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Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible
for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the
myelinating cells in the central nervous system (CNS). OLGs play an important role in the
context of lesions in which myelin loss occurs. Even though many protocols for isolating
OPCs have been published, their cellular yield remains a limit for clinical application. The
protocol proposed here is novel and has practical value; in fact, OPCs can be generated
from a source of autologous cells without gene manipulation. Our method represents
a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from
bone marrow-derived cells using growth-factor defined media. With this protocol, it is
possible to obtain mature OLGs in 7–8 weeks. Within 2–3 weeks from bone marrow
(BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+

neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed
around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are
finally obtained around 7–8 weeks. Further, bone marrow-derived OPCs exhibited
therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing
the tremor. Here, we propose a method by which OLGs can be generated starting
from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This
protocol significantly decreases the timing and costs of the OLGs differentiation within
2 months of culture.

Keywords: oligodendrocyte progenitor cells, oligodendrocytes, neurospheres, bone marrow, autologous cells

INTRODUCTION

Oligodendrocyte progenitor cells (OPCs) are present in both the white and gray matter of the
adult central nervous system (CNS); upon oligodendrocytes (OLGs) injury, OPCs contribute
to OLGs regeneration and remyelination (Duncan et al., 2018). OPCs are characterized by
expression of platelet-derived growth factor receptor alpha (PDGFRα), neural/glial antigen 2
(NG2), and A2B5 (Dietrich et al., 2002; Zhu et al., 2008; Sim et al., 2011); they represent
a high proliferative cell population resident in the CNS of adult mammals and humans
(Mekhail et al., 2012; Clemente et al., 2013). OLGs derived from OPCs and are the myelinating
cells of the CNS. Once OPCs differentiate into mature OLGs, they extend multiple processes
that individually ensheath axons and then proceed to generate the concentric layers of the
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modified cell membrane that compose myelin (Goldman and
Kuypers, 2015). Thanks to their remyelinating ability, several
groups used OPCs transplantation as a therapeutic strategy
for CNS diseases (Kim et al., 2012; Najm et al., 2013; Yang
et al., 2013). Indeed, OPCs can be used as a safe treatment
for spinal cord injury (Nori et al., 2018), stroke (Wang et al.,
2018), Parkinson’s disease (Ahmed et al., 2013), and cerebral
palsy (Rumajogee et al., 2018).

The transplantation of exogenous OPCs can represent a
suitable treatment for chronic demyelinating disorders (Czepiel
et al., 2015). The most common methods for obtaining functional
OPCs, use mouse embryonic stem cell (ESCs) or pluripotent stem
cells (Li et al., 2013; Wang et al., 2013; Kuai et al., 2015; Manley
et al., 2017), or reprogrammed fibroblasts expressing a defined set
of transcription factors (TFs) (Najm et al., 2013; Yang et al., 2013;
Yamashita et al., 2017). Even if, OPCs transplantation has shown
promising result in rodents (Goldman and Kuypers, 2015), its
application remains far from the clinic. Several barriers should be
overcome such as, whether OPCs can successfully migrate to the
lesion (Foster et al., 1995), or their reprogramming can induce
aberrant phenotype with consequent side-effects, as reported in
some study in which next-generation sequencing was used (Liu
et al., 2019). Other well-reported approaches used SVZ, from
rodent CNS, as a source for isolating functional OPCs (Dincman
et al., 2012; Zhu et al., 2014; Lu et al., 2015); however, due to
the low cellular yield these methods have not guaranteed any
feasibility for clinical application (Yang et al., 2010). Recently, it
has been demonstrated that OPCs can be generated from bone
marrow (BM) (Cristofanilli et al., 2011). These bone marrow-
derived OPCs, induced with specific growth factor media, have
shown similar morphology and cellular markers to canonical
OPCs (Nazm Bojnordi et al., 2015).

We describe here a detailed protocol for generating OPCs
and mature OLGs from autologous mouse bone marrow-derived
neural stem cells (NSCs). Our method consists of two main
steps. The first step provides the differentiation and generation
of neurospheres from bone marrow-derived NSCs; the second
one consists of neurospheres-derived OPCs differentiation within
1 week, using specific media. Respect to a previous report
(Douvaras and Fossati, 2015), our protocol enables to produce
autologous OLGs in 52 days.

Obtaining a high number of autologous OLGs is relevant to
the clinic. For addressing this aspect, we tested the myelination
ability of our bone marrow-derived OPCs, in a genetic model
of congenital dysmyelination, shiverer (Shi) mice. Bone marrow-
derived OPCs induced remyelination and significantly reduced
tremor in treated mice. According to our data, this protocol is
suitable for producing in large scale autologous OPCs, research
aimed at understanding oligodendrocyte biology, and finally, it
may represent a screening platform for myelinating compounds.

MATERIALS AND METHODS

Animals
C57BL/6 (The Fourth Military Medical University), SJL, and
C3H mouse strains (The Jackson laboratory) are all appropriate

for this protocol. Mice were kept in clean cages with a
maximum of 5 mice per cage, in a controlled environment with
12/12 h of light/dark cycles and food ad libitum throughout
the experimental procedures. All experimental procedures and
protocols are approved by the Animal Management and
Committee of Shaanxi Normal University. At the same time, by
the approved institutional guidelines and regulations.

BM-NSCs were given by injection of single cells
suspension (2 × 105 cells in 20 µl PBS/each mouse) by
intracerebroventricular (i.c.v.) injection, into 1 week-old Shi
mice. PBS-treated age-sex- and strain-matched mice were used
as controls. All groups of animals were observed for 35 days.

Preparation of Neural Stem Cell
Proliferation Media (NSC-PM)
A total of 200 ml of NSC-PM media is prepared mixing 150 ml
of DMEM/F12 with 4 ml of B27, 2 ml of Penicillin-streptomycin
(50 U/ml), 2 ml of Non-essential amino acid solution (0.1 mM),
2 ml HEPES (10 mM), 2 ml of sodium pyruvate (1 mM; all
purchased from Thermo Fisher Scientific), 40 µl of epidermal
growth factor (EGF, 20 ng/ml, stock concentration: 100 µg/ml;
PeproTech), and 40 µl of basic fibroblast growth factor (bFGF, 10
ng/ml, stock concentration: 50 µg/ml; PeproTech). DMEM/F12
is added to a final volume of 200 ml, filter with a bottle-top
filter (0.22 µm) and store at 4◦C. We suggest to use complete
media within 2 weeks.

Preparation of OPC Proliferation Media
(OPC-PM)
A total of 50 ml of OPC-PM is prepared mixing 30 ml of
DMEM/F12 with 1 ml of B27, 0.5 ml of N2, 0.5 ml of GlutaMax
(2 mM), 0.5 ml of Penicillin-streptomycin (50 U/ml), 0.5 ml of
Non-essential amino acid solution (0.1 mM), 0.5 ml of sodium
pyruvate (1 mM; all purchased from Thermo Fisher Scientific),
10 µl of platelet-derived growth factor-AA (PDGF-AA, 20 ng/ml,
stock concentration: 100 µg/ml; PeproTech), and 20 µl of
bFGF (20 ng/ml, stock concentration: 50 µg/ml; PeproTech).
DMEM/F12 is added to a final volume of 50 ml, filter with a
bottle-top filter (0.22 µm) and store at 4◦C. We suggest to use
complete media within 2 weeks.

Preparation of Early OLGs Differentiation
Media (EOLG-DM)
A total of 25 ml of EOLG-DM is prepared mixing 15 ml of
DMEM/F12 with 0.5 ml of B27, 0.25 ml of N2, 0.25 ml of
GlutaMax (2 mM), 0.25 ml of Penicillin-streptomycin (50 U/ml),
0.25 ml of Non-essential amino acid solution (0.1 mM), 0.25 ml
of sodium pyruvate (1 mM; all purchased from Thermo
Fisher Scientific), 50 µl of triiodo-l-thyronine (T3, 40 ng/ml,
stock concentration: 20 µg/ml; Sigma-Aldrich), 20 µl of sonic
hedgehog (Shh) (40 ng/ml stock, concentration: 50 µg/ml), 20 µl
of Noggin (40 ng/ml, stock concentration: 50 µg/ml), 5 µl of
insulin-like growth factor (IGF, 100 ng/ml, stock concentration:
500 µg/ml; all purchased from PeproTech), and 25 µl of
neurotrophin 3 (NT-3, 10 ng/ml; Sigma-Aldrich). DMEM/F12
is added to a final volume of 25 ml, filter with a bottle-top
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filter (0.22 µm) and store at 4◦C. We suggest to use complete
media within 1 week.

Preparation of Late OLGs Differentiation
Media (LOLG-DM)
A total of 10 ml of LOLG-DM is prepared mixing 10 ml of
EOLG-DM with 5 µl of 3′,5′-cyclic adenosine monophosphate
(cAMP, 50 µM, stock concentration: 50 µg/ml; Sigma-Aldrich).
The fresh media should be using within 1 week. For preparing
Poly-D-lysine coating solution, stock at 0.1 % (wt/vol) 50 mL
of sterile tissue culture grade water to 5 mg of poly-D-
lysine (Sigma-Aldrich). Poly-D-lysine solution can be stored
at 4◦C for 3 months. Coating culture plates with the poly-
D-lysine coating solution (0.5 ml per well for 24 well plate)
and keep them for 2 h in 37◦C incubator or overnight at
4◦C. Remove coating solution and wash three times with sterile
ddH2O. After poly-D-lysine coated, add 1 µg/ml laminin (Sigma-
Aldrich) solution for 2 h in 37◦C incubator or overnight at
4◦C. Laminin should be slowly thawed at 2–8◦C for avoiding
any solidification process. Dilute in a balanced salt solution
and coat culture surface with a minimal volume. Remove
coating solution, wash three times with sterile ddH2O and
dry completely in a tissue culture hood. Allow to air dry
at least 5 min before introducing cells and media. Poly-D-
lysine and laminin-coated coverslips: Place sterilized coverslips
into the wells of a 24 well plate. The procedure followed the
Poly-D-lysine coating and Laminin coating. The coverslips will
float on the surface of the solution. Make sure the coverslips
are completely immersed in the coating buffer to ensure the
coverslips are well coated.

Isolation and Culture of NSCs From
Murine SVZ and Bone Marrow
SVZ-derived NSCs were isolated from adult C57BL/6 mice
as described previously with minor modification (Yang et al.,
2009). Briefly, C57BL/6 mice 8 weeks old were euthanized and
the SVZ region was harvested under sterile conditions and
placed in DMEM media. After a brief washing with DMEM
media, tissues were cut into 1 mm3 pieces and digested by
neural tissue dissociation kits (Miltenyi Biotec). The cells were
suspended in serum-free DMEM/F12 (Invitrogen) supplied with
2% B27 supplements (Invitrogen), 20 ng/ml EGF (Peprotech) and
10 ng/ml bFGF (Peprotech), along with 100 IU/ml penicillin and
100 µg/ml Streptomycin (Sigma).

Bone marrow cells were isolated according to a previously
described protocol (Swamydas and Lionakis, 2013). Finally, the
cells were suspended in NSC-PM media at 106 cells/ml, and
plated on poly-D-lysine, and laminin coated 24 well plate for
4 days. We suggest to replace half of the media with fresh NSC-
PM media every 4 days. The media should be changed softly and
slowly to avoid lifting the adhered NSCs (This is the critical step).

The formation of cellular clusters that resemble neurospheres
becomes evident after 10–14 days. For cell detachment, aspirate
the media, add 500 µl accutase (Thermo Fisher Scientific),
and incubate at room temperature (22–25◦C) for 2 min. Use
200 µl pipette to carefully suspend the adhered cell and transfer

to a 15 ml conical tube. Shake the tube 10 times/min for
total 3 min and add 4.5 ml DPBS for centrifuge (300 × g,
10 min). Next, suspend the cell pellet in NSC-PM media at
1 × 105 cells/ml, and plate the cell in non-coated 6 cm plate.
After 4 days, the neurospheres can observe under the microscope.
Collect suspended neurospheres from culture dish and transfer
to a 15 ml conical tube. Centrifuge the cell at 100 × g for
1 min. Gently aspirate media leaving the neurospheres at the
bottom of tube. Resuspend neurospheres in 5 ml DPBS and
centrifuge the cell at 100 × g for 1 min to remove the media
residues. Gently aspirate media leaving the neurospheres at the
bottom of tube and add 1 ml of accutase to the cell culture
and incubate 5 min at room temperature. Mildly shake the
tube 10 times/min. If any neurosphere remains visible, after
4 min accutase incubation, we suggest to pipette gentle up
and down until all the visible neurospheres are in a single
cell suspension. The accutase media will change the color from
carnation to oyster white. Then, add 4 ml of fresh media
to the tube and centrifuge the cells at 200 × g for 4 min.
Gently aspirate the supernatant and resuspend cells in fresh
media. Transfer the cell 1 × 105 cells/ml to a new culture
dish and incubate at 37◦C for NSCs expanded. Cells can be
frozen at this step. For visualization of results, seed the cell at
1 × 105 cells/ml in a poly-D-lysine and laminin coated 24 well
plate with coverslips. Cells were fixed using 4% paraformaldehyde
for immunocytochemical staining.

Bone Marrow-Derived NSCs
Differentiation and Proliferation
To test the proliferation capacity of bone marrow-derived NSCs,
growth curve of bone marrow-derived NSCs was determined
followed previous method (Yang et al., 2010). Briefly, the newly
formed neurospheres were digested to the single cells and plated
at a density of 1.0× 105 cell/ml and cultured in NSC-PM. At days
6, 11, 16 and 21, neurospheres in each well were digested into
single cells; cell numbers were counted by hemocytometer. SVZ
derived NSCs were used in the parallel experiment to compare
the proliferate ratio.

To evaluate the differentiation ability of bone marrow-derived
NSCs, single cells were plated on poly-D-lysine/laminin coated
coverslip at a density of 1.0 × 104 cells/ml and cultured in
specific NSCs differentiation media (Li et al., 2016). In brief,
for neuron differentiation, Neurobasal media was supplemented
with 2% B27, 2 mM GlutaMax-I and 0.5 mM cAMP. For
astrocyte differentiation, DMEM was supplemented with 1%
N2, 2 mM GlutaMax-I and 1% FBS. The oligodendrocyte
differentiation media requires Neurobasal media supplemented
with 2% B27, 2 mM GlutaMax-I and 20 ng/ml T3. Over
2 weeks, NSCs in differentiation media changed morphology
and developed markers of neurons, astrocytes, and OLGs as
determined by immunocytochemistry staining. To determine
the number of cells expressing a specific antigen, five areas of
each coverslip were examined, and the percentage of positive
cells labeled for a specific neural marker in the total number
of DAPI+ cells was expressed as the mean value of specific
neural differentiation.
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OPCs Differentiation
Once neurospheres reach 100–250 µm of diameter, dissociate the
neurospheres with accutase. Start by stepping suspend the cell
pellet in NSC-PM media at 1× 105 cells/ml until transfer the cell
1 × 105 cells/ml to a new culture dish and incubate at 37◦C for
NSCs expanded to the end. Finally, The cells are seeded on the
poly-D-lysine, and laminin coated plate at 5× 103 cells/ml in the
NSC-PM media. After 1–2 days, over 90% cells will be adhered
to the bottom, change the media to OPC-PM. Incubate the plate
in a 37◦C, 5% CO2 incubator and perform media changes every
2 days for 8 days. Cells can be frozen at this step.

OLGs Maturation
At day 9, aspirate the OPC-PM media, gently rinse with DPBS
to remove the growth factor (i.e., PDGF-AA and bFGF), and
add fresh EOLG-DM (500 µl/well/24 well plate) for inducing
differentiation of OLGs. OPCs will proliferate few times. If the
cells reach 90% confluency, it might be necessary to split the cells
at a 1:4–6 ratio. After 4 days, the media is changed to LOLG-DM.
Adding cAMP will accelerate the branch outgrowth for OLGs
differentiation. Repeat these steps for 3 times, after 2 weeks.

Immunofluorescence Staining
For immunocytochemistry, cells were fixed in 4%
paraformaldehyde at room temperature for 30 min. Then,
incubate with 0.3% TritonX-100 (in PBS) for 15 min at room
temperature and wash with PBS. The primary antibody is diluted
to a suitable concentration with a blocking solution (10% horse
serum in PBS). The following primary antibodies were used:
anti-A2B5 (MA1-90445, Thermo Fisher Scientific), anti-CNPase
(ab44289, Abcam), anti-Ki67 (ab15580, Abcam), anti-Nestin
(MAB353, Milipore), anti-NG2 (MAB5384, Milipore), anti-O4
(NL1326V, R&D), anti-RIP (ab72139, Abcam), and anti-SOX2
(ab97959, Abcam). Primary antibodies were washed out with PBS
three times after overnight incubation at 4◦C. The corresponding
Alexa Fluor 488/594 conjugated secondary antibodies (both
from Jackson ImmunoResearch Laboratories) were used for
2 h at room temperature. After wash, the ProLongTM Gold
Antifade Mountant with DAPI buffer (P36931, Thermo Fisher
Scientific) were used for mounting slides. Results were visualized
by fluorescent microscopy (Nikon Eclipse E600; Nikon, Melville,
NY, United States). Quantitative image analysis was performed
using ImagePro (Media Cybernetics).

Bone Marrow NSC-Derived OPCs
Transplantation Into Shi Mice
Newborn double-homozygous Shi (MbpShi/MbpShi) mice (The
Jackson Laboratory, Bar Harbor, ME, United States) were
injected with dissociated single OPCs. The protocol followed
previous work with minor modifications (Zhang et al., 2019).
Briefly, to generate the lentivirus expression of mCherry
protein, the backbone of pCDH-CMV-MCS-EF1-copGFP
(System Biosciences) was used. Subsequently, the copGFP was
replaced by mCherry and puromycin was inserted into the
multiple clone sites. The positive plasmid was confirmed by
sequencing and using for lentivirus packaging. OPCs were

transfected with lentiviral expressed mcherry, and positive
cells were selected by puromycin. Then, mcherry OPCs+ were
transplanted bilaterally in the corpus callosum of 1 week-old
Shi mice (2.0 × 105 cell/mice). PBS-treated age-sex-, strain-
matched mice, and sham control mice were used. After 5 weeks
from the treatment, mice were anesthetized, and brains were
isolated and fixed with 4% paraformaldehyde and cryoprotected
using 30% sucrose. CNS coronal sections were stained with
myelin basic protein (MBP) antibody (ab40390, Abcam) for
evaluating the differentiation process of mcherry OPCs+.
Tremor (Trembling time/total time) was analyzed for evaluating
disease development. Kaplan-Meier analysis was used to assess
the survival rate as described (Shinkai et al., 1992).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
software (GraphPad, La Jolla, CA, United States). Data are
presented as mean ± SD. Experiments with 2 groups were
tested for statistical significance using unpaired, 2-tailed Student’s
t-tests. When comparing two groups at different time points, data
were analyzed by two-way analysis of variance (ANOVA) with
Tukey’s multiple comparisons test. Comparisons between two
groups were carried out with Student’s t-test. Values of p < 0.05
were considered significant.

RESULTS

Timeline of Bone Marrow-Derived
Mature Oligodendrocyte Differentiation
The timeline of our protocol is shown in Figure 1. In the
first step, NSCs are differentiated from BM cells. After BM
isolation, the cells are seeded at high density (5 × 105 cell per
cm2) on poly-D-lysine/laminin coated 24-well plate. In vitro,
the presence EGF and fibroblast growth factor-2 (FGF2) mimic
the NSCs culture environment, inducing NSCs proliferation.
In the second stage, NSCs are induced to become OPCs.
Here, the adherent cultures are dissociated to form spheres in
suspension. Although Sox2+Nestin+ cells can also form spheres,
the presence of recombinant protein PDGFα will gradually
enrich the NG2+A2B5+ cell population (Neri et al., 2010).
The final stage is the transition from OPCs to mature OLGs,
by exposing the cells to T3, NT-3, Noggin, Shh, and IGF
(Najm et al., 2013; Douvaras and Fossati, 2015).

Neurosphere Differentiation Step
For NSCs generation, BM from autologous adult mice
can efficiency generate neurospheres. During neurosphere
differentiation step, we are usually able to observe three stages
(Figure 2A). (1) After 1 week in culture, individual cells
exhibit high proliferative ability. (2) Two weeks later cells form
neurospheres. (3) At 3–4 weeks, the neurospheres increased
in size and gradually detached from the bottom of the culture
plate. To characterize the bone marrow-derived NSCs, we
compared the proliferative capacity with the SVZ-derived NSCs.
We collected the neurosphere, dissociated, and re-plated at
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FIGURE 1 | Timeline of oligodendrocyte differentiation. Multicolor triangles represent recommended time points for evaluating the expression of stage-specific
markers through immunofluorescence.

FIGURE 2 | Generation of bone marrow-derived NSCs in vitro. BM-NSCs were isolated and expanded from bone marrow of adult C57BL/6 mice and cultured in
DMEM/F12 containing 20 ng/ml EGF, 20 ng/ml Bfgf, and 2% B27 supplements. (A) Single cells were seeded in poly-D-lysine- and laminin-coated plates. After
7 days, the cells showed obvious proliferation. After 14 days, the NSCs gradually formed neurospheres. After 21–28 days, neurospheres increased size, and
detached from the bottom of the culture plate. (B) Growth curves of BM-NSCs and SVZ-NSCs. Single cells at the second and fifth passages were seeded at a
density of 1.0 × 105 cells/ml and cultured in proliferation media. At days 6, 11, 16 and 21, neurospheres in each well were digested into single cells; cell numbers
were counted by hemocytometer. At least 5 wells were evaluated at each time point. Data represent the mean ± SD from three repeated experiments from
separately generated cultures, ∗p < 0.05, ∗∗p < 0.01, as determined by two-way ANOVA with Tukey’s multiple comparison test. (C) Neurospheres dissociated with
accutase and plated in the coated coverslips were immunostained for NSC markers Sox2 and Nestin. Scale bar = 50 µm.
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FIGURE 3 | BM-NSCs differentiation in vitro. Examples of NSCs that differentiated into (A) OLGs (CNPase+), (C) neuron (Tuj1+), and (E) astrocytes (GFAP+), after
1 week with specific differentiation media. Scale bar = 50 µm. (B,D,F) Quantitative analysis of differentiated cells. Data are shown as mean values ± SD (n = 5 each
group) and are representative of three experiments. Significance difference was analyzed by Student’s t-test.

1.0 × 105 cell/ml for a next round cell expansion. We next
compared the proliferation capacity of bone marrow- and
SVZ-NSCs. BM and SVZ-NSCs from passages 2 and 5 were
seeded and cultured in NSC-PM. At day 6, 11, 16, and 21, the
neurospheres formed and re-dissociated to single cells, and the
cell number were counted by hemocytometer. The proliferation
rate of BM-NSCs was significantly slower than SVZ-NSC at
the early stage, whereas there was no obviously difference in
proliferation capacity at passage 5 (Figure 2B). To identify the
BM-NSCs, single cells were transferred onto poly-D-lysine and
laminin pre-coated coverslips and used for immunostaining with
Sox2 and Nestin. We can observe over 95% cells are Sox2 and
Nestin-positive cells at passage 5 (Figure 2C).

Differentiation Potential of BM-NSCs
To test the differentiation potential of BM-NSCs
in vitro, neurospheres were used and cultured in specific
neuron/astrocyte/oligodendrocyte differentiation media. After
2 weeks, BM-NSCs, plated in presence of differentiation media,
changed morphology and developed markers of neuron,
astrocytes, and OLGs, as shown by immunocytochemistry

staining. We compared the differentiation capacity of BM-NSCs
and SVZ-NSCs. There are no significant difference about the
percentage of CNPase+, Tuj1+, and GFAP+ cells between BM-
NSCs and SVZ-NSCs. These results indicated that BM-NSCs can
differentiate into neural cell lineages (Figure 3).

OPCs Differentiation and
Oligodendrocyte Maturation Process
To assess whether the enrichment of OPCs obtained by
differentiation media could be exploited for increasing the yield
of mature OLGs, OPCs grown in EOLG-DM media for 4 days
were shift to LOLG-DM media for additional 10 days. Cells
grown for 14 days in OPC-PM media were used as control.
Cells were then analyzed for the presence of A2B5+, NG2+,
RIP+, O4+, and CNPase+ cells. For OPCs differentiation, single
NSCs were seed on poly-D-lysine, and laminin coated plates
or coverslips in the OPCs differentiation media. Cells exhibited
strong proliferation ability and grew faster under the proliferation
condition (Figure 4A). These OPCs expressed A2B5 and NG2,
as shown by immunostaining (Figures 4B,C). Moreover, OPC-
spheres can be cultured with OPCs media without differentiation.
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FIGURE 4 | Fundamental steps of BM-NSCs OLGs differentiation.
(A) Expression of Ki-67 at day 38, as shown by immunofluorescence analysis.
(B,C) Immunofluorescence staining of progenitor cells at day 38, expressing
A2B5, and NG2. (D,E) RIP and O4 staining show cells ramified morphology.
(F) Expression of Ki-67 which in late stage of OLGs differentiation (day 52).
(G) At the end of differentiation stage, CNPase+ OLGs show typical ramified
morphology. (H) OPCs and OLGs proliferation (A,F) was quantified as
percentage of Ki67-positive cells. Scale bar = 50 µm. (I) The percentages of
A2B5+, NG2+, RIP+, O4+, and CNPase+ cells are present in
EOLG+LOLG-DM cultures as compared to OPC-PM cultures. Data are
expressed as the mean ± SD, three independent experiments, ∗∗p < 0.01,
Student’s t-test.

They can further form immature OLGs (e.g., RIP+ and
O4+) when are grown in OLGs differentiation media for
1 week (Figures 4D,E).

For OLGs maturation, OPCs were grown in presence of
oligodendrocyte differentiation media. Cells gradually stopped to
proliferate (Ki67+) (Figures 4F,H) and started to differentiate
into mature OLGs (CNPase+). About 50 % of the CNPase+ OLGs
exhibited complex membrane morphology indicating OPCs
differentiation into mature OLGs successfully (Figures 4G,I).

OPCs and Mature OLGs Generation
From Autologous Mouse Bone
Marrow-Derived NSCs
Our method allows to isolate OPCs, using a selective
detachment procedure, generate mature OLGs in vitro
(Figure 5A), and induce remyelination after transplantation
into the dysmyelinated Shi mice (Figure 5B). Although

FIGURE 5 | BM-NSCs OLGs differentiation in vitro and transplantation in Shi
mice. (A) BM-NSCs were cultured in oligodendrocyte differentiation media for
48 h, 1 week, and 2 weeks for O4 (differentiation marker) and Ki-67
(proliferation marker) staining. (B) Fluorescence staining of BM-NSCs
(mCherry+ cells), after 35 days post injection, show myelination (MBP+) in the
contralateral striatum. Scale bar = 50 µm. (C) Quantification of tremor of Shi
mice treated with OPCs. (D) Transplanted OPCs prolong the survival of Shi
mice compared with PBS-treated (n = 9). Symbols represent mean ± SD.
∗p < 0.05, Student’s t-test.

immunofluorescence analysis showed abundant
MBP+mCherry+ cells, the transplanted cells were more
like “non-completedly myelinating” cells. We hypothesized
that these cells would become mature at later time points and
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FIGURE 6 | Representative scheme of the protocol for generating OPCs and OLGs from autologous mouse bone marrow-derived NSCs.

express more MBP+ myelin internodes. To define whether our
BM-NSCs had the potential to form functional OLGs in vivo, the
tremor and survival rate were test in the subsequent experiment.
After OPCs transplantation, the tremor was significantly
decreased compared the untreated Shi mice (Figure 5C and
Supplementary Videos 1, 2). As shown in Figure 5D, the survival
rate of mice transplanted with OPCs was increased, with a range
of 106–135 days. All PBS-treated Shi mice died, over a range
of 90–125 days postnatally. These results indicated that BM-
OPCs could successfully differentiate into functionally OLGs,
induce remyelination, and increase survival rate in Shi mice.
The experimental design overview for this protocol is shown
in Figure 6.

DISCUSSION

Oligodendrocyte progenitor cells can be isolated from the SVZ
of adult mammalian and expanded in vitro for producing
mature OLGs (Chen et al., 2007). However, with this method, a
little number of mature OLGs can be obtained. Recent studies
showed that it is possible to differentiate OPCs from BM cells
(Yang et al., 2010; Nazm Bojnordi et al., 2015). Indeed, bone
marrow-derived OPCs showed distinct neural cell markers and
morphology (Abbaszadeh et al., 2013). The possibility to get
a high number of mature OLGs, starting from bone marrow,
represents an accessible, and alternative manner respect to
canonical methods in which OPCs are generated from SVZ-
derived cells. OPCs transplantation either intravenous (i.v.) or
i.c.v. has shown to promote remyelination in vivo (Sher et al.,
2012; Wu et al., 2012); thus its therapeutic potential is relevant
for demyelination disorders.

Currently, there are several methods for obtaining
functional OLGs (Garcia-Leon and Verfaillie, 2016).

Nazm Bojnordi et al. (2015) used BM stromal cells for producing
functional Olig2 and O4+ cells. These OPCs successfully
promoted the remyelination, in LPS-induced demyelination
model; however, the efficiency was unclear. Further, OPCs
isolation from ESCs or induced pluripotent stem cells (iPSCs),
is an effective way for repairing and preventing the progression
of demyelinating lesions (Douvaras et al., 2014; Thiruvalluvan
et al., 2016). However, ESCs-derived OPCs may lack of stability
and safety. It has been shown that NSCs possess less risk of
potential tumorigenicity than ESCs or iPSCs (Zhao et al., 2015).
The generation of OPCs from BM is consistent with what
demonstrated so far (Yang et al., 2010; Hojjat-Allah et al., 2013;
Nazm Bojnordi et al., 2015). Our method mainly consists of
three steps, bone marrow-derived NSCs generation, NSCs-OPCs
differentiation, and OLGs maturation. These data also focused
on the derivation of OLGs from OPCs using assorted agents. In
all of these steps, we use conditioned-media containing essential
growth factors such as T3, Shh, IGF, and NT-3. We, also, use
Noggin for negatively regulating bone morphogenetic protein
(BMP) pathway, which blocked oligodendrocyte maturation
(Najm et al., 2013). Although this protocol does not significantly
improve the differentiation efficiency, compared with previous
work, the timing is shorter (from 75 to 95 and 52 days) (Chen
et al., 2007; Douvaras and Fossati, 2015). Our findings provide
an alternative, fast strategy for obtaining functional OLGs
from BM cells after just 40–50 days of differentiation. Here, we
use the congenital dysmyelination model of Shi mice to show
that BM-OPCs improved the mice survival. Our protocol can
generate OPCs from BM-NSCs providing sufficient cell sources
from autologous and inducing remyelination.

One generally OPCs generating strategies is that the cell
need transduction of several TFs by lentiviral (Han et al.,
2012; Najm et al., 2013). Virus-mediated gene delivery required
higher biosafety levels and still need to be considered for
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clinical application (Capetian et al., 2016). In our protocol, we
choose a well-established, and effective custom differentiation
media system (Najm et al., 2013; Baskin et al., 2016). These
differentiation media contain several growth factors (EGF, FGF,
PDGF, Shh, Noggin, IGF, and NT-3) which used in different
proliferation or differentiation stage were sufficient for inducing
cell differentiation into mature OLGs. The manner of using
growth factor is safer than viral or small molecules to treat cell
or neurodegeneration disease (Tuszynski et al., 2015; De et al.,
2017). The specificity of growth factors to recognize its target
is better than small molecules especially in high dose (such
as concentration > 10 µM) (Weiss et al., 2007). Also, when
withdrawing the growth factors such as FGF, EGF et al., cell will
cease to proliferate and avoid the risk of formation tumor cell.
In a previous report, T3 was used as an inducer to differentiate
into oligodendrocyte-like cells using autologous BM stromal cells
(Kaka et al., 2012; Hojjat-Allah et al., 2013). Compared with
their researches, we have demonstrated that mouse OLGs can
be produced from bone marrow-derived cells in vitro, indicating
that our method is more reliable. Together, this protocol indicates
that our bone marrow-derived OPCs represent a simple, safe,
valuable and promising cell-based therapy strategy for myelin
repair and neurodegeneration disease.
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