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Abstract: The interaction of methylene blue (MB) dye with natural coal (collected from coal landfills
of the Kosovo Energy Corporation) in aqueous solutions was studied using adsorption, kinetics, and
thermodynamic data, and Monte Carlo (MC) calculations. In a batch procedure, the effects of contact
duration, initial MB concentration, pH, and solution temperature on the adsorption process were
examined. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R) isotherms were
used to examine the equilibrium adsorption data. The equilibrium data fit well to the Freundlich and
Langmuir adsorption isotherm models; however, the Freundlich model suited the adsorption data to
a slightly better extent than the Langmuir model. The kinetics experimental data was fitted using
pseudo-first-order, first-order, pseudo-second-order, second-order, Elvoich equation, and diffusion
models. The pseudo-second-order rate model manifested a superlative fit to the experimental data,
while the adsorption of MB onto coal is regulated by both liquid film and intraparticle diffusions
at the same time. Thermodynamic parameters, such as Gibbs free energy (∆G0), enthalpy (∆H0),
and entropy (∆S0) were calculated. The adsorption of MB was confirmed to be spontaneous and
endothermic. The theoretical results were in agreement with the experimental ones.

Keywords: methylene blue; coal; adsorption; equilibrium; isotherms; Monte Carlo; kinetic
models; thermodynamic

1. Introduction

Concern over environmental preservation has grown throughout the years from a
worldwide perspective. In recent decades, the exponential population growth and social
civilization growth have been accompanied by changes in productivity and consumption
habits, increasingly affluent lifestyles, resource use, and the ongoing development of
industrial technologies, all of which have resulted in the rapid generation of municipal
and industrial solid wastes, resulting in the world’s most intractable paradox [1–5]. The
rapid rate of industrialization has resulted in a variety of difficulties, including water
contamination, which is regarded to be one of the most dangerous problems. Industrial
activities dump massive volumes of untreated wastewater into the environment on a
regular basis causing harm to aquatic, plant, and human life [6]. Excessive discharge of
inorganic/organic contaminants into water as a result of industrialization, agricultural
activities, and urbanization has created a major environmental concern all over the world.
For example, more than thousand different types of dyes are commercially available
and used extensively in the leather, paper, plastics, tannery, cosmetics, rubber, paint,
pharmaceutical, culinary, photography, and textile sectors to color their products, and
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these are some of the sources of dye-containing effluents [7]. The textile dyeing business
consumes a considerable amount of pure water, putting it at the forefront of pollutants [8].
Annually, more than 7 × 105 tons of dyestuffs are generated, with a considerable portion
being released directly into aqueous effluents.

The presence of colored effluents in an aquatic habitat inhibits sunlight from reaching
the benthic species, hence impeding photosynthesis [9]. Methylene blue (MB) is a cationic
dye that is often used for coloring but is also employed in microbiology, surgery, and diag-
nostics. Though MB is not extremely dangerous, it can have some negative consequences.

In humans, acute MB exposure can result in accelerated heart rate, shock, Heinz body
formation, cyanosis, jaundice, quadriplegia, and tissue necrosis. MB produces eye burns,
which can result in lasting damage to the eyes of humans and animals.

Dyes, in general, are poorly biodegradable or resistant to environmental conditions
and so present a major difficulty in the treatment of dye-containing wastewater [7]. Because
of the difficulties of treating such streams using traditional physical, chemical, physico-
chemical, and biological treatment approaches, dye removal from wastewater discharge
is a difficult environmental challenge. For the treatment of dye-containing effluents, a
variety of physical and chemical treatment procedures such as adsorption, coagulation,
precipitation, filtration, electrodialysis, membrane separation, and oxidation have been
utilized [10,11]. The adsorption procedure is one of the most successful and cost-effective
ways for removing colors from aqueous solutions.

Various adsorbents including activated carbon, sugarcane dust, algae, red algae,
macrofungus, green algae, lichen, saw dust, bottom ash, fly ash, de-oiled soya, maize
cob, peat, iron humate, mixed sorbents, microbial biomass, activated slag, waste product
from agriculture, bentonite, magnetic nanoparticle, and coal were previously used for
the removal of color and trace elements from wastewater [12–18]. The natural and waste
materials seem to be feasible alternatives for dye removal because of their economic and
eco-friendly features, availability in abundance and low cost. Activated carbon has a high
capacity for organic adsorption, but nonetheless is a costly material.

This study is the first to investigate and present a detailed explanation of the adsorption
of MB on natural coal. Because Kosovo’s lignite coal has a high adsorption capacity for
MB and it is abundant in Kosovo as a natural resource (Kosovo has the third largest lignite
reserves in Europe and the fifth in the world) it opens new possibilities for the effective
and efficient removal of pollutant molecules via the sorption process.

Natural (untreated) coal extracted from coal landfills of the Kosovo Energy Corpora-
tion, accordingly at the power plant “Kosova B” was utilized in this study as an adsorbent
for the removal of MB from aqueous solutions at different temperatures. Monte Carlo
calculations, and thermodynamic and kinetic parameters were also studied.

2. Results and Discussion
2.1. Effect of Contact Time and Initial MB Concentration

Contact time and dye concentration have a significant role in determining the rate of
dye absorption, the time necessary for the adsorbent–adsorbate system to reach equilibrium,
and the adsorbent’s adsorption capacity. These variables are also relevant in isotherm
research involving adsorption processes.

The impact of agitation time and starting concentration on the adsorption of MB onto
coal at 26 ◦C is depicted in Figure 1. The dye adsorption is rapid for the first ten minutes,
the percentage of MB removed so far reaches a value of about 99% for small concentrations
(50 mg/L, 75 mg/L, and 100 mg/L) and about 98% for larger concentrations (125 mg/L
and 150 mg/L), and then slows as the surface of the coal becomes saturated with MB,
reaching equilibrium after 60 min. When the contact period is 60 min, the greatest degree of
absorption occurs. After increasing the agitation time further, the adsorption capacity stays
nearly constant. Hence, the agitation duration was adjusted to 60 min in this investigation
as this was the most appropriate contact time.
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As the initial concentration increases, the adsorption capacity qe increases. The qe val-
ues are 12.50, 18.73, 24.97, 31.19, and 37.40 mg/g for 50, 75, 100, 125, and 150 mg/L, respec-
tively. This is because when the initial concentration increases, the mass transfer driving 

Figure 1. Effect of contact time and initial concentration on adsorption of MB onto coal (mass of
coal = 0.1 g; volume of MB solution = 25 mL; T = 299.15 K, pH = 6.35).

Figure 2 represents the equilibrium absorption capacity versus the initial dye concen-
tration (50–150 mg/L).
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Figure 2. Effect of initial concentration on adsorption of MB onto coal (mass of coal = 0.1 g; volume
of MB solution = 25 mL; T = 299.15 K, pH = 6.35).

As the initial concentration increases, the adsorption capacity qe increases. The qe
values are 12.50, 18.73, 24.97, 31.19, and 37.40 mg/g for 50, 75, 100, 125, and 150 mg/L,
respectively. This is because when the initial concentration increases, the mass transfer
driving force overcomes the resistances to dye molecule mass transfer from the solution to
the solid phase, resulting in increased sorption. Additionally, increasing the concentration
leads to greater contact between the dye molecule and the coal, which accelerates the
sorption process [19]. Similar results for the contact time and initial MB concentration were
also reported by other researchers [7,11,12,18,20].
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2.2. Effect of pH

The influence of solution pH on the adsorption performance of the coal was investi-
gated in the dye solutions (100 mg/L) of different pH (2.0–10.0).

The adsorption of MB is very little affected by changing the pH of the solution
(Figure 3). Therefore, we can say that pH value does not have any significant effect on MB
adsorption onto coal and for that reason the experiments were conducted at ambient pH
(pH = 6.35). This is an atypical case because most other studies exhibit a rise in the removal
of MB with increasing pH [20].
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Figure 3. Effect of pH on adsorption of MB onto coal (contact time = 60 min; C0 = 100 mg L−1; mass
of coal = 0.1 g; volume of MB solution = 25 mL; T = 299.15 K).

2.3. Effect of Temperature and Thermodynamic Parameters

The adsorption investigations were performed at different temperatures. As seen
in Figure 4, qe increases, albeit only slightly, from 18.69 to 18.73 mg/g by increasing the
temperature from 273–299 K.

Plotting the linear plot of lnKc against 1/T from Equation (7), the thermodynamic vari-
ables ∆H0 and ∆S0 can be calculated from the slope and intercept, respectively (See Figure 5).

The thermodynamic variables at various temperatures are shown in Table 1. The
negative value of ∆G0 indicates that the process is feasible and the value of ∆G0 decreases
as the temperature increases, indicating that the process is more spontaneous at higher
temperatures. The fact that ∆H0 (43.645 kJ/mol) is positive suggests that the reaction is
endothermic. Adsorption is often classified as physical sorption when the ∆H0 value is
smaller than 84 kJ/mol and chemisorption when the value is between 84 and 420 kJ/mol.
∆S0 is 286.14 J/mol·K in this study, where the positive value shows that the disorder of the
solid–liquid interface increases throughout the sorption process [20].

Activation Energy

The activation energy (Ea) is a critical metric that indicates the strength and nature of
the interactions that exist between MB and coal. The following linear Arrhenius equation
was used to determine it [6]:

lnk2 = lnA− Ea

RT
(1)
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where K2 is the pseudo-second-order rate constant, A is the Arrhenius constant, Ea refers to
the energy of activation (J mol−1), R is the ideal gas constant (8.314 J·mol−1·K−1), and T is
the temperature (K). The activation energy and Arrhenius constant were calculated using
the slope and intercept of Equation (1) (See Figure 6).
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Table 1. The thermodynamic variables at different temperatures.

Temperature (K) ∆G0 (kJ/mol) ∆H0 (kJ/mol) ∆S0 (J/mol·K)

273.15 −41.66
43.645 286.14289.15 −39.54

299.15 −34.36
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Figure 6. Activation energy plot for the adsorption of MB on coal.

The Ea value was found to be 21.87 kJ/mol, showing that relatively modest forces are
involved in the sorption process.

2.4. Adsorption Isotherms

The linear forms of the Langmuir, Freundlich, Temkin, and D–R isotherms for the
adsorption of MB onto coal are shown in Figure 7 and Table 2 gives the parameters for
each isotherm determined from the plot’s slopes and intercepts [21]. The isotherm with
the best fit was chosen based on the highest correlation coefficient (R2) and the lowest
value of the root mean square error (RMSE), which quantifies the isotherm’s fitness to the
experimental data.
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Table 2. The data of equilibrium models studied.

Model Equation
Parameters

299.15 K 289.15 K 273.15 K

Langmuir qe =
qmbCe
1+bCe

qm (mg g−1) 40.82 42.37 48.78
KL (L mg−1) 18.85 13.88 3.73

RL 0.0007 0.0005 0.0053
R2 0.9824 0.9897 0.9584

RMSE 3.18 4.54 23.14

Freundlich qe = KFCe
1/n

KF (mg g−1) 48.13 51.41 41.37
n 3.34 2.77 2.17

R2 0.9825 0.991 0.9620
RMSE 2.12 0.87 1.91

Temkin qe =
RT
bT

ln(KTCe)

KT (L mg−1) 476.32 196.29 40.50
RT/b

(kJ/mol) 6.67 8.17 10.28

R2 0.9433 0.9814 0.9336
RMSE 2.09 1.20 2.26

D–R qe = qm exp
(
−βε2)

qm (mg g−1) 35.35 38.48 36.23
β 8 × 10–9 1 × 10−8 3 × 10−8

E (kJ/mol) 7.9 7.07 4.082
R2 0.9134 0.9682 0.8935

RMSE 2.99 1.80 3.08

As shown in Table 2, although the equilibrium data fit well to both the Langmuir and
Freundlich adsorption isotherm models, the Freundlich model fits the adsorption data just
slightly better than the Langmuir model and the RMSE values for the Freundlich model are
also smaller than those for the Langmuir model, indicating that the Freundlich isotherm
model fits the experimental data better.

In general, if n > 1 it means that an adsorbate is favorably adsorbed on an adsorbent.
The fact that in our study n is much greater than unity at all temperatures investigated in-
dicates that coal is an appropriate adsorbent for MB adsorption from aqueous solution [21].
Similar findings have been published on the adsorption of crystal violet dye on coconut
husk-based activated carbon, sorption of Acid Blue 161 by defatted microalgal biomass,
and the removal of Reactive Black 5 dye by macadamia seed [22–24].

The adsorption process is considered to be favorable if the Langmuir isotherm’s RL
value is between 0 and 1, i.e., 0 < RL < 1, linear when RL = 1, irreversible when RL = 0,
and unfavorable when RL > 1. In our study, the values of RL, a critical parameter of the
Langmuir isotherm, are between 0 and 1, indicating that the sorption process is favor-
able. Table 3 presents comparison of the maximum uptake of MB onto coal with that of
various adsorbents.

Table 3. Comparison of the maximum uptake of MB onto coal with that of various adsorbents.

Adsorbent qmax/mg g–1 Ref.

Cedar cone 4.55 [25]
Fly ash 10 [26]

Modified coir pit 14.9 [27]
Microwave-treated nilotica leaf 24.39 [28]

Baker’s yeast 25 [29]
Natural coal 40.82 This study

Kaolinite 46.08 [30]
Sugarcane baggas 51.5 [31]
Jute stick powder 87.7 [32]

Acid-treated dika nut 232 [33]



Molecules 2022, 27, 1856 8 of 19

Due to the low values of R2, the Temkin model does not reflect the data for the
equilibrium isotherms of MB onto coal well [33].

Additionally, the Dubinin–Radushkevich (D–R) model was utilized to compute the
apparent free energy of adsorption (E), which is often used to discriminate between physical
and chemical adsorption [34]. The adsorption energy obtained from the D–R isotherms
for the adsorption of MB on coal was below 8 kJ/mol (7.9 kJ/mol at 299 K, 7.07 kJ/mol
at 289 K, and 4.08 kJ/mol at 273.15 K), suggesting that the uptake of MB onto coal was
physical in its nature.

2.5. Kinetics

Table 4 summarizes the findings of fitting the experimental data to first-order, pseudo-
first-order, second-order, pseudo-second-order, and diffusion models for MB adsorption
onto coal. The linear relationship of kinetic models for the MB adsorption process using
coal were shown in Figure 8.

Table 4. Kinetic parameters for the sorption of MB onto coal.

Model Linear Equation qe exp (mg/g) Parameters

Elovich qt =
ln(a ∗ b)

b + lnt
b

18.7353

a (mg g−1 min−1) 1.34 × 1019

b (gmg−1) 2.58
R2 0.7755

First-order 1
qt

= 1
qe
+ k1

qet

k1 (min−1) 0.1418
qe,calc (mg g−1) 18.8679

R2 0.9592

Pseudo-first-order ln(qe − qt) = lnqe − k1t
k1 (min−1) 0.158

qe,calc (mg g−1) 0.8993
R2 0.9454

Second-order 1
Ce
− 1

C0
= k2t k2 (gmg−1 min−1) 0.3162

R2 0.9796

Pseudo-second-order t
qt

= 1
k2qe2 +

t
qe

k2 (gmg−1 min−1) 0.488
qe,calc (mg g−1) 18.797

R2 1

Intraparticle diffusion qt = ki
√

t + C
ki (mg g−1 min−1/2) 0.1805

C 17.673
R2 0.5065

Liquid film diffusion −ln
(

1− qt
qe

)
= k f dt + C

Kfd 0.158
C 3.037
R2 0.9454

The low value of the correlation coefficient of the Elovich model plot (R2 = 0.7755)
indicates that the experimental data does not fit this model; hence it is not valid for this system.

The calculated qe value of pseudo-first-order kinetic (0.8993 mg/g) deviated from the
experimental qe value (18.7353 mg/g) and R2 = 0.9454 suggests that the pseudo-first-order
kinetic model does not fit well with the experimental results.

Although qe calculated for the first-order kinetic model (18.8679 mg/g) corresponds to
the experimental value, the low value of R2 compared to the pseudo-second-order model
shows that it is not the appropriate model for the adsorption of MB on coal.

Additionally, due to the low value of R2 (0.9796), the adsorption kinetics of MB onto
coal do not obey the second-order kinetic.
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As can be observed, the pseudo-second-order equation suited the data better than the
other equations with R2 = 1. Additionally, the computed qe values from the pseudo-second-
order model are highly consistent with the experimental results. These findings suggest that
the adsorption system under consideration follows a pseudo-second-order kinetic model.
Therefore, these results demonstrate that the adsorption magnitude may be due to the
higher driving force causing fast transfer of MB molecules to the surface of the adsorbent
particles and the availability of the uncovered surface area and the remaining active sites
on the adsorbent [35]. Table 5 presents similar results achieved in other adsorption systems.

Table 5. Comparison of kinetic model for the adsorption of MB onto coal with other published works.

Adsorbent Adsorbate Kinetic Ref.

Chitosan composite MCs/MS RB19 Pseudo-second-order [36]
Carbon of Quercus brantii (oak) ACT Pseudo-second-order [37]

BS−HVL MGC Pseudo-second-order [38]
α-Fe2O3@PHCMs Methyl violet Pseudo-second-order [33]
Modified rice husk Malachite green Pseudo-second-order [39]

Natural coal MB Pseudo-second-order This study
Coal acid mine drainage Fe Pseudo-second-order [40]
Charcoal (tree branches) MB Pseudo-second-order [41]

Coal fly ash (CFA) MG Pseudo-second-order [42]
Porous poly(imide-ether)s MB Pseudo-second-order [43]

Diffusion Models

Due to the fact that surface diffusion, intraparticle diffusion, and adsorption are three
phases in such systems, intraparticle and liquid film diffusion models were also used to
determine the diffusion mechanisms.

It is expected that either liquid film diffusion, intraparticle diffusion, or both can
act as rate-limiting steps [44]. If intraparticle diffusion is the mechanism underlying the
adsorption process, the plot qt against t1/2 will be linear, and if the plot passes through the
origin, the rate-limiting process will be solely due to intraparticle diffusion [45]. Otherwise,
some additional process is involved in addition to intraparticle diffusion [46].

Because the intraparticle diffusion model plot has a low regression coefficient (0.5065)
and the intercept is not equal to zero, it is unlikely that intraparticle diffusion was the
only rate-limiting step; hence, kinetics was regulated by both liquid film and intraparticle
diffusion concurrently.

2.6. MC Calculations

Distinguishing the best adsorption arrangement of the adsorbate molecules (MB) on
the lignite surface is crucial for estimating the varied energy outputs. Calculation of the
adsorption energetics of this technique is achievable by considering the interaction of the
adsorbate molecules with the coal surface. This is performed quantitatively by finding the
adsorption energy using the equation below:

Eadsorption = ELignite/MB −
(
ELignite + EMB

)
(2)

where ELignite/MB is the total energy of the simulated adsorption system, ELignite and EMB
are the total energy of the adsorbent and adsorbate molecules, respectively [47,48].

This method of calculating molecular interactions uses a large number of unsystemati-
cally generated types (molecules, ions) in the simulation box. As seen in Figure 9, the mean
value of average energy flattens as supplementary configurations are tried, showing the
system has attained energy equilibrium (after 3,000,000 steps).
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As seen in Figure 10, the MB molecule forms an adsorption layer on the coal sur-
faces with a rather large negative energy value, indicating that the adsorption process is
spontaneous. The theoretical results corroborate the experimental findings.
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According to the adsorption energy determined from the MC calculations, lignite has
a greater adsorption energy than clay minerals such as kaolinite [49]. Because lignite is a
copious resource, it is an important material for exploration into the adsorptive removal of
MB and other organic pollutants.

2.7. FTIR Spectroscopy

Total Attenuated Reflection (ATR) measurements were taken with an FTIR-8400S
instrument and the following parameters: resolution of 2 cm−1, 100 scans, 500–3500 cm−1.

Figure 11 exhibits the peaks appearing at certain wave numbers of the coal FTIR
spectra before and after the adsorption of MB. It indicates the presence of functional groups
on the coal surface and that the adsorption of MB involves these groups.
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The interaction of MB molecules with the functional groups of the coal was proved by
the appearance and the vanishing or depletion of various peaks [18]. The following peaks:
2816 and 2720 cm−1, stretching vibration of –CH– aromatic and –CH3 methyl, respectively;
1591 to 1363 cm−1, aromatic ring vibrations; and 1170 cm−1, –C=C– vibrations from skeleton
of the aromatic ring structures, arise from lignite and MB groups with distinctive features
(as indicated in Figure 11).

3. Materials and Methods
3.1. Adsorbent and Adsorbate

Natural coal from the “Kosova B” power station was employed as an adsorbent in
this investigation. The coal was ground first, and then dried and sieved via a 0.5 mm
sieve. Without any chemical or physical activation, this material was employed directly for
adsorption studies.

MB (basic blue 9, C.I. 52015; chemical formula: C16H18N3ClS; molecular weight:
319.85 gmol−1) supplied by Merck was employed as an adsorbate. One gram of MB
dye was dissolved in one liter of distilled water to make a stock solution. The varied
concentrations of working solutions were generated by diluting the stock solution with
distilled water. Table 6 summarizes the dye’s properties and molecular structure [50].

Table 6. Physical characteristics and molecular structure of Methylene blue.

Dye Name Methylene Blue

Suggested name Methylene blue
Abbreviation MB

C.I. name Basic blue 9
C.I. number 52015

Class Thiazin
λmax 668 nm
Color Blue
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3.2. Adsorption Experiments

Dye removal experiments were carried out in batch mode to explore the influence
of various factors such as contact time (1–180 min), initial dye concentration (50, 75, 100,
125, and 150 mg/L), temperature (0, 16, and 26 ◦C), and pH (2–10) on removal of MB from
aqueous solution. Batch tests were carried out by stirring 25 mL of known concentration
MB solution with 0.1 g of coal using a magnetic stirrer.

The medium pH was regulated using solutions 0.1 M HCl and 0.1 M NaOH, respec-
tively. After adsorption, the adsorbent and the supernatants were separated by centrifu-
gation at 5000 rpm for 10 min and samples were examined for residual dye concentration
using a UV–Visible Spectrophotometer (type T70+), with a 1 cm quartz cell. The amount of
dye adsorption at equilibrium qe (mg/g) was calculated using Equation (3).

qe =
(Ci − Ce) ∗V

m
, (3)

where Ci is the initial dye concentration (mg/L), Ce is the equilibrium dye concentration
(mg/L), V is the volume of MB solution used (L), and m is the mass of coal used (g).

The MB percent removal was calculated applying Equation (4).

Removal (%) =
(Ci − Ce) ∗ 100

Ci
(4)

Origin 2019 b software was used to create all of the graphs. Regression analyses
were also carried out by calculating R2 in order to examine the adequacy of a particular
mathematical model. The RMSEs were calculated to assess the accuracy of the model
predictions. The sum of the squares of the difference between dye removal experimental
data (qexp) and model predictions (qcal) for each data set was divided by the number of data
points (N), and the square root of this term was calculated as follows [6]:

RMSE =

√
Σ
(
qexp−qcal

)2

N
(5)

By analyzing the sorption process at various temperatures, thermodynamic variables
such as the Gibbs free energy, enthalpy, and entropy were explored (0, 16, and 26 ◦C).
The change in Gibbs free energy is computed using KL from the Langmuir isotherm. The
following variables were calculated using the van’t Hoff equation:

∆G0 = −RT lnKc (6)

lnKc =
∆S0

R
− ∆H0

RT
(7)

Kc = KL ∗ 106 (8)

where kc is the equilibrium constant (dimensionless) [51,52], R is the gas constant (J/Kmol),
and T is the temperature (K).

3.3. Adsorption Isotherms

The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms were uti-
lized in this work to explain the adsorption equilibrium and ascertain the validity of the
experimental findings.

The Langmuir isotherm assumes monolayer adsorption onto a surface with a finite
number of adsorption sites of uniform adsorption strategies and no adsorbate transmigra-
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tion in the plane of the surface [53]. The nonlinear and linear versions of the Langmuir
isotherm equation are as follows:

qe =
qmbCe

1 + KLCe
(9)

Ce

qe
=

1
qmKL

+
Ce

qm
(10)

where qm is the monolayer adsorption capacity of the adsorbent (mg/g) and KL is the
Langmuir adsorption constant (L/mg) which is related to the free energy of adsorption.

A plot of Ce/qe against Ce allows for the calculation of qm and KL from the slope and
intercept of a straight line, respectively. The main properties of the Langmuir isotherm may
be described by a dimensionless constant (the separation factor), RL [54].

It is given by the following equation:

RL =
1

1 + KLC0
(11)

where C0 (mg/L) is the highest initial dye concentration. RL specifies whether the isotherm is
either unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 1), or irreversible (RL = 0) [20].

The Freundlich model is an empirical equation that is based on sorption on heteroge-
neous surfaces or surfaces that support sites with varying affinities. The stronger binding
sites are considered to be initially occupied and the binding strength diminishes with
increasing site occupancy. Equation (12) expresses this empirical model.

lnqe = lnKF +
1
n

lnCe (12)

where KF and n are Freundlich constants with n giving an indication of the favorability
of the adsorption process, and KF (mg/g (L/mg)1/n) is the adsorption capacity of the
adsorbent. KF is the adsorption or distribution coefficient and represents the amount of
dye adsorbed onto the adsorbent at a unit equilibrium concentration [54].

The Temkin isotherm model accounts for the adsorption process’s indirect adsor-
bate/adsorbate interactions. Additionally, the model assumes that as the covering of
the layer increases, the heat of adsorption of all molecules in the layer decreases linearly.
Temkin’s linear form is as follows:

qe =
RT
bT

lnKT +
RT
bT

lnCe (13)

where R is the common gas constant (8.314 J/mol K), T is the absolute temperature (K), bT is
the Temkin constant related to the heat of sorption (J/mol) which indicates the adsorption
potential (intensity) of the adsorbent, and KT (L/g) is the Temkin constant related to
adsorption capacity.

The linear plots of qe versus lnCe enable the determination of bT and KT constants from
the slope and intercept, respectively [55].

The Dubinin–Radushkevich (D–R) model is a more generic model that does not
make any assumptions about a homogeneous surface or constant adsorption potential.
Equation (14) expresses the D–R model [33], which provides information on the sorption
process, whether it be chemisorption or physisorption.

lnqe = lnqm − βε2 (14)
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where qe is the amount of MB adsorbed per unit mass of adsorbent (mg g–1), qm is the
maximum sorption capacity, and β is the activity coefficient related to the mean sorption
energy E (kJ/mol); the latter can be computed using Equation (15) [19].

E =
1

(2β)1/2 (15)

where ε is the Polanyi potential, which is expressed by Equation (16):

ε = RTln
(

1 +
1

Ce

)
(16)

where R is the gas constant (J mol–1 K–1) and T is the temperature (K). Additionally,
b (mol2 J2) and q0 can be obtained from the slope and the intercept of the plot of lnqe
against ξ2, respectively [21].

3.4. Adsorption Kinetics

Adsorption kinetic studies are necessary in the treatment of aqueous effluents because
they give essential information on the mechanism of the adsorption processes [56]. The
adsorption data were analyzed using a variety of available kinetic models. The experimen-
tal data from the contact time experiments were used in this case. The Elovich, first-order,
pseudo-first-order, second-order, and pseudo-second-order kinetics are denoted by their
linear forms:

qt =
ln(a ∗ b)

b
+

lnt
b

(17)

1
qt

=
1
qe

+
k1

qet
(18)

ln(qe − qt) = ln qe − k1t (19)

1
Ce
− 1

C0
= k2t (20)

t
qt

=
1

k2q2
e
+

t
qe

(21)

where a (mg g−1 min−1) gives the rate constant and b (g mg−1) gives the rate of adsorption at
zero coverage in the Elovich model. Additionally, k1 (min−1) is the first-order rate constant,
qe and qt are the amounts of MB adsorbed per gram of adsorbent (mg g−1) at equilibrium
and at time t, respectively, and k2 (mg g−1 min−1) is the second-order rate constant [6].

From the respective plots (Figure 8), the parameters for the kinetic models were
determined and are given in Table 4.

Diffusion Models

Diffusion models are based on a three-step adsorption process: (1) diffusion across
the liquid film surrounding the adsorbent particles (film diffusion); (2) diffusion within
the pores and/or along the pore walls, referred to as internal diffusion or intraparticle
diffusion; and (3) adsorption and desorption between the adsorbate and the active sites,
referred to as mass action [57]. During the transport of adsorbate molecules from the liquid
phase to the solid phase in film diffusion the boundary plays a critical role. The liquid film
diffusion model can be used in the form expressed in Equation (22).

ln(1− F) = −K f dt (22)

where F = qt/qe is the fractional attainment of equilibrium. A linear plot of −ln (1 − F)
against t with a zero intercept would suggest that the kinetics of the sorption process are
controlled by diffusion through the liquid film surrounding the solid sorbent.
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The Weber–Morris model is the most often utilized; see Equation (23). Weber and
Morris discovered that in many circumstances of adsorption, solute uptake is almost
proportional to t1/2 rather than to the contact duration t [58].

qt = Kintt1/2 (23)

where Kint is the intraparticle diffusion rate constant. A plot of qt versus t1/2 should be a
straight line with a slope of Kint when intraparticle diffusion is the rate-limiting step. The
straight line should pass through the origin if intraparticle diffusion is the sole mechanism
for adsorption.

3.5. Molecular Modelling and Monte Carlo (MC) Calculations

The lignite model is based upon the literature (Figure 12). Monte Carlo calculations
were completed (using the well-established Condensed-phase Optimized Molecular Poten-
tials for Atomistic Simulation Studies—COMPASS II forcefield) under Periodic Boundary
Conditions (PBC) using a lignite coal model (cell size of 30.222 Å × 30.222 Å × 30.222 Å)
with a 30 Å vacuum layer encompassing: 1 MB molecule and 800 water molecules. The cal-
culations gave molecular level information regarding the adsorption energy and geometry
of the MB adsorption onto the studied lignite coal model.
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Figure 12. Representation of the parts of 3D and 2D chemical structures used as a starting point to
construct Periodic Boundary Conditions (PBC) model of lignite used in Monte Carlo calculations (via
packing, NPT, NVT, and geometry optimization).

The MC calculations were executed using 10 cycles of simulated annealing with
5,000,000 steps for each process. The temperature of the annealing process was set automat-
ically from 105 to 102 K, for each cycle. Probable adsorption configurations were acquired
as the temperature was gradually decreased.

The conclusions (the negative value of the MB adsorption energy, see Figure 8a) of
the Monte Carlo simulations align well with the results of the experiments. The concept
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that the adsorption process is spontaneous is established by the fact that the adsorption
energies are negative [59].

4. Conclusions

The current work demonstrates that natural coal may be employed as a very inex-
pensive adsorbent for the removal of MB from aqueous solution. It was found that the
Freundlich model is a better fit for the adsorption of MB to natural coal than the other
models considered. As expected, the MB adsorption process followed pseudo-second-order
kinetics and the computed qe values correspond well with the actual values at given MB con-
centrations with high regression coefficients. An Ea value of 32.19 kJmol−1 was determined
showing that relatively modest forces are involved in the sorption process. Additionally,
the mean free energy below 8 kJmol−1, derived from the D–R isotherm, and the ∆H0 value
smaller than 84 kJ/mol demonstrate that the adsorption process is physically regulated.

The negative values of ∆G0 denote the spontaneous nature of adsorption, whereas
the positive values of ∆H0 denote endothermic adsorption. The positive value of ∆S0

indicates that randomness is rising at the solid/liquid interface during MB adsorption
on coal in aqueous solution. The thermodynamic analysis revealed that sorption is an
endothermic, spontaneous, and physical process. MC calculations support the obtained
experimental results.
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