, rather than EB, improved
milk production. Glucose fluxes in the MG were significantly increased and correlated
with mammary plasma flow. However, the ratio of lactose yield to glucose absorbed
by the MG was significantly decreased. The increased glucose fluxes in the MG and
changed glucose-related metabolites in milk indicated that the glucose availability and
intracellular metabolic pathways was regulated by local mammary glucose. Acute
glycolysis consumed the superfluous glucose and induced accumulation of oxygen
radicals in the MG during over-supplied glucose conditions. The present study provided
insight to optimal glucose supply to the MG during the lactation.

Keywords: glucose supply, metabolic partition, lactation, mammary gland, milk production efficiency

Abbreviations: AA, amino acids; AVD, arterio-venous difference; BHB, β-hydroxybutyric acid; EPA, external pudendal
artery; G6P, glucose-6-phosphate; MDA, malondialdehyde; MG, mammary gland; MPF, mammary plasma flow; NADPH,
nicotinamide adenine dinucleotide phosphate; NEFA, non-esterified fatty acid; ORAC, oxygen radical antioxidant capacity;
Phe, phenylalanine; PPP, pentose phosphate pathway; RQUICKI, revised quantitative insulin sensitivity check index; Tyr,
tyrosine.
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INTRODUCTION

Milk production is largely influenced by precursor supply to the
mammary gland (MG) (Toerien et al., 2010). Glucose is one of the
most important nutrients for milk production as it is the major
substrate of lactose synthesis (Zhao, 2014). Enhanced lactose
synthesis is directly linked to milk yield because of its osmotic
regulation of milk volume (Liu et al., 2013). The nicotinamide
adenine dinucleotide phosphate (NADPH) derived from glucose
is also required for the synthesis of fatty acids and proteins
(Bauman and Griinari, 2003). Thus, the MG of high-yielding
lactating ruminants is in great demand of glucose to maintain
active milk synthesis.

Numerous studies have investigated the effect of glucose
supply on lactation performance (Rulquin et al., 2004; Lemosquet
et al., 2009; Wang et al., 2016b). A positive effect has been
demonstrated on milk yield with increased doses of glucose
infusion through abomasum (Huhtanen et al., 2002). In some
studies, however, glucose did not stimulate milk yield when
infused ruminally or intravenously (Vanhatalo et al., 2003; Curtis
et al., 2014). The inconsistency may be at least partially attributed
to the sites when glucose is infused and thus, the glucose
availability to the MG in these studies (Curtis et al., 2014; Nichols
et al., 2016). In fact, more than 40% of metabolizable glucose in
the blood may not be captured by the MG for milk synthesis
(Sunehag et al., 2003). Mammary glucose availability is influenced
by the post-intestinal-absorptive bioprocesses (Hurtaud et al.,
2000), such as glucose utilizations by the skeletal muscle, liver
or other catabolic pathways (Sciascia et al., 2010). In addition,
glucose is also partitioned within cells, which includes the
partition of glucose between lactose synthesis, glycolysis, the
pentose phosphate pathway (PPP), or other metabolic pathways
in mammary epithelial cells (MECs) (Zhao, 2014; Zachut et al.,
2016). Glucose availability to the MG and their metabolic
partition within MECs play an important role in regulating
glucose utilization efficiency in the MG.

In addition, previous studies mainly focused on the effect
of infused glucose on milk production and MG metabolism in
lactating animals under energy sufficient conditions (Rulquin
et al., 2004; Lemosquet et al., 2009; Nichols et al., 2016). However,
in developing countries, lactating animals are often fed in the
energy-deficient conditions, such as feeding rice straw or corn
stover as forage sources. Thus, there is also a need to study
the effect of glucose supply to the MG on milk production in
energy-deficient conditions.

Precise nutrition, which takes accurate nutrition management
into consideration at the levels of metabolism, cells, and organs,
works based on the knowledge of the dose-dependent effects of
individual nutrients and local nutritional requirements in the
specific organ. The optimal glucose supply, referring to minimal
dose of glucose to achieve maximal milk production, has not been
ascertained yet for the dairy ruminants. Studies in vitro provided
clues with the optimal concentrations of glucose to promote the
synthesis of lactose and other milk component at cellular aspect
(Liu et al., 2013; Lin et al., 2016). However, little information
is available on the optimal glucose supply to milk production
and the mechanisms that control intracellular mammary glucose

partition to milk synthesis in vivo. Recent studies have applied
infusion techniques to accurately offer different glucose supplies
(Hurtaud et al., 2000; Huhtanen et al., 2002). However, the
infusion sites were mainly carried out at the rumen, abomasum,
or duodenum, which compromise the accurate assessment of the
true glucose availability in the MG due to the involvement of the
bioprocesses of digestion, glucose absorption and post-absorptive
partition.

Local mammary infusion can be an accurate way to investigate
the optimal glucose supply for the MG and an effective way
to evaluate how glucose metabolism responds to the glucose
availability in MG (Cant et al., 2002; Xiao and Cant, 2003). By
using this technology, in the present study we investigated the
effects of local mammary glucose supply on milk performance
and mammary glucose utilization in lactating dairy goats fed a
diet which met 81% of energy requirement. The local glucose
supply was manipulated by glucose infusion into the external
pudendal artery (EPA), which is the main artery to the MG. The
optimal glucose supply was determined by fitting curves of the
milk production, lactose synthesis, and mammary glucose fluxes
observed in infused animals.

MATERIALS AND METHODS

Animals and Experimental Design
All animal experimental procedures used in this study were
approved by the Animal Use and Care Committee of Zhejiang
University (Hangzhou, China). Six second-lactation dairy goats
[body weight: 43.6 ± 3.0 kg (mean ± SD), days in milk:
113 ± 6, and milk yield: 1.47 ± 0.05 kg/d] were used in this
study. Goats were fitted with catheters at the EPAs as described
below and assigned to one of six doses of glucose infusion in
a 6 × 6 Latin square design with repeated measures of over
12d periods, including 7d treatment and 5d transition. The
goats were milked at 3 time points (0630, 1000, and 1900 h)
with a bucket milker. All goats were fed the same basic ration
containing forages and pelleted concentrates at 0700, 1100, and
1730. The experimental diet (Table 1) was formulated based
on the NRC recommendations for dairy goats to meet 81% of
energy requirement (National Research Council, 2007). Six doses
of glucose [0 (G0), 20 (G20), 40 (G40), 60 (G60), 80 (G80), and
100 (G100) g/d] were infused through the installed catheter for 7
d during each treatment period.

Catheterization and Infusions
Catheterization was performed 4 weeks before the infusion.
Before the catheterization procedures, animals were fasted and
deprived of water for 24 and 12 h, respectively. Goats were
anesthetized with xylazine hydrochloride (0.50 mg/kg). After
the surgical cuts in the groin areas, silicone catheters (1.20 mm
in outer diameter and 0.60 mm in inner diameter, Shanghai
Fengcheng Rubber Products Co., Shanghai, China) were inserted
into the EPA of both sides (extended 15 cm into the EPA). The
free end of the catheters passed through the skin and was fixed to
the back of the rumps. The catheters were filled with heparinized
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saline solution (200 IU heparin sodium/ml saline) and capped
with a heparin cap during maintenance.

Glucose was weighted and fully dissolved in 600 mL of saline
solution. The pH of each glucose solution was adjusted to 7.30
to 7.40 and then filtered through a 0.45-µm filter. During each
treatment day, glucose solutions were infused continuously from
1200 to 1700 at a speed of 2.00 mL/min into the EPAs with syringe
infusion pumps (Smiths WZS-50F6, Smiths Medical Instrument,
Zhejiang, China).

Measurement, Sampling, and Analyses
During the treatment time of each period, feed and orts were
weighed daily. Feed offered was adjusted to allow for 5% orts. Dry
matter intake was calculated based on the feed and orts offered
and consumed. Feed samples were collected daily for the analysis
of nutrient compositions as listed in Table 1.

In each period, milk yield was recorded for successive 3
d. Meanwhile, 50 mL of milk was taken daily at 3 time
points (0630, 1000, and 1900 h) and pooled for determination
of milk composition (fat, protein, lactose, total milk solids,
milk urea nitrogen, and somatic cell count), glucose-related
metabolites [glucose, glucose-6-phosphate (G6P), citrate, and
lactic acid] and oxidative stress-related indexes [malondialdehyde
(MDA), reactive oxygen species (ROS) and oxygen radical
antioxidant capacity (ORAC)]. Milk compositions were analyzed
with an automatic ultrasonic milk composition analyzer
(Bentley Instruments, Minnesota, United States). Glucose-related

TABLE 1 | Ingredient and chemical compositions of the basal diet (dry matter
basis).

Item Amount SD

Ingredient, g/kg

Alfalfa hay 200.0 –

Peanut cane 160.0 –

Chinese wildrye 320.0 –

Corn grain 154.0 –

Wheat bran 64.0 –

Soybean meal 38.0 –

Canola meal 26.0 –

Salt 16.0 –

CaHPO4 6.0 –

Premix∗ 16.0 –

Composition, % of dry matter

Dry matter 88.4 2.1

Organic matter 90.9 3.3

Crude protein 11.3 1.1

Ether extract 3.1 0.2

Acid detergent fiber 24.1 2.5

Neutral detergent fiber 34.3 3.1

Non-fiber carbohydrate 42.8 1.4

NEL, MJ/kg† 4.7 0.4

∗Premix composition: 65 g Mg/kg, 3.2 g Cu/ kg, 6.5 g Fe/kg, 27.8 g Mn/kg,
25.6 g Zn/kg, 35 mg Se/kg, 78 mg Co/kg, 0.3 g I/kg, 55 g S/kg, 2000 kIU vitamin
A/kg, 350 kIU vitamin D3/kg, 2.5 g vitamin E/kg, 10 g nicotinic acid/kg, and 20 g
choline/kg. †Calculated data. NEL, net energy for lactation.

metabolites and oxidative stress-related indexes were determined
using the commercial kits (Meibiao Biotechnology Co., Jiangsu,
China). Another 10 mL of milk was collected at 3 time points
(0630, 1000, and 1900 h) and stored at−20◦C for later analysis of
phenylalanine (Phe) and tyrosine (Tyr) in milk.

The EPA blood samples (5 mL) were collected from the both
sides of catheters at −5, 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, and
13 h relative to the finishing time of daily infusion in the last day
of each period. The blood samples taken from each side at each
individual time point were pooled, and the pooled blood samples
were immediately centrifuged at 3000 × g for 15 min at 4◦C
and stored at −80◦C until analysis for blood physiological and
biochemical parameters using an Auto Analyzer 7020 (Hitachi
High-Technologies Corporation, Tokyo, Japan) and hormones.
Another set of blood samples (5 mL) was taken at 3 time
points (0630, 1000, and 1900 h) from the both sides of EPAs
and mammary veins separately, and pooled according to sample
sites after centrifugation for further analysis of physiological and
biochemical parameters in the plasma, and amino acids (Phe and
Tyr).

The pooled plasma were treated by the method described
previously (Mackle et al., 1999) and analyzed for amino
acids (AAs) using an Automatic AA Analyzer (Hitachi High-
technologies Corporation, Tokyo, Japan). Milk was pretreated
with the acid hydrolysis method (Delgadoelorduy et al., 2002)
and then analyzed for AAs using the Automatic AA Analyzer.
The blood concentrations of insulin and glucagon in the EPA and
mammary vein were analyzed using the commercial kits from the
Meibiao Biotechnology Co., Jiangsu, China.

Calculations and Statistical Analysis
The energy balance (EB) was calculated as follows (Hammon
et al., 2009):

EB (MJ/d) = NEL intake – (ECM × 3.14 + 0.293 × kg of
BW0.75)+ infused glucose,
where NEL represents net energy for lactation, ECM represents
energy-corrected milk yield (kg/d) and was calculated by
0.3246 × milk yield + 13.86 × milk fat yield + 7.04 × milk
protein yield, and infused glucose provided 11.51 Mcal/kg of
NEL. The mammary plasma flow (MPF) was calculated by Fick’s
principle (Mepham, 1982; Cant et al., 1993). The equation was as
follows:

MPF (L/d) = (milk Phe+ Tyr) (g/d)× 0.965/[Arterio-venous
difference of (Phe+ Tyr) (g/L)]

Indices reflecting glucose fluxes in MG were calculated as
follows:

Mammary arterial supply of glucose (g/d) = GlucA
(g/L)×MPF (L/d)

Mammary venous outflow of glucose (g/d) = GlucV
(g/L)×MPF (L/d)

Arterio-venous difference (AVD, g/L) = GlucA (g/L) − GlucV
(g/L)
where, GlucA and GlucV indicate the arterial and venous glucose
concentration, respectively.

Indices reflecting glucose utilization by MG were calculated as
follows:

Mammary uptake of glucose (g/d) = AVD (g/L)×MPF (L/d)
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TABLE 2 | Effects of increasing mammary glucose supply by external pudendal artery on feed intake, energy balance, and milk production.

Item∗ Infused glucose (g) SEM P-value†

0 20 40 60 80 100 L Q

Dry matter intake, kg 1.65 1.67 1.66 1.62 1.67 1.60 0.05 0.31 0.45

Energy balance, MJ/d −0.18b
−0.14b

−0.30b
−0.43b 0.50a 0.47a 0.17 <0.01 <0.01

Milk yield, g 692c 750bc 813a 880a 776b 758bc 26.1 0.04 <0.01

ECM, g 938c 1,018bc 1,115ab 1,166a 1,025bc 1,037bc 37.5 0.09 <0.01

Fat yield, g 37.8b 41.5ab 45.9a 46.7a 41.5ab 41.5ab 2.07 0.27 <0.01

Protein yield, g 27.0 28.4 30.4 33.0 28.0 30.7 1.51 0.12 0.13

Lactose yield, g 33.3c 35.6bc 38.5ab 41.0a 36.4bc 35.1bc 1.26 0.20 <0.01

Milk composition, %

Fat 5.46 5.52 5.68 5.33 5.36 5.45 0.26 0.65 0.87

Protein 3.88 3.79 3.76 3.75 3.61 4.07 0.17 0.78 0.14

Lactose 4.64c 4.70bc 4.75ab 4.81a 4.74ab 4.65c 0.03 0.24 <0.01

TSC 14.7 14.9 14.9 14.7 14.5 14.9 0.29 0.82 0.85

MUN, mgN/dL 33.9ab 36.3a 33.2b 32.0bc 30.0c 29.2c 0.71 <0.01 0.08

SCC ×103/mL 797ab 647ab 209b 463b 1,009a 1,018a 242 0.20 0.03

∗ECM, energy-corrected milk yield; TSC, total solid content; MUN, milk urea nitrogen; SCC, somatic cell count. †L, linear effect; Q, quadratic effect. Values (such as a,b,c)
in the upper-right corner differ (P < 0.05) if without a common letter.

FIGURE 1 | Correlation analysis between infused glucose level (Glucose),
energy balance (EB), and milk production (Milk). The upper number within
each cell means Pearson Correlation Coefficient. The lower number with the
bracket means P-value.

Clearance rate of glucose (L/h) = AVD (g/L) × MPF
(L/h)/GlucV (g/L)

To assess insulin resistance, the surrogate index was calculated
according to Balogh et al. (2008) by the equation:

RQUICKIBHB = 1/[log glucose (mg/dL) + log insulin
(µU/mL)+ log NEFA (mmol/L)+ log BHB (mmol/L)]
where RQUICKIBHB represents the revised quantitative insulin
sensitivity check index, BHB represents β-hydroxybutyric acid,
and NEFA represents non-esterified fatty acid. A lower value
suggests a greater insulin resistance.

All data were evaluated for normal distribution before
statistics using the Data Processing System software (Tang and
Zhang, 2013). All data were analyzed using the MIXED model
(SAS 9.21) with a 6 × 6 Latin square design. Treatment, goat,
period, and residual effects were considered as the sources of
the variation. The treatment and period were considered as
fixed variables. The goat was considered to be the random
variable. The residual effect was used to test the significance
of treatment, goat, and period. Differences for treatments were

analyzed by orthogonal polynomial contrasts of linear and
quadratic effects. Results were present as least square means
with mean square errors. Interaction between infused glucose,
milk production, and EB was analyzed using the correlation
analysis (SAS 9.21). Time-caused dynamic analysis of glucose
concentration and its related hormones were additionally taken
time effect and treatment effect into account. Regression analysis
was implemented by fitting curve (Origin 8) and the slope of
the curve was calculated by its first-order derivative. The P
values of linear and quadratic effects were reported as Plinear
and Pquadratic, respectively. For dynamic analysis, P-values of
time and treatment effects were reported as Ptime and Ptreatment ,
respectively. Significance was defined as P < 0.05 and tendency
was defined as 0.05< P < 0.10.

RESULTS

Feed Intake, EB and Milk Performance
Dry matter intake was not different across all treatments
(P > 0.05, Table 2). EB was significantly changed from negative
when 0–60 g/d of glucose was infused to positive when 80–
100 g/d was infused (Plinear < 0.01, Pquadratic < 0.01), with no
difference among G0 to G60 groups and between G80 and G100
groups. Milk yield and ECM increased in a quadratic manner
in response to mammary glucose supply (Pquadratic < 0.01).
Correlation analysis showed no interaction between infused
glucose and EB (R = 0.28, P = 0.09, Figure 1) or between
milk production and EB (R = −0.23, P = 0.10), whereas
a significant interaction between infused glucose and milk
production (R = 0.46, P < 0.01). The yield of lactose and
fat and lactose content also showed a quadratically increased
response (Pquadratic < 0.01). Milk urea nitrogen content was
linearly decreased with increasing mammary glucose supply
(Plinear < 0.01). The yield and content of lactose and milk
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FIGURE 2 | Dynamic changes of artery glucose concentration after infusion of different doses of glucose (0–100 g/d) through external pudendal artery. The 0 time in
the X axis represents the end time of infusion. “∗” represents significant difference in the time effect in each treatment, and “#” represents significant difference in the
treatment effect at individual time points (P < 0.05).

yield were the highest when glucose was infused at the level of
60 g/d.

Dynamic Changes of Blood Variables
The dynamic changes of artery glucose concentration before and
after glucose infusion was presented in Figure 2. At the end of
infusion, artery glucose concentration increased linearly from

0 to 100 g/d of glucose infusion (Plinear < 0.01). The glucose
concentration decreased rapidly within 1.5 h after infusion in
all glucose infusion treatments (average slop of dynamic glucose
concentration curves within 1.5 h was −0.99) and at slower
rates between 1.5 and 3 h (average slop was −0.35) after
infusion (Ptime < 0.01). All the glucose infusion groups reached
a steady EPA glucose concentration after 3 h (average slop was

TABLE 3 | Effects of increasing mammary glucose supply by external pudendal artery on physiological and biochemical parameters in artery and vein at 13 h after
glucose infusion (steady period).

Item∗ Infused glucose (g) SEM P-value†

0 20 40 60 80 100 L Q

Artery

Glucose, mmol/L 3.72b 4.22a 4.02a 3.90ab 3.90ab 3.73b 0.046 0.52 <0.01

BHB, umol/L 421a 418a 422a 385b 385b 372b 10.8 <0.01 0.47

NEFA, umol/L 150 159 173 204 162 153 19.4 0.73 0.09

Triglyceride, mmol/L 0.157 0.164 0.110 0.145 0.135 0.128 0.029 0.42 0.70

Vein

Glucose, mmol/L 3.11 3.57 3.34 3.28 3.11 3.25 0.085 0.30 0.09

BHB, umol/L 147 151 173 159 134 141 11.2 0.31 0.10

NEFA, umol/L 271 238 211 325 195 264 44.9 0.89 0.81

Triglyceride, mmol/L 0.131 0.132 0.101 0.121 0.098 0.105 0.030 0.40 0.83

AVD

Glucose, mmol/L 0.610 0.647 0.682 0.722 0.693 0.673 0.039 0.13 0.14

BHB, mmol/L 273a 267ab 249abc 226c 251abc 230bc 13.5 0.02 0.43

∗BHB, β-hydroxybutyric acid; NEFA, non-esterified fatty acid; AVD, arterio-venous difference. †L, linear effect; Q, quadratic effect. Values (such as a,b,c) in the upper-right
corner differ (P < 0.05) if without a common letter.
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FIGURE 3 | Effects of increasing mammary glucose supply (0–100 g/d) through the external pudendal artery on mammary plasma flow [MPF, (A)] and the ratio of
mammary plasma flow and milk volume (B). Error bar represents mean of standard error.

−0.05, Ptime < 0.01). However, the declining slopes of artery
glucose after infusion were different among different glucose dose
treatments. Goats in the G100 (average slop was −1.81) and
G80 (average slop was −1.51) groups had the steepest negative
slopes among the treatment groups within 60 min (Ptime < 0.01,
Ptreatment < 0.01), showing a rapid glucose partition among the
circulatory system. During 3 to 13 h, the area under curve of
G80 (38.60) and G100 (37.33) groups were lower when compared
with that of G20 (42.33), G40 (40.10), and G60 (39.53) groups
(P < 0.01).

The concentrations of blood variables at 13 h after glucose
infusion, when the artery glucose concentration became stable in
each treatment, were presented in Table 3. In the artery, glucose
concentration was quadratically increased with increasing
glucose supply (Pquadratic < 0.01). In contrast, BHB concentration
was linearly decreased (Plinear < 0.01). No differences were
shown in NEFA (P > 0.05) and triglyceride (P > 0.05)
concentrations in the artery across all the treatments. In the
vein, these blood variables remained relatively stable with
increased glucose supply, except that there was a tendency
of quadratic increase in glucose (Pquadratic = 0.09). The AVD
of glucose was not significantly different across all groups
(P > 0.05).

Mammary Blood Flow and Glucose Flux
The MPF was significantly increased with increasing glucose
infusion from 0 to 60 g/d and was not increased with glucose
infusion over 60 g/d (Plinear < 0.05, Pquadratic > 0.05, Figure 3A).
The MPF value per unit of milk was not different among all
treatments (P > 0.05, Figure 3B).

Mammary glucose uptake was linearly increased with
increasing mammary glucose supply (Plinear = 0.02, Table 4). The
glucose clearance rate was significantly increased (Plinear = 0.02,
Table 4), but the glucose extraction rate was not significantly
changed (Plinear = 0.12, Table 4) with increasing glucose
supply. However, the mammary uptake, and clearance rate of
glucose were not increased when more than 60 g/d of glucose
was infused. At 60 g/d of infusion, the mammary uptake,
and clearance rate of glucose were 52.2% and 43.8% higher,
respectively, than those in the control animals receiving no
glucose infusion.

The MPF was positively correlated with glucose fluxes,
including mammary arterial glucose supply (R = 0.95, P < 0.01),
mammary venous outflow of glucose (R = 0.92, P < 0.01),
glucose uptake (R = 0.88, P < 0.01), glucose clearance rate
(R = 0.82, P < 0.01), and extraction rate (R = 0.30, P < 0.01,
Figure 4).

TABLE 4 | Effect of increasing mammary glucose supply through external pudendal artery on glucose utilization in the mammary gland.

Item Infused glucose (g) SEM P-value†

0 20 40 60 80 100 L Q

Mammary arterial supply of glucose, g/h 9.77b 11.79ab 12.86ab 13.93a 12.73ab 12.92a 1.05 0.03 0.07

Mammary venous out flow of glucose, g/h 8.12b 10.03ab 10.68a 11.43a 10.39ab 10.71a 0.871 0.05 0.07

Mammary uptake of glucose, g/d 39.5b 42.0b 52.3ab 60.1a 56.2ab 53.3ab 5.36 0.02 0.10

Clearance rate of glucose, L/h 2.97b 2.67b 3.63ab 4.27a 4.21a 3.78ab 0.417 0.02 0.22

Extraction rates, % 0.164 0.154 0.169 0.181 0.182 0.172 0.010 0.12 0.51

†L, linear effect; Q, quadratic effect. Values (such as a,b,c) in the upper-right corner differ (P < 0.05) if without a common letter.
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Glucose Utilization by Mg
Increasing glucose supply from 0 to 60 g/d increased mammary
arterial supply of glucose (Plinear = 0.03, Table 4) and mammary
venous outflow of glucose (Plinear = 0.05), but mammary arterial
supply of glucose and mammary venous outflow of glucose was
not increased when> 60 g/d glucose was infused.

Although the ratio of lactose to mammary glucose supply
was not changed with increasing glucose supply (Plinear = 0.10,
Figure 5), the ratio of lactose to mammary glucose uptake, an
indicator of glucose metabolic partition intracellularly, declined
from 84.4 to 65.5% when glucose was infused from 0 to 100 g/d
(Plinear < 0.01).

Fitting curve analysis was used to estimate the optimal glucose
supply in goats (Figure 6). The analyses of milk yield and
lactose yield in response to glucose infusion showed that the 50
to 60 g/d of glucose infusion to the MG maximized the milk
production. However, there were drastic declines in ratios of
lactose to mammary glucose supply and lactose to mammary
glucose uptake when over 40 g/d of glucose was infused.

Milk indexes related to glucose metabolism and oxidative
stress in MG were presented in Table 5. With increasing glucose
supply, concentrations of milk glucose (Pquadratic = 0.03) and
ORAC (Pquadratic = 0.05) was quadratically increased, whereas
milk G6P (Pquadratic < 0.01) and ROS (Pquadratic < 0.01) was
quadratically decreased. The milk glucose and ORAC both
reached the maximum value at the glucose infusion of 60 g/d,
whereas the milk G6P and ROS both reached the maximum value
at the glucose infusion of 100 g/d. The ratio of G6P and glucose
in milk tended to decrease quadratically with increasing glucose
supply (Pquadratic = 0.07). Milk lactic acid was linearly increased
(Plinear = 0.02). Milk MDA tended to decrease (Plinear = 0.07).
Milk citrate was not significantly different between different
glucose supplies.

Dynamic Changes of Blood Insulin and
Glucagon
The time courses of artery insulin and glucagon are shown
in Figure 7. Glucose infusion induced insulin surge in blood
in all groups. For all groups, glucose infusion-induced insulin
secretion declined in the first 3 to 4 h after the infusion
(Figure 7A). However, goats receiving 80 and 100 g/d of
glucose had higher blood insulin concentrations at the end of
infusion compared to other groups (P < 0.01, treatment effect).
Insulin response parameters were calculated to evaluate the
different insulin responses in each treatment (Table 6). With
increased glucose supply, the peak (at 0 h, Plinear = 0.01) and
increment of insulin (Plinear = 0.02) were linearly increased in
accordance with the significantly increased area under the curve
in 240 min after infusion (Plinear = 0.05), indicating a sustained
high level of blood insulin in high glucose supply (G80 and
G100) compared with low glucose supply (G0 and G20). The
RQUICKIBHB was significantly decreased in a quadratic manner
(Pquadratic < 0.01, Figure 8) and was the lowest at 40 or 60 g/d
of glucose infusion. Thus, the concentration and sensitivity of
insulin could be the vital regulator of glucose fluxes and MG
utilization.

FIGURE 4 | Correlation between mammary plasma flow (MPF) and glucose
fluxes. In left square matrix, the deeper color and the higher the saturation of
the cells, the greater positive correlation of variables. Meanwhile, in right circle
matrix, the filled pie charts from clockwise visualize the positive correlation of
variables.

Dynamic change of blood glucagon showed an inverse
relationship with insulin (Figure 7B), but the glucagon response
parameters, including basal concentration before infusion, nadir,
decrement, and area under the curve in 240 min after
infusion were not significantly different among treatments
(P > 0.05). However, the time to reach basal concentration
showed significant quadratic response (Pquadratic < 0.01).

Ratio of blood insulin to glucagon was higher in the G80 and
G100 groups within 45 min after infusion (Ptreatment < 0.01),
but it declined significantly within 90 min (Ptime < 0.01) and
did not differ from other treatments in the other time periods
(Figure 7C).

DISCUSSION

Local Mammary Glucose Supply, EB and
Milk Synthesis
Lactation is a biological function to extend life for next
generation. Adequate amounts of glucose are essential for MG
to maintain high milk yield as both the energy source and the
main precursor of lactose (Zhao, 2014). Even through, there
are knowledge gaps in this filed, such as what the optimal
glucose supply is and how the glucose will exhibit the metabolic
priority between energy supply and lactose synthesis under
the energy-deficient condition. Previous studies have reported
that glucose had a positive effect on lactation emphasizing the
role of glucose metabolism under sufficient energy condition
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FIGURE 5 | Effect of increasing mammary glucose supply through the external pudendal artery on synthesis rate of lactose [the ratio of lactose yield and glucose
mammary supply (A) and the ratio of lactose yield and glucose mammary uptake (B)]. Error bar represents mean of standard error.

(Huhtanen et al., 2002; Rius et al., 2010). However, under the
energy-deficient condition in this study, it seemed that lactation
still had a metabolic priority on the glucose metabolism over
the changing of EB because of a quadratic increased milk yield
and lactose yield with no difference in EB between the infusion
levels of 0 g/d to 60 g/d glucose. During the onset of lactation,
metabolic priority of milk production is observed from different
adaptive reactions of supplying energy and substrate for the MG
at the expense of the lactation-induced NEB and illness (Gross,
2012). Interestingly, even when lactating animals were under the
energy-deficient conditions, strategies of nutrient partitioning
were still likely to provide substrates for milk production, such
as increasing mammary glucose uptake in a quadratic manner.
Some studies showed negative or no effects of glucose supply
on lactation under energy-sufficient conditions (Vanhatalo et al.,
2003; Curtis et al., 2014). However, the negative effects of glucose
were also observed at the high glucose infusion (G80 and G100)
under energy-deficient condition. Inconsistency of the previous
studies and the current one in the effect of glucose on lactation
and the quadratic response of milk yield, lactose yield and
mammary glucose uptake in the current study indicated that
glucose had a dose-dependent effect on the lactation and prefer to
satisfy the metabolic allocation for lactation rather than to change
the EB condition.

Moreover, the EB changes caused by different levels of
glucose infusion do not appear to be a cause for changes
in lactation performance. When glucose infusion was lower
than 60 g/d, EB was negative; whereas when the infusion
level was over 60 g/d, EB became positive. However, the
milk and lactose yields were actually decreased when EB
changed from negative in G60 group to positive in G80
and G100 groups. Furthermore, EB showed a decreasing
tendency when glucose was infused from 0 to 60 g/d, but
the milk yield was increased in these animals. Thus, these
discrepancies between milk performance and EB indicated
that the milk production changes associated with the infused
glucose levels was resulted from the substrate supply, but

not from EB differences, even when animals were in negative
EB. Moreover, significant correlation was found between the
infused glucose level and milk production, but not between
the infused glucose level and EB or between milk production
and EB. This may be explained by that unlike in non-
ruminant animals, glucose is not the major energy source
in ruminant animals (Bergman, 1990; Barcroft et al., 1994),
however, glucose is the major precursor of lactose synthesis which
controls milk volume by maintenance of milk osmolality (Zhao,
2014).

However, whereas the milk production increased when
glucose was infused to 60 g/d, the glucose utilization efficiency
linearly declined with increasing glucose supply. A level of 50 to
60 g/d extra glucose supply to MG is considered to be optimal
for both high lactation performance and relatively high glucose
utilization efficiency in goats with the current experimental
conditions. The specific reasons for the depressed efficiency in the
higher dose infusion treatments are discussed below.

Mammary Glucose Availability of
Glucose in Response to its Supply
Glucose precursor generation, gluconeogenesis in liver, and
glucose transport mechanisms in the MEC were intensively
studied (Zhao and Keating, 2007; Li et al., 2013; Zhang
et al., 2015). However, few studies have focused on how
mammary glucose availability is affected by local glucose
infusion. Only glucose taken up by MG can be used for milk
synthesis, therefore the glucose availability to MG is particularly
important.

The function of infused glucose and its partition can be
deduced from the phases of blood glucose changes after infusion,
including the rapid dynamic phase (Figure 2: 0–90 min after
glucose infusion), slow descent stage (Figure 2: 90–180 min
after glucose infusion), and the steady-state phase (Figure 2:
180 min after glucose infusion to next infusion). A fast glucose
partition seemed to occur within 90 min after infusion, when
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FIGURE 6 | Fitting curves of milk production [milk yield (A) and lactose yield (B)] and glucose utilization [the ratio of lactose yield and glucose mammary supply (C)
and the ratio of lactose yield and glucose mammary uptake (D)] when 0–100 g/d of glucose was infused to the mammary gland. Error bar represents standard error.

glucose is quickly distributed and absorbed among tissues.
Liver and skeletal muscle glycogen synthesis likely plays a
major role in this phase. Tissue glucose absorption appears to
become slower during slow descent phase in 90 to 180 min

after infusion. During the steady phase, blood glucose becomes
stable as the glucose production from gluconeogenesis and
glycogen hydrolysis reached a balance with glucose utilization by
tissues.

TABLE 5 | Effect of increasing mammary glucose supply through external pudendal artery on glucose metabolites in milk.

Item∗ Infused glucose (g) SEM P-value†

0 20 40 60 80 100 L Q

Glucose, µmol/L 51.27b 52.27b 55.49ab 59.92a 54.01ab 53.70b 3.66 0.22 0.03

G6P, µmol/L 52.93ab 52.03ab 51.20bc 49.26c 52.93ab 53.78a 0.74 0.43 <0.01

G6P/glucose 1.05 1.00 0.95 0.83 1.01 1.05 0.09 0.87 0.07

Citrate, mmol/L 6.60 6.77 6.99 6.92 7.01 6.87 0.64 0.67 0.69

Lactic acid, µmol/L 3.62b 3.63ab 3.82ab 3.83ab 3.89ab 3.94a 0.11 0.02 0.78

Malondialdehyde, nmol/L 15.57 15.41 14.41 14.66 14.32 14.63 0.52 0.07 0.28

ROS, mg of H2O2/100 mL 13.21ab 12.80bc 11.60cd 10.73d 13.81ab 14.32a 0.47 0.06 <0.01

ORAC, U/mL 9.80ab 10.02ab 10.04ab 10.56a 9.53ab 9.12b 0.38 0.19 0.05

∗G6P, glucose-6-phosphate; ORAC, oxygen radical antioxidant capacity. †L, linear effect; Q, quadratic effect. Values (such as a,b,c) in the upper-right corner differ
(P < 0.05) if without a common letter.
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Interestingly, according to the area under curves, the artery
glucose concentration in the G80 and G100 groups became even
lower than that of G20, G40, and G60 after 180 min of infusion
(Figure 2), which probably led to lower amounts of glucose
consumed by the MG. The higher venous outflow of animals in
G80 and G100 compared to the animals in G0 showed that large
amounts of glucose were released into the venous circulatory
system as unutilized by the MG. Glucose fluxes (arterial supply of
glucose, mammary uptake of glucose, clearance rate of glucose)
were elevated at the optimum glucose infusion (G60) for high
mammary glucose utilization, in which a higher glucose was
maintained in the MG circulation. Thus, these data indicated that
glucose supply to the MG within a proper range enhances glucose
fluxes in the MG and glucose availability to MG. The MG has
a predominant role in the glucose availability from circulation
when glucose was supplied at a moderate level (Rigout et al.,
2002). Excess supply of glucose to the MG reduces the glucose
available to the MG.

The main factors regulating glucose availability in the MG
are MPF and hormones (Sano et al., 1991; Madsen et al., 2015).
The metabolites in the MG, which rely on the nutrients available
to MG from the blood, can affect MPF (Cant et al., 2016).
A previous study suggested that insufficient availability of glucose
decreased MPF and mammary glucose uptake by 30% (Wang
et al., 2016a). Consistently, the optimum glucose supply increased
MPF by 32%, and excess glucose supply decreased MPF by 6% in
our current study. These results suggested that a nutrient-driven
change in blood flow rate is a potential mechanism to regulate
glucose availability to the MG. A strong correlation between
MPF and glucose flux indexes, including arterial glucose supply,
venous outflow of glucose, glucose uptake, and glucose clearance
rate, was observed in this study (Figure 4), further supporting
the critical roles of MPF in mammary glucose availability by
influencing the glucose fluxes in the MG.

Endocrine hormones play critical roles in regulating body
metabolism. Insulin is the most important regulator in glucose
metabolism (Nemazanyy et al., 2015). It is known that insulin
indirectly regulates mammary glucose supply through regulation
of glucose uptake in the peripheral tissues, mainly skeletal muscle
and adipose tissue (Singh et al., 2014). In this study, the changes
in blood insulin and insulin response parameters (peak and area
under the curve in 240 min after infusion) showed that insulin
levels remained high for 240 min after infusion, which likely
resulting in high glucose absorption by peripheral tissues. In
addition, the calculated insulin sensitivity index (RQUICKIBHB)
implied that the increasing glucose supply curvilinearly increased
insulin resistance in goats. It appeared that the adipose cells
might reduce the over-absorbing extra glucose to convert into
lipids, reflected by low levels of BHB, in certain levels of glucose
supply. Thus, optimal glucose supply may maintain a high ratio
of glucose allocated to MG by inducing insulin resistance in
peripheral tissues. However, insulin resistance may be overtaken
by high levels of insulin resulting from excess glucose supply in
G80 and G100.

Glucagon is another important hormone for glucose
metabolism in the circulatory system (Jiang and Zhang, 2003). In
this study, the glucagon response parameters, such as the time to

FIGURE 7 | Time-course of artery insulin (A) and glucagon (B) and their ratio
(C) when 0–100 g/d of glucose was infused to the mammary gland. The 0
time in the X axis represents the end time of infusion. “∗” represents significant
difference in time effect of each group, and “#” represents significant
difference in treatment effect at individual time points (P < 0.05).

reach basal concentration, showed that the appropriate glucose
supply requires high levels of glucagon. Glucagon may stimulate
gluconeogenesis to enhance glucose availability to the MG.

Metabolic Partition of Glucose in the MG
After glucose is absorbed by the MG, most of them (60–85%) are
used to synthesize lactose (Nielsen and Jakobsen, 1993). However,
lactose synthesis is greatly dependent on the glucose partition
ratio in the metabolic pathways within the MECs, including
lactose synthesis, glycolysis, PPP, and the tricarboxylic acid cycle
(Zhao, 2014).

Our observations on mammary arterial supply of glucose,
mammary venous outflow of glucose, and the ratio of lactose
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TABLE 6 | Time-course response indexes of blood insulin and glucagon to different doses of glucose infusion.

Item∗ Infused glucose (g) SEM P-value†

0 20 40 60 80 100 L Q

Insulin, pmmol/L

Ct0 246 239 240 235 252 253 7.3 0.25 0.13

Peak 278b 283b 305ab 309ab 332a 348a 21.5 0.01 0.76

Increment 32.3b 43.9b 64.8ab 74.1ab 79.8ab 94.3a 20.8 0.02 0.80

t basal, min 112 134 106 136 142 126 7.6 0.06 0.47

AUC240 6030b 6175b 6433ab 6317ab 6557ab 6687a 247 0.05 0.95

Glucagon, pmmol/L

Ct0 71.3 74.9 62.8 61.6 67.7 69.4 6.48 0.52 0.25

Nadir 52.9 58.7 59.4 48.6 43.4 52.5 4.52 0.10 0.85

Decrement −18.4 −16.2 −3.4 −12.9 −24.3 −16.8 8.76 0.79 0.27

t basal, min 112a 113a 113a 55c 92b 115a 9.50 0.19 0.01

AUC240 1638 1598 1644 1587 1441 1618 63.0 0.25 0.59

∗Ct0, basal concentration before infusion; Peak, peak concentration; Increment, Peak – Ct0; Nadir, nadir concentration; t basal, time to reach basal concentration;
AUC240, area under the curve in the 240 min after infusion, pmmol/dL∗240min. †L, linear effect; Q, quadratic effect. Values (such as a,b,c) in the upper-right corner differ
(P < 0.05) if without a common letter.

to glucose mammary uptake in this study indicated that an
increasing glucose supply might alter the mammary glucose
partition between lactose synthesis and other pathways. Along
with the increasing glucose supply, the utilization of glucose in
lactose synthesis decreased from 84.4 to 65.5%, implying that
glucose might be shifted from lactose synthesis to other pathways.
Milk glucose, G6P, lactic acid, MDA, ROS, and ORAC were then
analyzed to provide information on the metabolic fate of the
intracellular glucose. These analyses showed that: (i) the ratio
of G6P and glucose was lowest in the optimal glucose infusion
groups (G40 and G60), and a G6P/glucose ratio > 1 in milk,
which was caused by recycling of fructose-6-phosphate formed
in the PPP to G6P (Stincone et al., 2015), was observed in both
the treatment with low-supplied (G0 and G20) and over-supplied

FIGURE 8 | Revised quantitative insulin sensitivity check index corrected by
β-hydroxybutyric acid (RQUICKIBHB) in goats with increasing mammary
glucose supply through the external pudendal artery. Error bar represents
standard error.

(G80 and G100) glucose, indicating that a proportion of glucose
was shunted to PPP and formation of NADPH; (ii) lactic acid
increased with increasing glucose supply, indicating increased
glycolysis; and (iii) higher ROS levels in the low-supplied and
over-supplied glucose treatments, as well as lower ORAC levels
in relative with optimal glucose treatments implied both low-
supplied and over-supplied glucose may cause oxidative stress in
MG. The causatives of higher ROS and lower ORAC under low-
supplied and over-supplied glucose conditions were probably
different. In the animals with low dose of glucose (G0 and G20),
lipolysis and a large supply of artery BHB compensated for
the negative EB in G0 and G20 (Table 3), thus lower ORAC
likely resulted from the lipid peroxidase derived from the high
BHB. This notion was supported by high MDA of milk in these
groups. On the other hand, when glucose was over-supplied,
the lower ORAC could be resulted from the high production
of ROS derived from superfluous glucose (Eleftheriadis et al.,
2017). From these information, it is suggested that the MG
demonstrated a degree of metabolic flexibility toward different
glucose supply and modified the balance between the lactation
and oxidative stress.

Conclusion, Perspectives, and
Significance
Our study employed a local mammary glucose intervention
by EPA infusion to investigate how MG responds to increased
local glucose availability in energy deficient condition. Our
results showed that the local glucose supply has a dose-
dependent effect on milk performance and mammary glucose
utilization by changing mammary glucose availability and
metabolic pathways of glucose within MECs. We also
found that acute glycolysis consumes the superfluous
glucose, and oxygen radicals accumulate in MG during
excessive glucose conditions. Furthermore, MPF, insulin,
and glucagon may play important roles in glucose partition
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and utilization in the MG. The study provided new insights into
glucose utilization efficiency in lactation and dairy nutrition.
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