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Abstract: In this contribution, composite materials based on magnesium oxychloride cement (MOC)
with multi-walled carbon nanotubes (MWCNTs) used as an additive were prepared and characterized.
The prepared composites contained 0.5 and 1 wt.% of MWCNTs, and these samples were compared
with the pure MOC Phase 5 reference. The composites were characterized using a broad spectrum
of analytical methods to determine the phase and chemical composition, morphology, and thermal
behavior. In addition, the basic structural parameters, pore size distribution, mechanical strength,
stiffness, and hygrothermal performance of the composites, aged 14 days, were also the subject of
investigation. The MWCNT-doped composites showed high compactness, increased mechanical
resistance, stiffness, and water resistance, which is crucial for their application in the construction
industry and their future use in the design and development of alternative building products.

Keywords: composites; magnesium oxychloride cement; multi-walled carbon nanotube (MWCNT)

1. Introduction

The interest in alternative construction materials has been growing continuously in
recent decades. Environmentally sustainable composites are being studied more and more
and used in practice to reduce the man-made emissions from the industry processes and
thus the gradual deterioration of the environment. Large amounts of greenhouse gases
(GHG), mainly carbon dioxide, are released during the production of Portland cement
(PC) and PC-based composite materials [1]. The search for an alternative for PC has been
previously described in the literature, showing the great potential of reactive magnesia-
based cement [2–4]. Lately, the interest in reactive magnesia-based cement is mainly
focused on magnesium oxychloride cement (MOC).

Magnesium oxychloride cement, also known as Sorel cement, is a term describing ce-
mentitious material formed in the MgO-MgCl2-H2O system [5]. Depending on the reaction
temperature and the molar ratio of magnesium oxide and magnesium chloride used as raw
materials, four phases are formed in the synthesis. Phase 3 (3Mg(OH)2·MgCl2·8H2O) and
Phase 5 (5Mg(OH)2·MgCl2·8H2O) are formed at ambient temperature [6–8], whereas Phase
2 (2Mg(OH)2·MgCl2·4H2O) and Phase 9 (9Mg(OH)2·MgCl2·4H2O) are formed at tempera-
tures above ~100 ◦C [9–11]. Previous studies have shown the unique properties of MOC,
such as its fire resistance and its resistance to abrasion, as well as its outstanding mechanical
properties [12–14]. In comparison to PC, the setting time of MOC is fractional, making it
usable as a material that is suitable for quick repairs [15]. The main disadvantage of MOC
is its poor water resistance. After interacting with water, MOC structure is destroyed and
the high mechanical strength is lost [16]. This problem can be resolved by using various
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additives, which improve the water resistance. The use of soluble phosphates [17], organic
acids [18], sewage sludge ash [19], or fly ash [20] for this purpose has been previously
described in the literature [21–23].

The main aspect making MOC environmentally sustainable is its so-called CO2-
neutrality. When calcining magnesite, which is the main procedure in the production of
raw materials for MOC, the temperature is much lower than the calcination temperature
of calcite being used in the production process of PC [24–26]. In addition, as previously
described in the literature [27], MOC can absorb the atmospheric CO2. MOC can be used
as a matrix in composite materials with many different fillers, such as silica sand, fly ash,
porcelain waste, and others [28,29]. Moreover, additives improving the specific properties
of MOC can be used, where those improving the water resistance are mentioned above.
Another approach is based on using nanoadditives, namely carbon-based nanoadditives,
which improve the mechanical properties of MOC, as has been recently pointed out in the
literature [30].

Carbon-based nanomaterials have outstanding mechanical, chemical, and physical
properties, which make them applicable as additives in construction materials. Graphene
and its derivatives represent the group of 2D carbon nanomaterials that have been previ-
ously studied as additives used to improve the mechanical properties of the matrix [31–34].
Single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) are representatives
of 1D carbon nanomaterials. They are tubular carbon macromolecules containing carbon
in the sp2 hybridization. SWCNTs consist of a single sheet of graphite being formed into
a seamless tubular shape, while MWCNTs consist of many of these nanotubes constitut-
ing concentric circular shapes, similar to the annual rings in a tree trunk [35,36]. CNTs
exhibit outstanding mechanical, chemical, thermal, and electrical properties [37]. This
nanoadditive has been previously used in composite materials to improve their mechanical
and electrical properties [38,39]. One of the most useful traits of CNTs is their ability to
improve the compressive strength of the composite material. Another quality, which can be
improved by the use of CNTs, is the water resistance. This attribute can be quite important
when designing novel construction materials [40–44]. The problem of MOC’s poor water
resistance was mentioned above, and a solution of it could be possibly hidden in the use of
small amounts of CNTs.

In this study, a composite material based on MOC with MWCNTs was synthesized
and characterized. Two different amounts of CNTs were applied to optimize the most
suitable composition of the binder. The synthesized composites were compared to the con-
ventional MOC to evaluate the beneficial effect of the CNTs. The prepared specimens were
analyzed in terms of their phase and chemical composition, morphology, thermal behavior,
and mechanical properties to help describe their behavior in various environments and
applications. This research indicates a possible solution of the poor water resistance of
MOC-based materials in general.

2. Experimental Section
2.1. Materials and Synthetic Procedures

The following chemicals were used for the synthesis: MgCl2·6H2O (>99%, Penta s.r.o.,
Prague, Czech Republic) and MgO (>80%, Styromagnesit Steirische Magnesitindustrie
Ltd., Oberdorf, Austria). The caustic magnesia powder contained 80.4 wt.% of MgO,
4.3 wt.% of SiO2, 5.0 wt.% of CaO, 5.8 wt.% of Al2O3, 3.9 wt.% of Fe2O3, and less than
1 wt.% of sulfates. Its BET surface area was 26.07 m2·g−1, and the particle size distribution
parameters were d50 = 41.71 µm and d90 = 65.87 µm. MWCNTs (TNIM8) were purchased
from TimesNano (Chengdu, China) with declared purity > 95%. These MWCNTs were
analyzed in detail before their use in composites. The morphology was analyzed using
SEM. The micrographs (see Figure 1a) show the typical tubular structure of MWCNTs. The
chemical composition was determined by the EDS method. The elemental maps obtained
by EDS, as well as the graph showing the quantities of the present elements, are shown in
Figure 1b,c. Both the maps and the quantitative analysis showed high purity of MWCNTs,
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with more than 98.7 wt.% content of carbon and only less than 1 wt.% of aluminum and
~0.3 wt.% of nickel. Detailed morphology was studied by TEM. The micrographs (see
Figure 1d) show the tubes with width in the order of tens of nanometers and lengths
up to 20 µm. The phase composition was determined using X-ray diffraction, showing
the specific reflection of MWCNTs at 2θ = 26.1◦ (see Figure 1e). The thermal behavior of
MWCNTs was studied using simultaneous thermal analysis (STA) (Figure 1f). The sample
was heated to 900 ◦C in dynamic air atmosphere. During this process, an exothermic effect
occurred at temperatures between 410 ◦C and 740 ◦C, which is connected to the oxidation
of the carbon nanotubes. This effect was also accompanied with a significant weight loss,
which is clearly visible from the TG curve.

Figure 1. Analysis of multi-walled carbon nanotubes (MWCNTs): (a) SEM micrographs; (b) elemental
maps of MWCNTs obtained by EDS; (c) quantity of the elements from EDS; (d) TEM micrographs;
(e) diffraction pattern of MWCNTs; and (f) thermal behavior obtained by simultaneous thermal
analysis (STA).

The mix proportions of the chemicals used for the synthesis of composites are given
in Table 1. The magnesium chloride solution was prepared by dissolving MgCl2·6H2O in
the tap water. MWCNTs were then sonicated in the part of the prepared MgCl2 solution
for 15 min, and the obtained suspensions were used for mixing with MgO powder. The
samples were casted into molds with dimensions of 40 mm × 40 mm × 160 mm, and
the samples were demolded after 24 h. The composites were then cured for the next 13
days at laboratory temperatures; T = (23 ± 2) ◦C in air atmosphere, RH = (50 ± 5)%. The
resulting samples were termed MOC-CNT-R (reference sample), MOC-CNT-0.5 (0.5 wt.% of
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MWCNT), and MOC-CNT-1 (1 wt.% of MWCNT). Let us note that the amount of MWCNT
was calculated in relation to the sum of solid raw materials (MgO and MgCl2·6 H2O).

Table 1. Mix proportions of composites (g).

Mixture
Mass (g)

MgO MgCl2·6H2O Water MWCNT

MOC-CNT-R 1318.6 584.1 388.3 0
MOC-CNT-0.5 1318.6 584.1 388.3 9.5
MOC-CNT-1 1318.6 584.1 388.3 19.0

2.2. Analytical Techniques

To determine the phase composition, X-Ray powder diffraction (XRD) was carried out.
Bruker D2 Phaser (Bruker, Karlsruhe, Germany), the powder diffractometer with Bragg
Brentano geometry, applying CuKα radiation (λ = 0.15418 nm, U = 30 kV, I = 10 mA) and a
rotation (5 r/min), was used. The used angular range was set to 5–80◦, and the step size
was set to 0.02025◦ (2θ). The measured data evaluation, as well as the semi-quantitative
analysis, was performed using the X’Pert Highscore Plus software (v. 3.0.5).

The study of the surface morphology was performed using scanning electron mi-
croscopy (SEM) with the Tescan MAIA 3 apparatus (Brno, Czech Republic). The elemental
composition and elemental maps were obtained by means of an energy dispersive spec-
troscopy (EDS) analyzer (X-Max150) with a 20 mm2 SDD detector (Oxford instruments)
and AZtecEnergy software 3.0. To manipulate the sample, and in order to ensure the
conductivity, carbon conductive tape was used. The setting for both experiments (SEM
and EDS) was the same—the electron beam was set to 10 kV. The EDS was performed from
the fracture surface. All samples were sputtered by 10 nm of gold in order to increase the
surface conductivity (to avoid charging).

The thermal behavior of the samples was analyzed using simultaneous thermal analy-
sis (STA) with the Setsys Evolution apparatus from Setaram (Geneva, Switzerland) with
the temperature ramp up to 900 ◦C at a heating rate of 10 K·min−1. The measurements
were performed in a dynamic helium atmosphere with a flow rate of 50 mL·min−1. In
order to analyze the gases being evolved during the heating process, the mass spectrometer
OmniStarTM from Pffeifer Vacuum (Aßlar, Germany) was used.

The 14-day laboratory cured composites were examined. Experiments, including
assessment of the structural, mechanical, thermal, and hygric properties, were performed.
In these tests, at least five samples of each composite were tested. The presented values
represent the mean values taken from the data obtained for the particular samples.

Among the structural parameters of the hardened composites, bulk density, specific
density, and total open porosity were investigated. The bulk density was obtained from the
measurement of the dry sample mass and its volume, as prescribed in the EN 1015-10 [45].
The specific density was measured using a helium automatic pycnometer Pycnomatic
ATC (Thermoscientific, Milan, Italy), equipped with the automatic temperature control.
Based on the knowledge of the bulk density and specific density, the total open porosity
of researched materials was determined [46,47]. The combined expanded uncertainty of
the fundamental structural parameter assessment was 1.4%, 1.2%, and 2.0% for the bulk
density, specific density, and total open porosity tests, respectively. Helium pycnometers
Pascal 140 and Pascal 440 (Thermo Fisher Scientific, Waltham, MA, USA) were applied
in the pore size distribution analysis. The fragments of originally casted samples, with a
typical mass of ~2 g, were measured. To avoid inhomogeneity of samples in contact with
the iron mold surface, the inner part of the original prisms was fragmented.

Flexural strength, compressive strength, and the dynamic Young’s modulus were
the tested mechanical parameters. The standard EN 1015 -11 [48] was followed in the
strength tests. The 40 mm × 40 mm × 160 mm prisms were used in flexural strength
testing. The halves of broken prisms were then subjected to the compression load. The
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loaded cross-sections were 40 mm × 40 mm. The expanded combined uncertainty of
the realized strength tests was 1.4%. The dynamic Young’s modulus was tested using a
non-destructive ultrasonic pulse velocity test on Vikasonic apparatus (Schleibinger Geräte,
Buchbach, Germany). The Young’s modulus was determined with the expanded combined
uncertainty of 2.3%.

Since MOC-based materials have been reported to be vulnerable to water-induced
damage [49,50], the effect of the CNT incorporation into the MOC matrix on water im-
bibition and transport was investigated. The tested hygric parameters were 24-h water
absorption and water absorption coefficient. In the water absorption measurement, the
EN 13755 [51] was followed. The uncertainty of this test was 1.2%. Based on the free
water intake experiment, organized according to the standard EN 1015-18 [52], the water
absorption coefficient was calculated using a one-tangent method. The uncertainty in the
water absorption coefficient assessment was 1.2%.

Identification of thermo-physical parameters of the examined composites was per-
formed on a transient place source technique using Hot Disk TPS 1500 (Hot Disk AB,
Göteborg, Sweden). Before the measurement itself, the probed samples were dried in
a vacuum drier at 60 ◦C. The hot disk testing was conducted at controlled laboratory
temperature T = (23 ± 2) ◦C. As declared by the Hot Disk producer, the accuracy of the
measurement was better than 5% and the reproducibility was better than 1%.

3. Results and Discussion

Composites composed of MOC and MWCNT were prepared and characterized in
detail. The samples MOC-CNT-R, MOC-CNT-0.5, and MOC-CNT-1 are shown in Figure 2.

Figure 2. Photograph of the prepared composites MOC-CNT-R (left), MOC-CNT-0.5 (middle), and
MOC-CNT-1 (right).
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First, the phase composition of all the samples was studied by XRD. The diffraction
patterns of all samples show the presence of the MOC phase 5 (ICDD 04-014-8836) and
MgO (ICDD 04-014-0288). The presence of unreacted magnesium oxide is not problematic,
since the residual oxide acts as a filler in this composite material. The MWCNTs were not
visible in the diffraction pattern due to their small amount in the sample, in comparison
to the other phases. The diffraction patterns of all samples can be seen in Figure 3. These
results are in good agreement with the theoretical calculation based on mass balance, where
68% of MgO should react and the remaining 32% should remain unreacted in the form of a
filler. The semi-quantitative analysis showed 31 wt.% content of MgO for MOC-CNT-R,
23 wt. % content of MgO for MOC-CNT-0.5, and 28 wt.% content of MgO for MOC-CNT-1.

Figure 3. Diffraction patterns of the samples MOC-CNT-R, MOC-CNT-0.5, and MOC-CNT-1.

The microstructure of the samples was analyzed using SEM. All samples showed the
presence of needle-shaped crystals, which are typical for MOC. The typical dimensions of
the crystals were 1–3 µm in length and ~0.5 µm in thickness. The SEM micrographs of the
composites are displayed in Figure 4.

The chemical composition of the samples was determined using EDS, confirming the
expected composition. Apart from magnesium, oxygen, chlorine, and carbon, traces of iron,
silicon, and calcium were also detected. These impurities originated from MgO powder.
While magnesium, oxygen, and chlorine were homogeneously distributed on the respective
maps, carbon maps revealed carbon-rich areas, suggesting insufficient homogenization of
the mixture before casting or, alternatively, a high tendency of MWCNTs to agglomeration.
Some carbon was also detected in the reference sample. This might be due to the forma-
tion of chlorartinite on the sample surface, which has been previously described in the
literature [27]. The elemental maps are shown in the supporting information (Figure S1).

The thermal behavior of the samples was analyzed using STA (Figure 5). The samples
were heated from ambient temperature to 900 ◦C, and their decomposition was observed.
Two main effects were identified during the heating—the oxidation of MWCNTs (between
450 ◦C and 600 ◦C) and the gradual decomposition of MOC phase 5 throughout the
heating process, whose individual steps have been already described in the literature [22].
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This process mainly consists of a release of crystalline water at lower temperatures and
hydrochloric acid at higher temperatures. These endothermal effects are clearly visible on
the DTA curve, along with the corresponding weight decrease seen on the TG curve. After
the heating, the resulting solid phase after the decomposition is pure magnesium oxide.

Figure 4. SEM micrographs of the samples MOC-CNT- R, MOC-CNT-0.5, and MOC-CNT-1.

Figure 5. STA of (a) MOC-CNT-R, (b) MOC-CNT-0.5, and (c) MOC-CNT-1.
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The effect of the CNT admixture is apparent from Table 2, where the structural and
mechanical parameters of the investigated composites are summarized. The bulk density,
specific density, and total open porosity were reduced by the incorporation of CNT into the
composite mixture. The most notable drop in porosity was obtained for the MOC-CNT-0.5
composite, whose porosity was decreased by approximately 19% compared to the reference
material MOC-R. The total open porosity of MOC-R-1 was slightly higher than that of
MOC-CNT-0.5, which was affected by the formation of CNT agglomerates during the
material mixing and setting [53]. On the other hand, the porosity of MOC-CNT-1 was still
about 5% lower in comparison with the control material. The effect of CNT doping on the
basic structural parameters is visualized in the supporting information (Figure S2).

Table 2. Basic structural and mechanical properties of the tested composites.

Material MOC-R MOC-CNT-0.5 MOC-CNT-1

Bulk density ρb (kg.m−3) 1913 ± 27 1907 ± 27 1885 ± 26
Specific density ρs (kg·m−3) 1975 ± 24 1957 ± 24 1943 ± 23

Total open porosity Ψ (%) 3.14 ± 0.06 2.55 ± 0.05 2.99 ± 0.06
Flexural strength ff (MPa) 14.1 ± 0.2 15.7 ± 0.2 16.5 ± 0.2

Compressive strength fc (MPa) 71.4 ± 1.0 77.5 ± 1.1 80.2 ± 1.1
Young’s modulus Ed (GPa) 24.7 ± 0.6 25.8 ± 0.6 26.1 ± 0.6

All examined materials exhibited high mechanical resistance, which was in agree-
ment with the previously reported results of the mechanical testing of MOC-based prod-
ucts. [20,54,55] The excellent mechanical properties of CNT [56,57] are manifested by the
improved mechanical resistance and stiffness of CNT-doped composites. In comparison
to the reference material, the flexural strength increased by about 11% for MOC-CNT-0.5
and by ~17% for the MOC-CNT-1 composite. The increase in the compressive strength was
approximately 6% and 12% for MOC-CNT-0.5 and MOC-CNT-1, respectively. The stiffness
of CNT-enriched materials was also higher than that of the MOC-R reference material. The
improvement in mechanical resistance depended, among other effects, on the material
porosity. However, in the evaluated mechanical resistance of MOC-CNT materials, the
high strength of CNT prevailed over the porosity effect.

Not only the total open porosity, but also the average pore diameter, was decreased by
the use of CNT, which documented the refinement of porous space of the CNT-doped com-
posites. The average pore diameters were the following: 0.0076 µm (MOC-R), 0.0060 µm
(MOC-CNT-0.5), and 0.0071 µm (MOC-CNT-1). Accordingly, the respective median pore
diameters were 0.0078 (MOC-R), 0.0056 MOC-CNT-0.5), and 0.0070 µm (MOC-CNT-1). The
incremental and cumulative curves of pore size distribution are graphed in Figures 6 and 7.

The hygrothermal function of the developed composites is apparent in Table 3. The
hydrophobic performance of CNT [58] in the contact with water molecules significantly
decreased, as documented on both observed hygric parameters. This result is very promis-
ing because of high susceptibility of MOC materials to moisture damage. As the water
ingress was strongly reduced by the use of CNT in composite mixtures, the better durability
of the final materials can be expected. The difference in the thermal conductivity of the
studied materials was small, but the effect of highly conducting CNT was very visible.
Typically, the higher dosage of CNT increased the thermal conductivity of MOC-CNT-0.5
and MOC-CNT-1 materials as a result of the enormous thermal conductivity of CNT [59].
Accordingly, the volumetric heat capacity of MOC-CNT-1 composites was the highest.
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Figure 6. Incremental pore volume distribution of the investigated composites.

Figure 7. Cumulative pore volume of the investigated composites.

Table 3. Hygric and thermal parameters of the tested composites.

Parameter MOC-R MOC-CNT-0.5 MOC-CNT-1

24-h water absorption (%) 1.19 ± 0.01 1.06 ± 0.01 1.05 ± 0.01
Water absorption coefficient

(kg·m−2·s−1/2) 0.0016 0.0010 0.0008

Thermal conductivity (W·m−1·K−1) 1.519 1.531 1.618
Thermal diffusivity × 10−5 (m2·s−1) 0.772 0.811 0.802

Volumetric heat capacity × 105

(J·m−3·K−1)
1.967 1.888 2.010
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4. Conclusions

In this contribution, the impact of multi-walled carbon nanotubes on a magnesium
oxychloride-based binder was studied. Samples of MWCNT-doped MOC composite were
prepared in various weight ratios and characterized in terms of their phase and chemical
composition, morphology, thermal behavior, and mechanical properties. We decided to use
MWCNTs due to their higher tensile strength and larger diameter compared to SWCNTs.
We believe that MWCNTs are more suitable for interaction/cross-linking with MOC. The
data gained from the conducted analyses and tests enabled us to point out the following
most substantial findings:

(i). Stable and durable MOC phase 5, formed properly and with no crystalline impurities,
were present in the sample (except for the parent MgO acting as a filler);

(ii). The structure of the developed composites was highly compacted without any visible
defects;

(iii). The thermal behavior of the hardened materials was presumably comparable to the
behavior of MOC phase 5 alone, with the exception of MWCNT oxidation, which was
observed in the temperature region between 450–600 ◦C;

(iv). The MWCNT-doped composites exhibited increased mechanical resistance and stiff-
ness, which was due to the lower porosity, average particles size, and excellent
mechanical parameters of MWCNT;

(v). The incorporation of MWCNTs resulted in greatly reduced water ingress. which is
positive for material durability in the presence of moisture;

(vi). The heat transport and storage were moderately increased by the incorporation of
MWCNTs into the composites.

Based on the obtained results, it can be concluded that the developed composites
enriched with MWCNTs possess interesting functional and technical properties, which
give them a potential for a wide variety of applications in the construction industry and, in
some specific cases, enable us to substitute Portland cement-based products.

The high mechanical resistance of the researched composites represents a good prereq-
uisite for their use in combination with a high volume of inorganic fillers, such as diatomite,
foam glass granules, perlite, expanded clay granulate, etc. This will aim to achieve high
quality and high-performance materials for specific use.

In consideration of the improved mechanical resistance and greatly dropped water ab-
sorption, the economic viability of the use of MWCNTs in the doping of the MOC matrix can
be considered as very promising. The incorporation of 0.5 wt.% and 1 wt.% of MWCNTs in
composite composition enhanced the compressive strength of approximately 11% and 17%,
whereas the price increase of the produced materials was approximately 0.05 USD/dm3

and 0.10 USD/dm3, respectively. Moreover, for the MWCNT-doped materials, the reduced
water softening can be anticipated.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-1
944/14/3/484/s1, Figure S1: Elemental maps of the samples MOC-CNT-R, MOC-CNT-0.5 and
MOC-CNT-1, Figure S2: Reduction of the macrostructural parameters (Total open porosity in red,
bulk density in gold and specific density in blue) of MOC-CNT-0.5 and MOC-CNT-1 composites due
to the CNT admixture.
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27. Jankovský, O.; Lojka, M.; Lauermannová, A.-M.; Antončík, F.; Pavlíková, M.; Pavlík, Z.; Sedmidubský, D. Carbon dioxide uptake

by MOC-based materials. Appl. Sci. 2020, 10, 2254. [CrossRef]

http://doi.org/10.1016/j.jclepro.2008.04.007
http://doi.org/10.1016/j.jclepro.2016.07.071
http://doi.org/10.1680/warm.2009.162.4.185
http://doi.org/10.1111/j.1151-2916.1984.tb18844.x
http://doi.org/10.1111/j.1151-2916.1980.tb10752.x
http://doi.org/10.1006/jssc.1995.1085
http://doi.org/10.1111/j.1151-2916.1977.tb14093.x
http://doi.org/10.1021/ic1004566
http://doi.org/10.1002/zaac.201100497
http://doi.org/10.1021/acs.jced.6b00928
http://doi.org/10.1007/BF02588845
http://doi.org/10.1016/j.conbuildmat.2015.10.205
http://doi.org/10.1016/0008-8846(75)90062-9
http://doi.org/10.1016/j.cemconcomp.2018.12.028
http://doi.org/10.1016/S0008-8846(03)00043-7
http://doi.org/10.1016/j.conbuildmat.2020.118428
http://doi.org/10.1016/j.conbuildmat.2017.04.187
http://doi.org/10.1002/suco.201900329
http://doi.org/10.1016/j.buildenv.2020.107242
http://doi.org/10.3390/app10051683
http://doi.org/10.3390/ma13030767
http://www.ncbi.nlm.nih.gov/pubmed/32046098
http://doi.org/10.1111/j.1151-2916.1951.tb11644.x
http://doi.org/10.1111/j.1151-2916.1955.tb14939.x
http://doi.org/10.1111/j.1151-2916.1955.tb14946.x
http://doi.org/10.3390/app10072254


Materials 2021, 14, 484 12 of 13

28. Pivák, A.; Pavlíková, M.; Záleská, M.; Lojka, M.; Jankovský, O.; Pavlík, Z.J.M. Magnesium oxychloride cement composites with
silica filler and coal fly ash admixture. Materials 2020, 13, 2537. [CrossRef]

29. Pivák, A.; Pavlíková, M.; Záleská, M.; Lojka, M.; Lauermannová, A.-M.; Jankovský, O.; Pavlík, Z.J.P. Low-carbon composite based
on MOC, silica sand and ground porcelain insulator waste. Processes 2020, 8, 829. [CrossRef]
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of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 2018, 180, 1–11. [CrossRef]
48. EN 1015-11. Methods of Test for Mortar for Masonry—Part 10: Determination of Flexural and Compressive Strength 678 of Hardened

Mortar; European Committee for Standardization: Brussels, Belgium, 1999.
49. Wei, L.; Wang, Y.; Yu, J.; Xiao, J.; Xu, S. Feasibility study of strain hardening magnesium oxychloride cement-based composites.

Constr. Build. Mater. 2018, 165, 750–760. [CrossRef]
50. Wang, L. Study on the water resistance and mechanism of improving for magnesium oxychloride cement with phosphate and

polymer. J. Funct. Mater. 2015, 46, 13066–13069.
51. EN 13755. Natural Stone Test Methods: Determination of Water Absorption at Atmospheric Pressure; British Standards Institution:

London, UK, 2008.
52. EN 1015–18. Methods of Test for Mortar for Masonry. Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of

Hardened Mortar; European Committee for Standardization: Brussels, Belgium, 2002.
53. Adhikary, S.K.; Rudžionis, Ž.; Rajapriya, R. The effect of carbon nanotubes on the flowability, mechanical, microstructural and

durability properties of cementitious composite: An overview. Sustainability 2020, 12, 8362. [CrossRef]
54. Jianli, M.; Youcai, Z.; Jinmei, W.; Li, W. Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge.

Constr. Build. Mater. 2010, 24, 79–83. [CrossRef]
55. Hall, D.A.; Stevens, R.; El-Jazairi, B.J.C. The effect of retarders on the microstructure and mechanical properties of magnesia–

phosphate cement mortar. Cem. Concr. Res. 2001, 31, 455–465. [CrossRef]
56. Manzur, T.; Yazdani, N.; Emon, M.A.B. Effect of carbon nanotube size on compressive strengths of nanotube reinforced

cementitious composites. J. Mater. 2014, 2014, 1–8. [CrossRef]
57. Zu, M.; Lu, W.; Li, Q.-W.; Zhu, Y.; Wang, G.; Chou, T.-W. Characterization of carbon nanotube fiber compressive properties using

tensile recoil measurement. ACS Nano 2012, 6, 4288–4297. [CrossRef] [PubMed]

http://doi.org/10.3390/ma13112537
http://doi.org/10.3390/pr8070829
http://doi.org/10.1016/j.apmt.2020.100766
http://doi.org/10.1016/j.conbuildmat.2014.09.040
http://doi.org/10.1016/j.cemconres.2016.02.005
http://doi.org/10.1080/14488353.2017.1372849
http://doi.org/10.4236/jmmce.2005.41004
http://doi.org/10.2202/1542-6580.1279
http://doi.org/10.1186/2193-8865-3-20
http://doi.org/10.1016/j.jeurceramsoc.2018.04.068
http://doi.org/10.1016/j.apmt.2018.08.002
http://doi.org/10.1080/19373260.2011.615474
http://doi.org/10.1155/2015/340808
http://doi.org/10.1016/j.compstruct.2019.111244
http://doi.org/10.1016/j.proeng.2013.04.053
http://doi.org/10.1016/j.wasman.2018.09.004
http://doi.org/10.1016/j.conbuildmat.2018.05.250
http://doi.org/10.1016/j.conbuildmat.2018.01.041
http://doi.org/10.3390/su12208362
http://doi.org/10.1016/j.conbuildmat.2009.08.011
http://doi.org/10.1016/S0008-8846(00)00501-9
http://doi.org/10.1155/2014/960984
http://doi.org/10.1021/nn300857d
http://www.ncbi.nlm.nih.gov/pubmed/22494330


Materials 2021, 14, 484 13 of 13

58. Esmaeilzadeh, H.; Su, J.; Charmchi, M.; Sun, H. Effect of hydrophobicity on the water flow in carbon nanotube—A molecular
dynamics study. Theor. Appl. Mech. Lett. 2018, 8, 284–290. [CrossRef]

59. Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011,
36, 914–944. [CrossRef]

http://doi.org/10.1016/j.taml.2018.04.007
http://doi.org/10.1016/j.progpolymsci.2010.11.004

	Introduction 
	Experimental Section 
	Materials and Synthetic Procedures 
	Analytical Techniques 

	Results and Discussion 
	Conclusions 
	References

