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AAbbssttrraacctt

Cancer is the most common acquired genetic disease. Great progress has been made in
documenting the genetic abnormalities that cause the disease, and in the future each tumor will
be subjected to genetic analysis and the appropriate combination of drugs selected. Although
there are serious technological and cost hurdles to surmount and resistance and continued
mutation will be a constant problem, the way is clear to rational therapy.
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The explosion in the knowledge of cancer genetics of the past

25 years has totally changed our approach to cancer

treatment. Indeed, we are in the midst of a cancer treatment

revolution [1]. But, as is true of many political and cultural

revolutions, the pace of progress is maddeningly ponderous.

Although recent relaxations of the grips of smoking and

hormone replacement therapy has led to a welcome decline

in cancer incidence [2], millions more lives will be lost

before we truly understand or have the tools to provide

effective therapy for this vastly complex group of diseases.

Despite the long road ahead, investigators, clinicians and

patients share a mounting confidence that new therapeutic

research will ultimately be successful. Through oncoge-

netics, we will be able to document the drivers of an

individual cancer and delineate the gain-of-function

mutations that give rise to growth-promoting proteins that

in turn induce oncogene ‘addiction’, in which a cancer is

dependent on such proteins. We will also determine the loss-

of-function mutations that deprive cancer cells of the

proteins that direct DNA repair and/or provide directions to

the cell death pathway. Armed with such oncogenetic data,

we will match the validated mutations of a particular cancer

to an appropriate and scientifically determined targeted

drug array. This great challenge, one akin to President

Kennedy’s thrust to the moon, is definitely possible. Here,

we provide the background to our optimism and also

describe some of the roadblocks that obstruct the path of

progress.

Modern treatment of invasive cancers that have extended

beyond the reach of the surgeon’s knife or the radiation

therapist’s beam began in the post World War II era when

Sidney Farber and his colleagues introduced aminopterin to

induce remissions in childhood leukemia [3]. Farber was

committed to sequential application of single agents and

urged an extensive public and private antibiotic and anti-

cancer drug screening program to produce many active

compounds that had in common the induction of injuries to

cell DNA or the process of cell division. These were

eventually used in various combinations with the intent of

achieving selective toxicity and minimizing resistance. The

results were variable. After 50 years of almost entirely

empirical clinical trials, combination chemotherapy moved

the prognosis of standard childhood leukemia from

invariably fatal to an 85% cure rate [4]. The outcome of

systemic Hodgkin’s Disease was similarly improved. Clear-

cut benefit was established in breast, head and neck,

ovarian, testicular and colon cancer. But very little progress

was made in lung, prostate, liver, pancreas or brain cancer,



and the toxicities of the treatments remain considerable -

normal cells as well as cancer cells are badly injured in the

process. Although surgery, radiation therapy and combina-

tion chemotherapy have made an impact on the disease,

early and late side effects are significant. Towards the end of

the 20th century it became clear that the efficacy of this

‘carpet-bombing’ treatment of cancer had reached a plateau.

During this period of trial and error some critically impor-

tant concepts of cancer pathophysiology have been realized.

Chromosomes in the leukemias and lymphomas may appear

normal but frequently show translocations and deletions

that provide clues to the relatively few genes that are

responsible for such tumors [4]. In contrast, the chromo-

somes in epithelial cancer cells are almost always broadly

and heavily damaged [5]. The chromosome wreckage

includes massive deletions, amplifications and rearrange-

ments, as well as point mutations and translocations, and

can be observed in very early stages of the growth of such

tumors. The latter observation suggests that several mutated

genes in an individual cancer may be responsible for the

malignant state and that many more are mere accidents of

the chromosome breakage. The art of oncogenetics lies in

validating the relatively few significant mutations and

differentiating them from the many innocuous byproducts of

the chromosome breakdown that characterizes the epithelial

cancer process. Put simply, the epithelial cancer problem

can be understood and effectively treated only by documen-

tation of the truly oncogenic results of widespread DNA

damage. This demonstrates the critical importance of

advances in the detection of cancer-causing genes.

The role of cancer genetics as a discipline that would

probably lead to more effective targeted treatment was

highlighted by the discovery of a gain-of-function Abl kinase

gene that produced hyperactive Abl kinase, a unique driver

of early stage chronic myelogenous leukemia [6,7]. In fact

the successful interruption of unbridled Abl kinase activity

by imatinib ushered in a new era of ‘smart drug’ treatment of

cancer [8]. In this new era, three major paths of progress

have been and continue to be explored. The first has used

patient-derived cancers, transgenic mice [9] and transfected

cells [10], DNA and RNA (including microRNA) array tech-

nology [11] and gene sequencing [12] to establish potential

genetic drivers of the initiation and maintenance of cancer

cell growth. The second approach has focused on the failure

of human and murine cancer cells either to repair their

damaged DNA [13] or, without DNA repair, to plunge fatally

into a metabolic death pathway [14]. Both failures contribute

to the malignant process, particularly in the common human

epithelial cancers and also in certain lymphomas.

A third and more recent approach has examined the organ

environment of cancer and has revealed that the stromal

fibroblasts surrounding cancer cells, such as ductal carci-

nomas, exude signals that break down the myoepithelial cell

barrier that would otherwise confine the cancer cells to the

duct [15-17]. Furthermore, certain cancers, such as neuro-

fibromas that arise as a result of homozygous loss-of-

function mutations of a tumor suppressor gene (NF1), do not

become actual tumors unless their surrounding stromal cells

lack one of the two copies of the gene [18]. Finally, some

cancers induce supporting cells to maintain cancer cell

viability. This effect includes but is not limited to vascular

endothelial cells [19].

In all three of these areas of oncogenetic research, drugs and

antibodies have been sought that would either block gain-of-

function proteins or replace key loss-of-function proteins. A

considerable effort has also been expended to produce

murine models of epithelial cancers so as to hasten the

development of effective therapies [20]. While this extensive

basic research has been in progress, clinical scientists have

been exploring the many ‘smart drugs’ that have come off

the assembly lines of pharmaceutical companies. What have

been the results of all of this effort?

Among the first waves of research have been discoveries of

the genetic drivers of common and uncommon cancers.

Breast cancers, whether acquired or (rarely) inherited, are

prime examples. Despite vast chromosome damage and

multiple mutations, most breast cancers are largely

maintained by overexpression or possibly (and contested)

amplification of the estrogen and progesterone receptor

genes [21]. Simple estrogen receptor blockade or inhibition

of estrogen synthesis combined with limited surgery and

radiation therapy and ordinary combination chemotherapy

can cure up to 80% of these cancers if they are diagnosed

before widespread disease has occurred [22]. In approxi-

mately 20% of cases a different mutation is responsible for

the malignant state. In those less common cases the cause is

amplification of Her2-neu, a receptor kinase gene that

expresses a subtype of an epidermal growth factor receptor

[23]. Such Her2-neu-positive cases have, until recently, been

burdened by a very poor prognosis. However, recent clinical

studies have demonstrated that early infusions of

traztuzumab, a monoclonal antibody directed against the

receptor, combined with standard treatment markedly

improves the outlook for these heretofore unfortunate

patients [24]. The third major subtype of breast cancer,

representing about 15% of cases, includes the so-called

basal-like or triple-negative tumors that lack estrogen and

progesterone receptors and Her2-neu and have not been

amenable to targeted therapy. Recently, however, advantage

has been taken of the resemblance of these tumors to those

of the rare BRCA1 mutation carriers who have a high rate of

inherited breast cancer. BRCA1 and BRCA2 are DNA repair

genes; they thus provide protection from DNA cross-linking

agents, such as radiation or cisplatinum. Basal-like tumors

are therefore sensitive to cisplatinum and poly ADP ribose

polymerase (PARP) inhibitors, an excellent example of how

inquiries into cancer genetics improve cancer therapy.
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Diffuse gastrointestinal stromal tumor, a rare and uniformly

fatal sarcoma that, in its advanced stages, also shows severe

chromosomal damage, can be obliterated by imatinib [25].

Resistance generally (but not always) occurs when the drug

is used as a single agent, but the dramatic effect of imatinib

proves that such tumors become dependent on or addicted

to mutated tyrosine kinases (in this case Kit or platelet

derived growth factor receptor). The dramatic therapeutic

results provide a remarkable example of the value of a single

drug that can interrupt more than one of the gain-of-

function proteins that drive such tumors [26]. Given that

there are over 500 protein kinases in the human ‘kinome’,

major efforts are now in place to define their roles in the

hundreds of fatal cancers. Slowly but surely, incriminating

evidence is being gathered that implicates previously

unsuspected kinase mutations in various cancers. Neuro-

blastoma is an excellent recent example [27].

In addition to kinase drivers, the genes of other growth

promoters, including transcription factors such as Myc or

signaling proteins such as Wnt, have been shown to be

mutated or amplified in many different cancers [28]. They

surely have an important role in the maintenance of

unbridled growth. Indeed, mutations of kinases seem to be

relatively uncommon causes of cancer, although they are the

subjects of recent excitement.

Finally, loss-of-function mutations of DNA repair genes

prevent the repair of cancer-inducing genes [29], and the

frequently observed loss or inactivation of genes such as p53

and MDM2 reduces the capacity of injured cancer cells to

quit the cellular scene by means of apoptosis [30]. This leads

to cancer-cell immortality and failure of cancer chemo-

therapy and radiotherapy to achieve cancer cell death. In an

entirely novel approach to drug development, peptides

‘stapled’ by fatty acids have been used as effective experi-

mental drugs that replace such missing proteins [31].

As DNA sequencing and array technology advances, investi-

gators are churning out vast amounts of genetic information

about common cancers, such as colon, breast, prostate,

pancreas, lung and glioblastoma [32-36], and about unusual

cancers, such as mesothelioma [37]. Recently, the entire

DNA sequence of a single case of acute myelogenous

leukemia that had a normal karyotype was published. In

addition to two previously described genetic abnormalities,

six previously unappreciated mutations were observed [38].

However, much of the data derived from such massive

efforts may be misleading. It is likely that only a few of the

detected DNA variations that emerge from complete DNA

sequencing will actually prove to be responsible for the

tumors. The immense task is to sort through them and

define them and then develop the drugs to either block or

replace them. Then we must face the pernicious problems of

genetic or epigenetic mutational heterogeneity among the

cells in a single tumor and of continued mutation. If we have

the appropriate drugs, can we kill the cancer cells before

they mutate again to develop new drivers that were not

present before our new therapy was launched? We need to

develop the tools that will allow us to define tumor genetic

and epigenetic heterogeneity.

Even when we solve those diagnostic problems (and we will),

we and our patients face yet another barrier. It is already

very clear that the new ‘smart drug’ era does not imply that

we will be successful very often with single agents. Cancer

cells with extra-labile DNA will mutate to circumvent smart

drugs very easily. This means that we must treat patients

with combinations of drugs that block multiple metabolic

pathways. Toxicity may become a very severe problem as we

force patients down that route.

Despite all these caveats, excitement is in the air. We are on

the verge of understanding the biology of cancer, and with

that understanding will come the drugs that will help us to

beat it down. We may not actually cure all or even many of

our previously unmanageable patients, but we will convert

such cancers from killers to chronic smoldering illnesses

that can be endured. Our goal will be to provide cancer

sufferers with a fulfilling life. This objective has been

achieved in many cases of AIDS. We will surely get at least

that far for patients with cancer. It will take years of hard

work, but we owe that commitment to the cancer patients

who rely on us for a better future. A thorough understanding

of oncogenetics will show us the way.
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