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Abstract

Background: Clinical Trials (CTs) are essential for bridging the gap between experimental research on new drugs and their
clinical application. Just like CTs for traditional drugs and biologics have helped accelerate the translation of biomedical
findings into medical practice, CTs for nanodrugs and nanodevices could advance novel nanomaterials as agents for
diagnosis and therapy. Although there is publicly available information about nanomedicine-related CTs, the online
archiving of this information is carried out without adhering to criteria that discriminate between studies involving
nanomaterials or nanotechnology-based processes (nano), and CTs that do not involve nanotechnology (non-nano). Finding
out whether nanodrugs and nanodevices were involved in a study from CT summaries alone is a challenging task. At the
time of writing, CTs archived in the well-known online registry ClinicalTrials.gov are not easily told apart as to whether they
are nano or non-nano CTs—even when performed by domain experts, due to the lack of both a common definition for
nanotechnology and of standards for reporting nanomedical experiments and results.

Methods: We propose a supervised learning approach for classifying CT summaries from ClinicalTrials.gov according to
whether they fall into the nano or the non-nano categories. Our method involves several stages: i) extraction and manual
annotation of CTs as nano vs. non-nano, ii) pre-processing and automatic classification, and iii) performance evaluation
using several state-of-the-art classifiers under different transformations of the original dataset.

Results and Conclusions: The performance of the best automated classifier closely matches that of experts (AUC over 0.95),
suggesting that it is feasible to automatically detect the presence of nanotechnology products in CT summaries with a high
degree of accuracy. This can significantly speed up the process of finding whether reports on ClinicalTrials.gov might be
relevant to a particular nanoparticle or nanodevice, which is essential to discover any precedents for nanotoxicity events or
advantages for targeted drug therapy.
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Introduction

Because of their nanoscale biophysical and biochemical

interaction characteristics, products containing nanomaterials or

involving the application of nanotechnology behave very differ-

ently than traditional bulk materials used in therapeutics [1]. For

instance, on the positive side, nanotechnology products can have

increased bioavailability and potency, decreased toxicity and the

enabling of highly targeted drug delivery, among many other

advantages [2], making them potentially valuable for medical

applications. However, experimental research in nanomedicine is

still in its infancy, and many nanoparticles and nanotechnologies

have the potential of also producing complex and poorly

understood toxic side-effects [3]. As result, discovering and

reporting of in vivo effects of nanoparticles in experimental

studies and CTs to supplement theoretical predictions and results

of in vitro studies [3,4] is fundamental to advance the discovery

and use of nanomaterials as beneficial agents for medical diagnosis

and therapy. Clinical Trials (CTs) of nanoparticles and nanode-

vices may lead to novel treatments and diagnostic tools, as well as

complement or supplement existing products that are currently

being nanomanufactured to address clinical needs (e.g. effective-

ness) while avoiding the undesirable side-effects (e.g. toxicity) [5,6].

Over the past years, there has been a proliferation of pre-clinical

and clinical studies on nanopharmaceuticals [7]. Unfortunately,
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online archiving of nanomedical clinical data has been usually

done without following any specific criteria, thus not making a

distinction between those studies at the nanoscale focused on

testing nanodrugs and nanodevices (nano CTs) and CTs on

regular drugs and biologics that do not involve nanotechnology

(non-nano CTs). Thus, it is becoming difficult to develop a broad

and comprehensive perspective on the current status and impact of

nanotechnology products in the clinical context.

A number of articles have analyzed published trial results in

terms of quality and completeness [8,9], as well as the impact of

the public release of CTs [10–12], but these and other studies have

not yet made, to our knowledge, such a clear distinction between

nano and non-nano categories either. Recent publications in the

scientific literature have reviewed specific medical applications of

nanotechnology-based pharmaceuticals, but these publications

only reported a few specific nano-level products currently reported

positively in CTs [7,13–14] and certain nanodrug patents [15–17].

We believe that the automatic annotation of CT reports to tell

whether they are nano or not, can be of great help to clinical

researchers in nanomedicine, and we will show in this paper that

such a classification can come from comprehensively searching for,

and detecting the presence of nanodrug and nanodevice involve-

ment in a study from the CT summaries published in public

registries, such as ClinicalTrials.gov.

The analysis of nanoinformation—a new field, to which we

have already contributed [18–21]—suggests that data resulting

from research in nanomedicine are highly heterogeneous, and

distributed among many data sources, without usually following

any specific data standard or using a controlled vocabulary [22].

Since the volume of nanomedicine experimental and clinical data

is increasing rapidly, manual searches, and subsequent analyses

and annotation of studies on nanodrugs and nanodevices, does not

scale, and becomes increasingly infeasible [23]. In this paper, we

present a novel approach for the analysis of summaries of CTs,

designed to detect the mention of nanotechnology products as test

targets, as opposed to the testing of conventional drugs in a trial, so

as to demonstrate the viability of applying automatic methods to

carrying out the detection, and suggesting, by our cross-validation

results, that the techniques can be extended to predictive detection

and annotation of the CTs.

Clinical Trials for Nanomedicine
A major issue when analyzing a nanomedical text is how to

define the term ‘‘nano’’ [24]. Many attempts to characterize

nanotechnology can be found in the literature [25] but a standard

or consensus definition—proposed or accepted by all the

regulatory authorities in the field—has yet to be established. For

instance, the International Organization for Standardization (ISO)

and the US National Nanotechnology Initiative (NNI) defines

nanotechnology as ‘‘the understanding and control of matter at

dimensions between approximately 1 and 100 nanometers, where

unique phenomena enable novel applications’’ [26,27]. In

addition, there exist nanomedical studies which include materials

at higher scales, e.g. considering structures with at least one

dimension that reaches up to 300 nanometers [7], or 500

nanometers [28], or, at the lower end of the scale, those that are

even smaller than 1 nanometer [29,30].

Criteria that can distinguish between nano and non-nano drugs

and devices are still under discussion, suggesting the urgent need

for ways to define what are nanomaterials and nanotechnology

products from their existing descriptions in the literature and in

CT reports. For instance, in Europe, a broad range of

characteristics—such as the size distribution or the volume-specific

surface area—is used to define a nanomaterial [31,32], even

though size is still the key element for distinguishing products at

the nanoscale. European recommendations consider not only

single or primary particles but also agglomerates—‘‘clusters of

molecules or particles resulting from a process of contact and

adhesion whereby dispersed molecules or particles are held

together by weak physical interactions, which can be dispersed

again’’ [33]—, aggregates—‘‘clusters of chemically-bound nano-

particles held together by strong chemical or sinter forces through

a non-reversible process’’ [33]—, and structured particles, but do

not apply any universal threshold to their size. The most recent

definition [34] considers that a nanomaterial should fulfill at least

one of the following conditions: i) consists of particles, with at least

one external dimension in the size range 1–100 nm for more than

1% of the number size distribution; ii) has internal or surface

structures in at least one dimension in the size range 1–100 nm;

and, iii) has a specific surface area by volume greater than 60 m2/

cm3. In the USA, according to the Food and Drug Administration

(FDA), nanotechnology products must have at least one dimension

in the nanoscale (1–100 nanometers) or, in the case of products

with a size range of up to one micrometer, they must exhibit

properties and phenomena that are attributable to their dimen-

sion(s) and distinct from those of macroscale materials [35].

Consequently, researchers use different measures and properties to

distinguish between nano and non-nano products, ranging from

size, size distribution and surface area, to other material

properties, such as crystalline phase, photocatalytic activity, zeta

potential, or water solubility, among many others.

Online Clinical Trial Registries
Full disclosure of CT outcomes is essential to avoid duplication

of efforts in clinical research, as well as bias in the publication of

results—for instance, selective reporting based on the commercial

interests or failure to report important adverse events [36]. In most

cases, pharmaceutical and commercial data are confidential and,

therefore, additional and more effective sharing policies on clinical

results are still needed.

Registration and public access to CT results have been

frequently discussed [37–41]. In 2004, the International Commit-

tee of Medical Journal Editors (ICMJE) published a statement

establishing the disclosure of clinical trial results in public registries

as a requirement for their publication in scientific journals [42].

Staggered public release of CT results started in 2007 after several

legal rulings [43–45] were made regulating public access to CT

summaries. Nowadays we can find numerous databases offering

free online access to data reported about CTs, such as, for

instance, the ClinicalTrials.gov database (http://clinicaltrials.gov/)

in the USA [46], the EudraCT database accessible through the

European Union Clinical Trials Register (https://www.

clinicaltrialsregister.eu/) [47] and the Japan Medical Association

Clinical Trials Register (JMACTR) (https://dbcentre3.jmacct.med.

or.jp/jmactr/Default_Eng.aspx/). There is still no single compre-

hensive international registry of CTs but the International Clinical

Trials Registry Platform (ICTRP) (http://apps.who.int/

trialsearch/Default.aspx/), developed by the World Health Orga-

nization (WHO), includes these databases, while offering a uniform

access mechanism to clinical trial data stored on them [48]. There

are also several public repositories focused on specific diseases. For

instance, the National Cancer Institute provides an online

searchable database (http://www.cancer.gov/clinicaltrials/

search/) with about 37,000 cancer-related CTs. Additionally, some

databases owned by the pharmaceutical industry can also be

accessed through the Internet, such as the GlaxoSmithKline

Clinical Study Register (http://www.gsk-clinicalstudyregister.

com/; https://clinicalstudydata.gsk.com/) [49]. Even though all
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of these are valuable resources for clinical researchers in the

biomedical and nanomedical areas, none of them makes an explicit

and clear category distinction between CTs supporting nano and

non-nano products.

The work presented in this paper analyzes CT summaries

extracted from the ClinicalTrials.gov database. Since its release in

2010, the ClinicalTrials.gov database has grown considerably

(Figure 1) and several tools have been developed to extend and

improve its functionalities [50,51]. At the time of writing, the

database provides access to about 150,000 registries of CTs

conducted in 185 different countries, including clinical studies on

nanoparticle formulations and medical products containing

nanomaterials and nanodevices. We selected this database among

many others due to its volume of data, its scope and quality, as well

as its programmatic interface, which allows users to download

study record data in a machine-readable format (eXtensible

Markup Language, XML) that can be easily analyzed.

Overall aim of this work
In this paper, we present a novel approach to the classification

of summaries of CTs between those that were targeted at testing

nanotechnology products vs. those targeted at testing conventional

drugs, and demonstrate the feasibility of applying automatic

methods to produce such a classification for the purpose of

annotation and indexing. The obtained results are promising,

suggesting that the CT summaries archived in ClinicalTrials.gov

do contain the required information for a machine learning

method to automatically identify whether the summary refers to a

CT involving nanoparticles and/or nanodevices or not. The

possibility of automatically distinguishing CTs that support nano
vs. those that support non-nano products is timely and necessary

due to the growing information challenges posed by nanomedical

research which make manual comprehensive detection of nano
trials from CT summaries by experts increasingly difficult and

costly, as well as tedious and error-prone.

Materials and Methods

To address the classification problem described above, we

identified, selected and extracted 500 nanodrug-focused CTs from

ClinicalTrials.gov. In addition, we created a control group

composed of 500 CTs not involving any nanodrugs or nanode-

vices. Both sets define our training and test set, and form the

baseline reference set composed of documents correctly labeled as

nano and non-nano (Table S1). We applied state-of-the-art

machine learning methods —reported in the scientific literature

to be suitable for the document classification task, as we will see

next— to generate multiple classification models that were

assessed using cross-validation (both 10-fold and leave-one-out

cross validation).

This section describes the proposed approach in detail. First, we

define the scope of our study as well as the procedure we followed

to identify, select and gather the CT summaries to build the

training and test set. Then, we describe the different methods we

used to conduct the experiments, including the data pre-processing

techniques and the machine learning algorithms that we applied

for document classification. The section concludes with a

description of the validation processes we used to compare the

performance of the generated models for classifying CTs.

Scope of the analysis
We manually selected a representative set of CT summaries

from the ClinicalTrials.gov repository, based on the criteria and

procedures described next. First, we conducted a simple search

browsing studies by keyword: i) those CTs containing the term

‘‘nano’’ (for which 55 results were found) and, ii) those CTs

containing the term ‘‘nanoparticle’’ (which yielded 133 results). It

should be noted that the ClinicalTrials.gov database does not

allow searching by prefix, which prevented us from searching all

the terms that start with the prefix ‘‘nano’’. In order to make this

first search as general as possible and avoid the use of terms related

to a specific drug, we selected the words ‘‘nano’’ and ‘‘nanopar-

ticle’’ as search terms. Such as small total of 188 CT registries

Figure 1. Total number of registered clinical studies in EudraCT and ClinicalTrials.gov over the last years.
doi:10.1371/journal.pone.0110331.g001
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manually validated and labeled as nano, considering the numerous

nanomedical products that are currently present in CTs, suggests

that detecting the use of nanodrugs and nanodevices as being

involved in a CT by using simple keyword searches on their

summary descriptions may not yield all documented examples of

this type of CT.

Therefore, to detect the presence of concepts and semantic

entities that might be related to the nanomedicine field within the

registries of the ClinicalTrials.gov database, we enriched our set of

search terms by including specific concepts from an external

source developed by the National Cancer Institute, the NCI

Metathesaurus [52]. The NCI Metathesaurus combines a large

number of clinically and biologically relevant controlled vocabu-

laries and terminologies (http://ncim.nci.nih.gov/ncimbrowser/

pages/source_help_info.jsf), some directly related to nanotechnol-

ogy and, specifically, to nanomedicine, such as the NanoParticle

Ontology (NPO) [53]. The goal of this step was to select the most

descriptive terms that appear in nanomedical studies from this

broad set of sources. For this purpose, we searched the

terminology database for those entries containing the term ‘‘nano’’

in any field. This search returned more than 800 related

biomedical concepts that were manually filtered afterwards,

selecting only those concepts that belonged to one of the five

semantic types considered potentially relevant to the nanomedical

domain: Organic Chemical; Pharmacologic Substance; Inorganic

Chemical; Biomedical or Dental Material; and, Indicator,

Reagent, or Diagnostic Aid. Other semantic types were disre-

garded due to their lack of relevance for our study—e.g.

Amphibian, Natural Phenomenon or Process, Plant, Eukaryote,

etc. A total of 168 concepts were retrieved and validated, from

which we obtained 433 terms by including all the synonyms

pointed to by the Metathesaurus. We followed a dictionary-based

approach by using the selected concepts provided by the

Metathesaurus as input—i.e. as keywords—for conducting a new

set of searches within the ClinicalTrials.gov database. Only 38

concepts (190 terms) extracted from the Metathesaurus returned

results and were matched to clinical summaries. With this process,

we retrieved a total of 344 CT registries that we validated and

annotated with the label nano after a preliminary manual

verification by us.

Using this combination of searches, we increased the set of

potentially nano CT summaries to 414. This set was then analyzed

in-depth: for each nano candidate, we conducted a comprehensive

study of the intervention involved, checking out external data

about the active component of the drug, its manufacturing process

and the routes of administration. Targeted searches in diverse

Web sources, such as PubMed (http://www.ncbi.nlm.nih.gov/

pubmed/), the Web of Knowledge (http://wokinfo.com/), the

Cochrane Library (http://www.thecochranelibrary.com/), Goo-

gle, and a number of CT online registries, were carried out to

retrieve nanodrug descriptions, which led to a myriad of sources.

The scientific literature, for instance, provided us with a wealth of

descriptions, usually reported as free-text entries. The authors also

consulted a number of additional sources, including drug

databases—e.g. Drugs@FDA (http://www.accessdata.fda.gov/

scripts/cder/drugsatfda/), DailyMed (http://dailymed.nlm.nih.

gov/dailymed/about.cfm/), TOXNET (http://toxnet.nlm.nih.

gov/index.html/), ChemIDplus (http://chem.sis.nlm.nih.gov/

chemidplus/)—, nanomaterials databases—e.g. Nanomaterial

Registry (https://www.nanomaterialregistry.org/) [54]), pharma-

ceutical registries—e.g. Clinical Trials Portal of the International

Federation of Pharmaceutical Manufacturers & Associations

(http://clinicaltrials.ifpma.org/clinicaltrials/no_cache/en/clinical-

trial-advanced-search/index.htm/)—, manufacturer websites—e.g.

COMAR International database for certified reference materials

(http://www.comar.bam.de/en/), European Reference Materials

online catalogue (http://www.erm-crm.org/Pages/ermcrmCata

logue.aspx/), BAM Federal Institute for Materials Research and

Testing list of nanoscaled reference materials (http://www.nano-

refmat.bam.de/en/)—, patent records—e.g. PATENTSCOPE

(http://www.wipo.int/patentscope/en/), Patent Full text Databases

of the US Patent and Trademark Office (http://patft.uspto.gov/)—,

and CT directories developed by advocacy organizations—e.g.

American Association for Cancer Research SU2C Clinical Trials

Finder (http://www.emergingmed.com/networks/AACR-SU2C/),

International Myeloma Foundation trials searcher (http://myeloma.

org/ResearchMatrix.action?tabId=26&menuId=0&queryPageId=1

4). Further, related CTs extracted from ClinicalTrials.gov, EUCTR,

ICTRP and other sources, were also checked for comparison with a

wide set of pre-clinical drugs. Information from all of these sources

were used to cross-check and verify the nature of the drugs,

formulations and medical devices identified as nanodrugs or

nanodevices within the set of CTs earlier retrieved from Clinical-

Trials.gov. From the analyzed information, we found a set of widely-

used terms related to nanomedicine that can be considered as text

patterns in clinical trials—e.g. liposomal, micelle, nanomaterial,

nanosuspension, nanocolloid, crystal, nanotubes, gel, PEG, etc.

These terms were also used to complete our search criteria and

perform new searches in the ClinicalTrials.gov database that allowed

us to retrieve additional clinical trial registries to complete the nano
body of CT summaries. This body of documents was further double-

checked by experts in the field of nanotechnology— Prof. Alejandro

Pazos and Prof. Julián Dorado (University of A Coruña, Spain), as

external experts, and Prof. Vı́ctor Maojo and Prof. Casimir

Kulikowski (co-authors)—, eliminating CTs that did not belong to

nanomedicine and disregarding incomplete and inaccurate entries in

the registries. Finally, the CTs involving non-nano products were

randomly selected—i.e. without performing any specific query in

ClinicalTrials.gov—and subsequently reviewed yet again to remove

those CTs involving any relation to nanodrugs or nanodevices—with

the few thus removed then becoming candidates that were

considered to augment the set of CT nano entries. As result, we

ended up with balanced training and testing sets, including 500 nano
CTs and 500 non-nano CTs. For computational purposes, we

downloaded the selected registries from the ClinicalTrials.gov

website and stored all the study record data locally. Each record,

in XML format, was processed with the Python library lxml (http://

lxml.de/) to extract its textual content.

Through the procedure described above, we obtained the set of

1000 classified summaries, divided into the two different classes of

nano and non-nano, depending on whether they were relevant or

not to the targeting of nanoparticles or nanomaterials, or

nanotechnologies, and hence falling into the nanomedical domain.

This set of summaries (Table S1) provided the basis for the

development and training of several types of classifiers, as

described in the following subsections.

Data Pre-processing
Data pre-processing is a critical step for improving classifier

performance, which strongly depends on the data used to train the

models [55]. To apply machine learning techniques and facilitate

knowledge discovery during training, we first pre-processed all the

documents (CT summary records) to eliminate irrelevant infor-

mation from them. We performed several data standardization

and filtering steps before running the data analysis, as detailed

below.

For each entry (CT record), the textual content was tokenized

and pre-processed using the Natural Language Toolkit (nltk)
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package for Python (http://nltk.googlecode.com/svn/trunk/doc/

api/nltk-module.html) [56]. First, we split plain text into tokens by

resorting to regular expressions: blank characters and punctuation

marks provided the initial division into tokens. Tokens are defined

as sequences of alphanumerical characters that may also include

the underscore character (‘_’). Next, we replaced all the digits in

the text by an arbitrary character (‘#’) and converted all text to

lowercase. Stop words and short textual features were removed

from the text, disregarding those tokens with less than three

characters, as recommended in [57]. Then, we performed word

stemming using Porter’s algorithm for English [58], grouping

words belonging to the same family by reducing them to their

common stem.

Next we converted the plain text into textual features—

unigrams and bigrams. A unigram can be defined as a single

token extracted from the text while bigrams can be regarded as

pairs of consecutive tokens found in the text. Each CT was

represented as a vector of features implementing a ‘‘bag-of-words’’

approach [59], each component of the vector being either a

unigram or a bigram. Table 1 shows a summary of the number of

features—unigrams and bigrams—identified in the documents to

illustrate their average size. For all documents in the collection, a

total number of 11,164 unigrams and 38,124 bigrams were found.

Each unigram occurred, on average, in 24 documents, while each

bigram appeared in 6.3 documents. Related graphical summaries

of results are provided in the Supporting Information, in Figures

S1 and S2. These figures show that the distribution of N-grams per

document —both unigrams and bigrams— is not normal, with a

median of the distribution being 522,875 (unigrams per document)

in the case of unigrams, and 297,667 (bigrams per document) in

the case of bigrams.

As stated above, we adopted a vector-based representation for

the documents. Therefore, each document can be regarded as a

vector with each of its components corresponding to a unique

feature —unigram or bigram— in the collection. We built the

features vector for our collection of 1000 documents using

different representations:

1. Binary representation: each component of the vector denotes

whether a unigram or bigram is present (1) or not (0) in the CT

represented by the vector.

2. Frequency-based representation: in this representation we

record the frequency of appearance of each feature (i.e.

unigram or bigram) in the document.

3. Inverse Document Frequency-based (IDF) representation, which

eliminates those terms that appear in too many documents,

being therefore unlikely to discriminate well between the

classes.

4. Term Frequency*Inverse Document Frequency-based (TFIDF)
representation: Using this transformation it is possible to

combine the local discrimination power of a term—i.e. in the

context of a single document— with the global discrimination

power of the term—in the context of the whole collection [60].

Finally, we also chose to normalize the resulting feature vectors.

We applied a normalization step to all the representations above:

each document vector was scaled by its l2 –norm. The purpose of

this normalization was to optimize the performance of certain

classifiers, especially those implemented with the simple Naı̈ve

Bayes [61] and Support Vector Machine algorithms [62,63].

Design of the experiment
We trained several classifiers to find the best machine learning

model for predictively categorizing the corpus documents into the

nano and non-nano classes. We built the following classifiers using

the collection of state-of-the-art machine learning algorithms for

data mining provided by the Weka workbench (http://www.cs.

waikato.ac.nz/ml/weka/) [64]:

1. Multinomial Naı̈ve Bayes (MNB) classifier: This variation of

the Naı̈ve Bayes classifier, based on a multinomial distribution,

is typically used for document classification [65]. Although it

makes strong assumptions—e.g. mutually independent vari-

ables—it can yield good results in terms of precision and is

often used as the simplistic baseline for comparison with other

classifier results.

2. Decision trees (C4.5): We built a C4.5 decision tree [66] using

the open-source implementation provided by Weka, named

J48 [67].

3. Logistic regression classifiers: Logistic regression [68] is a

method for linear classification that models how the probability

of an event can be affected by one or more parameters. We

used three different variants of logistic regression:

Table 1. Statistics related to the number of features found in the body of CT summary documents.

Unigrams Bigrams

Number of unigrams
Number of unique(*)

unigrams Number of bigrams
Number of unique(*)

bigrams

Minimum number of N-grams per
document

111 66 45 31

Maximum number of N-grams per
document

15092 1277 13124 1449

Average number of N-grams per
document

732.462 268.282 450.179 240.772

Standard deviation 1000.856 138.014 788.709 167.367

The ‘‘Minimum number of N-grams per document’’ and the ‘‘Maximum number of N-grams per document’’ refer to the number of N-grams (both allowing and not
allowing double- count) found in the documents containing the smallest and greatest number of N-grams in the collection, respectively. For instance, regarding
unigrams, the document containing the smallest number of unigrams allowing double-count contains 111 unigrams, while the document containing the smallest
number of unigrams not allowing double-count contains 66 unigrams.
(*)no double-count allowed
doi:10.1371/journal.pone.0110331.t001
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a. Stochastic Gradient Descent (SGD) algorithm for binary class

logistic regression [69].

b. Regularized logistic regression, where we applied regulariza-

tion to the regression parameters to reduce overfitting—a

condition which occurs when a classification or estimation

model is too complex (too many parameters with respect to

the number of observations) since it is trying to over-precisely

fit training data instead of learning to generalize.

i. L1-regularized Logistic Regression (L1-LogReg) or lasso

regression [70], where we used the L1-norm as regularization

parameter.

ii. L2-regularized Logistic Regression (L2-LogReg) or ridge

regression [71], where the penalty parameter was the L2-

norm.

4. Support Vector Machines (SVM): SVM algorithms [72] have

been widely used to model large feature spaces and,

particularly, have proven successful when applied to document

classification problems [62]. To find the optimal method for

our dataset, we compared the performance of several SVM

kernel types, obtaining the best performance for the following

kernels:

a. SVM-Lin: A SVM with a linear kernel.

b. SVM-Pol: A SVM with a polynomial kernel of degree 2, using

the Sequential Minimal Optimization (SMO) implementation

[73,74].

Independent experiments were run for each classifier. We

evaluated their generalization performance on the selected

datasets corresponding to the various document representations

previously explained: occurrence matrices, frequency matrices,

IDF, TFIDF, and their normalized versions.

The entire dataset of 1000 CTs was divided into training and

testing sets for which classifiers were tested by 10-fold Cross-

Validation (10-fold CV) and Leave-One-Out (LOO) methods. In

the case of 10-fold CV, the entire CT summary data set was

randomly stratified into ten folds of the same size and each fold

was composed of 100 CTs with the same number of nano and

non-nano CTs. For the leave-one-out or LOO tests, we used one

CT record from the original body of data as a test example, while

the remaining records (999) were used as the training set to

develop the model. This was iterated 1000 times by leaving out

each of the data items. This type of validation yields a more

conservative approach to test the classifier performance [75,76].

Finally, we also carried out self-consistency tests where the

complete body of documents was included in the training set to

see if the generated models differed much from the cross-validated

ones. These tests give a measure of the stability of the classifier

design as a function of the statistical variance across the different

training subsets in the cross-validations, in comparison to the over-

optimistic performance expected from the over-fitted testing-on-

the-training set classifier based on the entire body of 1000

documents.

The validation of the different models was conducted consid-

ering several performance measures:

- True Positive vs. False Positive rates.

- Precision, for measuring the positive predictive value.

- Recall, which measures the sensitivity.

- F-Measure, which combines precision and recall into a single

measure.

- Mathews Correlation Coefficient [77], which measures the

correlation between the observed and the predicted class for

binary classifiers.

- The AUC, or Area Under the Curve, of the ROC [78,79],

which provides a combined measure of sensitivity and

specificity, useful for overall classifier comparison as it

integrates results over all possible tradeoffs of decision

threshold along the ROC curve.

These outcome measures allowed us to evaluate, compare and

rank the diverse models generated during our experiments in

order to select the best method to address the problem of

classifying CTs and validate our approach. Figure 2 presents an

overview of the different steps of the method described in this

section.

Results and Evaluation

In this section, we provide a summary of the best results

obtained during the above described experiments. Complete

results from experiments on unigrams and bigrams are provided in

the Supporting Information section (Figures S3 to S5). The reader

can find there several comparisons of the results provided for the

different document input sets and classifiers.

Performance
Table 2 presents a comparison of the results provided by the

best two learning algorithms under the different transformations

using 10-fold CV and LOO, for unigrams. The results yielded by

bigram-based models are provided in the Supporting Information

Section, since they were outperformed by unigram-based models.

As shown in the table, in the case of unigrams, the best

performance results were obtained using L1-normalized logistic

regression with the IDF transformation. This regression model

produced the best classifier with 10-fold CV as well as with LOO

experiments. Figure 3 shows the learning curve for this best

empirical classification model for both types of validation. The

learning curve represents the prediction accuracy (percentage of

correct results) vs. the training set size (number of training

examples) and it is useful to see whether the machine learning

classifier is suffering from bias or overfitting. The learning curve

shows changes in the learning rate as more documents were added

to our corpus. For its calculation, we ran several experiments

increasing the size of the training set incrementally —creating a

10% training set and 90% test set from the original dataset, then

successively reducing the test set until it comprised only 5% of the

overall dataset—, and plotted the accuracy as a function of the

cardinality of the training set. For the gradual incrementation of

the training set size, in the Advanced Mode of the Weka

Experimenter, we used the CrossValidationResultProducer (for

varying the number of instances a classifier is trained on) in

conjunction with the LearningRateResultProducer (to generate

the learning curve results). The learning curve in Figure 3 tends to

increase as we add more training examples. This does indeed

suggest that the selected algorithm is learning with experience,

showing that it is adequately reflecting the pattern of the data set

without undue over- or under-fitting.

On the other hand, Figure 4 shows the ROC curve for a subset

of the tested classifiers, including those classification models with

the best values for the Area Under the Curve (AUC) measure. The

AUC, as an overall threshold-independent statistic to compare

classifier performance, indicates the ability of the classifier to

distinguish between the nano and non-nano classes. In addition,

Cohen’s Kappa statistics [80] for these binary models are given in

Machine Learning to Identify Nanodrugs in CTs from ClinicalTrials.gov
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Figure 2. Illustration of the followed approach.
doi:10.1371/journal.pone.0110331.g002
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Table 3. This coefficient measures the reliability of the results

reflecting the number of correct results obtained by the classifier

not by chance. In the case of the L1-LogReg classifier with IDF

transformation, we obtained a value of 0.91 for the kappa statistic,

which is close to 1, thus suggesting a high confidence in the

reliability of the classifier.

A comprehensive comparison between the different classifica-

tion algorithms shows that while SVM-based methods offer good

precision results, CT classification is outperformed in most cases

by an approach based on logistic regression classifiers, specifically

by those using the L1-norm penalty. At the same time, logistic

regression has the substantial advantage of producing sparse

models, which can be efficiently implemented.

In the case of regularized logistic regression, L1-regularized

logistic regression yields consistently higher performance than L2-

regularized logistic regression. As reported elsewhere [81], while

numerical stability is provided by L2-regularization, L1-regular-

ization yields sparse models and tends to provide better

performance for input datasets that include non-discriminating

features. In fact, by applying L1-regularized logistic regression we

carry out a feature selection process, which considerably improves

the results. Finally, when catalyzed by a stochastic gradient descent

algorithm, logistic regression eventually outperforms other state-

of-the-art algorithms, such as SVM.

For SVM-based models, the linear kernel implementation

yielded the best results in most cases. However, we found the

SVM polynomial classifier to perform better with normalized

datasets. This can be explained due to the fact that SMO

implementation we used for the polynomial kernel SVM notably

augments its performance with small numeric attributes [73] —i.e.

when data is normalized. Conversely, the SVM polynomial kernel

offers low performance results when applying the IDF transfor-

mation and, more concretely, the TFIDF transformation to non-

normalized datasets. This indicates that, in this case, we may be

using a too complex algorithm for training our model: the

polynomial kernel model contains more information about the

training data, but it causes overfitting and does not generalize well

to new data. This problem is avoided by normalizing the input

data sets, using the normalized versions of IDF and TFIDF, as

shown in Figures S3 to S5 in the Supporting Information. Hence,

we have smaller values for the features, which correspond to a

simpler (smoother) hypothesis that may be easier to generalize to

unseen data. Although this regularization prevents overfitting, we

can conclude that a simpler model, such as the linear kernel, is

more suitable in this case, due to its lower computational cost.

As mentioned previously, we also tested several SVM kernels

that are, in general, more flexible than linear and polynomial

kernels. For instance, we tested the Radial Basis Function (RBF)

kernel, which tends to yield smoother solutions than linear and

polynomial kernels, making it more suitable for other type of data

rather than text, such as those arising in the classification of

images. In fact, the good performance of polynomial kernels relies

on the hypothesis that high-order word correlations provide more

information than single words. We could not conclude whether

this correlation between words prevails or not in our body of

documents, but, based on the results, we found that single tokens

perform better than bigrams. The use of unigrams outperforms the

results obtained with bigrams, which could be due to a lack of

correlation between adjacent words. This is consistent with the

nature of the textual contents of the CTs classified as nano. It

should be stressed that, while nano CTs contain terms from the

nanotechnology field, in most cases, they are acting as simple

‘‘modifiers’’ to biological or medical referents. Therefore,

nanomedical terms usually occur as single (though composite)
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words rather than as bigrams, and tend to be sparse in the text.

However, these performance results might also suggest that

bigrams require a larger set of documents to obtain significant

results than unigrams, since the number of indexing terms for

bigrams may be significantly larger —thus introducing noise—,

and bigrams are less likely to occur in a document than unigrams

—considerably lowering performance for small datasets.

With regards to the other classifiers evaluated in the experi-

ments, as reported elsewhere [65], the multinomial Bayesian

(MNB) performance is worse than the state-of-the-art, and thus we

just used it as a baseline method for comparison purposes.

However, as shown in Figures S3–S5, MNB performs better when

using TFIDF scores instead of raw term frequencies [61],

especially when no normalization is applied to the length of the

resulting feature vectors.

On the other hand, C4.5 decision trees are not usually applied

to datasets with a large number of features for efficiency reasons,

but they are useful for interpreting the decisions of a classifier

involving a conjunction of features. Moreover, in some cases, they

yield a good performance—e.g. when the input set has a high

Figure 3. Learning curve for L1-regularized logistic regression in the case of unigrams with IDF transformation.
doi:10.1371/journal.pone.0110331.g003

Figure 4. ROC curve for the best classification models resulting from the LOO validation (ranking based on the AUC obtained for
each classifier).
doi:10.1371/journal.pone.0110331.g004
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number of highly discriminating subsets of subspaces of features.

As can be seen in the Supporting Information section, for

unigram-based experiments, C4.5 outperforms other classifiers—

such as logistic regression or polynomial SVM— for different

transformations of the documents vector. Conversely, for bigrams,

it yields the worst performance results for the most of the

experiments. This is consistent with the earlier comment on the

nature of the ‘‘nano’’ term being a common modifier of

biomedical referents in the text, making the resulting composite

words sufficiently powerful discriminating unigrams for the

analysis, so that adjacent words simply add confusing "noise" to

the signal that then must be detected during the classifier’s

learning phase.

It is also significant that feature transformation dramatically

improves the performance of the different methods in several

experiments. Regarding the different representations of the input

dataset, IDF provides the best results, suggesting that while the

local weight of a term is a good discriminant, its global weight

usually provides a better discriminating performance. With respect

to normalization, the SVM linear classifier yields better results for

normalized data, while L1- and L2-normalized logistic regression

offers better performance without normalization. While normal-

ization tends to improve performance results for most experiments,

this is not the case for regularized logistic regression, where

normalization appears to inject noise into the dataset.

Computational cost
In terms of the computational cost of the different classification

models, we can make a few observations. Despite the fact that

SVM algorithms achieved the state-of-the-art performance, they

have a high computational cost, especially when using SVM non-

linear kernel classifiers, which are much more complex compu-

tationally than linear kernels. In our study, the SVM linear

classifier shows close-enough performance to the polynomial

kernel classifier regardless of the transformations applied to the

input dataset with a much lower computational cost.

However, logistic regression yields better results in terms of

computational efficiency. Compared to SVMs, the drawback of

logistic regression is that it usually requires an expensive

exponential function evaluation during the numerical optimiza-

tion. But, as suggested elsewhere [82,83], L1-regularized logistic

regression can outperform more recent algorithms for a wide

range of classification tasks—as it did for our classification

problem—and, in addition, it produces sparse models—with

many zero regression parameters— thus reducing the computa-

tional complexity. On the contrary, L2-norm provides dense

solutions, increasing the computational cost of the classification.

In summary, in this series of experiments, L1-regularized

logistic regression and SVMs produce similar results and

significantly outperform the rest of the tested classifiers. We can

conclude that, as far as computational cost and performance trade-

off are concerned, the L1-norm logistic regression emerges as the

best choice for our CT summary document classification problem.

Discussion

This paper makes an original contribution to the design,

modeling and analysis of the nanomedicine domain in terms of

showing that one can automatically detect the relevance to a nano-

related target from a CT summary in ClinicalTrials.gov. We have

created an annotated body of nanomedicine CTs, with training

and testing sets that can be used to develop extended computa-

tional applications for supporting research in the nanomedicine

field (see Table S1 within the Supporting Information). To the best

of our knowledge, there is no such publicly available reference

dataset for clinical nanomedicine. Our approach has produced

promising results: given a subset of CTs extracted from

ClinicalTrials.gov, our method can be reliably used for automat-

ically determining whether the CT involves the use of nanodrugs.

We identified an algorithm (L1-regularized logistic regression) able

to deal with such a high-dimensional problem, both in terms of

classification performance and computational cost. Although the

classification results we obtained in this study are not directly

comparable to those resulting by other similar state-of-the-art

studies—since the latter are focused on different domains and

resort to different training and test sets, in general, our results (F =

0.955) outperform the results from other recent experiments—that

range in the interval [0.85, 0.96] by F-measure—as reported

elsewhere [65,84–89]. To our knowledge, these results are the first

application of text mining to extract information about nanodrugs

and nanodevices from ClinicalTrials.gov, excluding the NanoSif-

ter [90], which covers the dendrimer domain alone.

There are a number of reasons that justify performing such a

categorization of CTs into the nano vs. non-nano categories. These

include, for instance, comparing legacy formulations with nano-

technology-based formulations —in terms of aspects such as

structure, function, toxicology, pharmacokinetics and pharmaco-

dynamics (PK/PD), clinical immunogenicity, safety and effective-

ness—, which would provide additional information to researchers

in the nano domain. This knowledge could lead to the reuse of

existing products that could be manufactured at the nanoscale

and, therefore, re-classified as nanotechnology once this is done. In

most cases, current CTs on nanodrugs have not revealed unknown

side effects due to the nanoparticle or any of its constituents. Yet,

earlier abandoned therapeutics agents that have now been

reformulated as nanodrugs are presenting toxicity and side effects

due to the special physicochemical properties acquired during the

nanomanufacturing process that were not considered during the

design of the original drug [6,91]. While safety and efficacy trials

Table 3. Kappa statistic for the best classification models resulting from the Leave-One-Out validation.

Classifier Kappa coefficient

L1-Logistic Regression IDF 0.91

L1-Logistic Regression Frequencies 0.864

L1-Logistic Regression Binary Occurrences 0.832

SVM Linear Normalized TFIDF 0.826

L1-Logistic Regression TFIDF 0.824

SVM Linear IDF 0.816

doi:10.1371/journal.pone.0110331.t003
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will, of course, still remain essential, our approach could

considerably simplify and reduce the steps involved with the need

to pursue, as currently, assays and clinical trials, by instead

extrapolating clinical data and using modeling and simulation

tools from the related prior experiments.

In addition, physicians —and concerned patients— are currently

increasingly interested in CTs on non-nano drugs, since they often

seek information about diagnosis and/or therapy for a given disease.

On the other hand, most nano CTs currently archived in

ClinicalTrials.gov are in an early stage —either phase I or phase

II—, being those more targeted at clinicians and researchers —and

even pharmaceutical and nanotechnology companies— who are

more interested in research or the mid-term or long-term

applications of nanodrugs. In addition, different users will likely

search for different information. For instance, nano users often

search for information about the composition and characterization

(e.g. size, cytotoxicity, ligands, hydrosolubility, bioavailability,

pharmacokinetics etc.) of the nanocompound, while physicians are

more interested in the patient profile (e.g. sex, race, age, etc.), drug

dosage, study arms, etc. Knowing in advance the category to which a

given CT belongs, would ease the way information is indexed,

searched and presented to users based on their likely interests and

goals, which could be deduced or inferred from their profiles.

The information about nano CTs available in ClinicalTrials.gov

—although the same applies to other existing registries such as those

cited in the introduction— is not currently connected to other

repositories involving related data, such as physicochemical

properties (caNanoLab, https://cananolab.nci.nih.gov/caNano

Lab/), biological interactions (Nanomaterial-Biological Interactions

Knowledgebase, http://nbi.oregonstate.edu/), normalized vocab-

ularies and ontologies (the Unified Medical Language System,

http://www.nlm.nih.gov/research/umls/, and the NanoParticle

Ontology, http://www.nano-ontology.org/), environmental and

health safety data (the Nanomaterial Registry, https://www.

nanomaterialregistry.org/), modeling and simulation experiments

(nanoHub, http://nanohub.org/), etc. We believe that once the

nano CTs have been automatically identified, it is possible to

establish links among related information —either manually or

automatically, using artificial intelligence techniques—, in the same

manner as with most NCBI repositories (http://www.ncbi.nlm.nih.

gov/). Furthermore, the integrated information could be exploited

to compare and curate experimental results that are currently

distributed in different databases. We believe that this rationale

supports the initiative of automatically labeling the existing CTs in

the ClinicalTrials.gov database so as to support, assist, and

encourage future research in nanomedicine.

Regarding the limitations of the approach presented here, we

have consulted different CT registries as well as drug registries,

Pharma websites and other information sources and, unfortunate-

ly, we have run into several barriers, especially related to the

unavailability of public clinical nanomaterial data. We have also

identified several issues concerning the format and nature of the

data reported in CTs. First, the current identification system of

CTs has not been agreed to by consensus, and the main registries

are not fully committed to use a common coding system. Second,

drug nomenclature does not follow a standard, and a large number

of synonyms can be found to designate the same compound,

especially in the nanomedicine area. Finally, CT summaries do

not report the same type of information and do not have a

common structure in terms of text analysis. All of these issues add

complexity to the task of automatically parsing clinical summaries

and result reports —and it is worth noting that a similar situation

arises when analyzing the scientific literature. This fact could

constrain the application of the statistical approach presented in

this paper, since it relies on common patterns and terms that were

found in the documents.

Nevertheless, we believe that our work can stimulate a wide

range of novel computational applications to support nanomedical

research. An interesting example of application is the automated

creation of a repository linking nanoparticles and/or nanodevices

to side-effects reported in the CTs, an idea that we have already

explored [92]. Once an automated CT tagger—i.e. a classification

model that tags CTs as nano or non-nano, like the one presented

in this paper—is available, it is possible to reliably apply text

mining techniques to extract relevant information. This includes

but is not limited to— nanoparticles and nanodevices names and

formulations, their potential side-effects, routes of exposure, etc.

We are currently conducting an analysis of the distribution of the

nanomedical concepts patterns found in the dataset and their

relationships, as well as working on the development of a CT

information retrieval system based on the results obtained from

this work. In addition to CT summaries, this approach could be

applied to the vast nanomedical literature and also adapted to

extract data from other textual sources.

Conclusions

With the volume of experimental and clinical data related to

nanomedicine increasing rapidly, manual analysis and annotation

of studies on nanodrugs has become slow and largely impractical. In

this context, the development of automatic approaches targeted at

discriminating information from the nano and non-nano domains

becomes necessary. In this paper, we have presented two original

contributions to the nanoinformatics field. First, we have created a

training and testing set for a binary textual classification problem

targeted at identifying previously unseen CTs as being nano or non-
nano. Second, we have conducted a thorough review of the state of

the art both on machine learning-based techniques for binary

document categorization and existing repositories of drugs and

registries of CTs. We selected the classification methods and

algorithms reported in the literature as the best performers for

binary text categorization problems and applied these methods to

the training and test sets we created. We selected the most efficient

method to classify CTs into the nano and non-nano categories, thus

producing categorization models whose results outperform most

state-of-the-art classifiers. We believe that such a classifier can help

catalyze the research in translational nanomedicine, thus enabling a

wide range of applications that cannot be addressed well with a raw

repository of unclassified CTs.

The analysis of clinical trials related to nanomedicine, carried

out by integrating reported results over all the different available

databases worldwide, could result in the extraction of potential

correlations, and new patterns and trends in nanomedical data.

The analysis of correlations between multiple pre-clinical and

clinical studies may be of value in areas such as nanotoxicity and

targeted drug therapy, where certain underlying patterns and

trends could support inferences that inform future research in

nanomedicine. By way of an example, results could serve to

compare new formulations with existing ones and determine

additional side effects that may arise due to the newly added

components and/or the manufacturing process (i.e. to the

application of nanotechnology to the original drug). This work

could also facilitate researchers in automatically discovering new
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knowledge from CTs such as, for instance, uncovering potential

toxicity of novel nanodrugs or recruiting patients who are most

likely to respond positively to a certain nanoparticle intervention

due to their participation in earlier CTs using similar drugs.

Shorter time-to-market cycles for nanodrugs and medical

nanodevices require researchers to act on insights faster than

ever, as well as for computer scientists to develop new methods

and tools to efficiently manage this new knowledge, providing

users with the necessary processing and analysis capacity.

Furthermore, publishers, governmental agencies and the Pharma

industry will surely need to develop new open data strategies and

the setting of standards for CT data. This study points out that

valuable data on nanomedical CTs are already available implicitly

within the ClincalTrials.gov repository, and that machine learning

methods can be used to combine the values of individual word-

features from the CT summaries into a predictor for detecting

nano-related CTs. These kinds of approaches are needed to help

gather, organize and integrate the huge volume of existing data

which is potentially relevant for nanomedicine—including pre-

clinical and clinical data—and make them accessible to research-

ers [93].
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Supporting Information

Figure S1 Boxplot of document length for unigrams.
The red band inside the box represents the median of the

distribution of unigrams per document (522,875 unigrams).

(TIF)

Figure S2 Boxplot of document length for bigrams. The

red band inside the box represents the median of the distribution

of bigrams per document (297,667 bigrams).

(TIF)

Figure S3 Precision results for the input set under
different transformations and classifiers, with 10-fold
Cross-Validation and Leave-One-Out Cross-Validation,
for both unigrams and bigrams.

(TIF)

Figure S4 F-Measure for the input set under different
transformations and classifiers, with 10-fold Cross-
Validation and Leave-One-Out Cross-Validation, for
both unigrams and bigrams.

(TIF)

Figure S5 MCC for the input set under different
transformations and classifiers, with 10-fold Cross-
Validation and Leave-One-Out Cross-Validation, both
for unigrams and bigrams.

(TIF)

Table S1 Results obtained from the manual classifica-
tion of the summaries extracted from ClinicalTrials.-
gov. Each document belonging to the set—identified by its

National Clinical Trial (NCT) number—was manually tagged as

being either ‘‘nano-related’’ (500 nano CTs) or ‘‘non nano-

related’’ (500 non-nano CTs).
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