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Anatomic pathology services study disease in hospitals on the basis of macroscopic and

microscopic examination of organs and tissues. The focus of this research investigation

was on improving clinical biopsy diagnosis times through simulation based on the

Box-Muller algorithm to reduce the waiting time in the diagnosis of clinical biopsies.

The data were provided by a hospital in San José (Costa Rica). They covered 5 years

and showed waiting times for a pathological diagnosis that for some biopsies were

close to 120 days. The correlation between the main causes identified and the cycle

time in the biopsy diagnostic process was defined. A statistical analysis of the variables

most representative of the process and of the waiting times was carried out. It followed

the DMAIC structure (Define, Measure, Analyse, Improve, Control) for the continuous

improvement of processes. Two of the activities of the process were identified as being

the main bottlenecks. Their processing times had a normal distribution, for which reason

a Box-Muller algorithm was used to generate the simulation model. The results showed

that waiting times for a diagnosis can be reduced to 3 days, for a productive capacity of

8 000 biopsies per annum, optimizing the logistics performance of health care.

Keywords: discrete event simulation, hospital management, process model, installed productive capacity,

healthcare engineering, Box Müller algorithm, logistics (business)

INTRODUCTION

Discrete Event Simulation (DES) is a technique used to analyse the installed productive capacity
in a process. In health services, it can be applied to determine the number of nursing professionals
required to meet a certain demand (1, 2). There is today a considerable variety of applications
that allow the development of simulation models in health services, as is the case of the creation
of algorithms using software (3). Most health care simulation models are constructed using DES,
system dynamics, or agent-based modeling (4).

Simulation models can be developed to mimic the complex functioning of health services.
Examples are how the patient’s journey or a change in the number of emergency department
physicians influence the performance of an emergency ward or an angiography room (5, 6).
DES models can also be used to determine an energy efficient route by defining candidate routes
and taking into account the state of the network to finally select the most efficient route among
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the alternatives proposed (7). There has been work (8) integrating
DES with Lean Management (LM) and Complexity Scoring (CS)
to propose a method for analyzing the problems associated with
lean manufacturing. DES models make it possible to investigate
the relationship between a supply chain’s configuration and
performance in the context of a modular construction project (9).

In addition, DES enables clinical decision-making in patient
care to be improved in resolving real health system problems.
Hybrid Simulation (HS) uses at least two different simulation
modalities, so that their combination, with an appropriate
alignment, coordination, and interface between them, will let one
of them improve the other (10). The key indicators affecting
the privacy of Big Data in health management have been
identified (11). A fuzzy theory-based model of risk access control
which was then used for Big Data management in intelligent
medical treatment was established. The problem of inaccurate
experimental results due to the lack of real data when dealing with
real problems was also resolved.

The importance of hospital performance management is
recognized for providing effective quality of care and is a
key in any healthcare organization. Furthermore, it closes the
gap between conceptual planning of organizational goals and
physical monitoring of the status of daily operations (12). In
the operational management of hospitals, a reliability focused
approach to maintenance has been combined with evolutionary
optimization to develop optimal maintenance plans for hospital
facilities in four areas: intensive care units, emergency rooms,
operating theaters, and patient rooms (13, 14).

An important input in simulation models is that of
the algorithms that generate random numbers with a given
probability distribution (15). Among them, one might mention
the krill herd (KH) algorithm which is inspired by the grazing
behavior of krill swarms. The objective function in the KH
optimization process is based on the minimum distance between
the location of the food and the position of a krill individual (16).
Another is quasi-Monte Carlo simulation. This has been growing
in popularity due to its convergence rate and the existence of
simple statistical tools to analyse the error of its estimates. One
such tool is the Box-Muller transform which takes as input
two uniformly distributed random numbers and returns two
independent pseudo-random numbers from the standard normal
distribution (17).

The Box-Muller algorithm is also used for experimental
modeling in the stochastic analysis of variables with a Maxwell-
Boltzmann distribution, as well as the Ornstein-Uhlenbeck
and Einstein approximations (18). Another application is
for quantum measurement experiments in which symmetry
breaking is used to enhance a microscopic signal. The quantum
system comprises a system-apparatus-environment and uses
the Box-Muller algorithm to generate random numbers with
a standard normal distribution (19). Monte-Carlo simulation
has been used to analyse the concentration of dust particles on
the surface of a photovoltaic cell, with a dust particle being
assumed to be spherical in shape with a radius that depends
on the log-normal distribution function implemented by means
of the transformation to the normal distribution using the

Box-Muller algorithm (20). In this present study, the Box-
Muller algorithm is used to generate the random numbers of
the pathology department because it was identified that they
have a normal probability distribution, and in this way variability
and uncertainty are incorporated into the analysis. Pathologic
reports can confirm or exclude the presence of particular diseases,
such as the rule of microbial agents in an infection or check
cancers (21–24).

The problem of the Department of Pathology of Costa
Rica is focused on its lack of operational efficiency. The
application of the Box Müller algorithm is intended to improve
the operational performance of the hospital, thus bridging the
current technological knowledge gap.

The objective of this work was to develop a simulation
model based on the Box-Muller algorithm to reduce the waiting
time in the diagnosis of clinical biopsies. This will allow the
health service’s installed productive capacity to be analyzed by
identifying the critical factors that most affect it. It will allow
also to be put forward solutions that optimize the logistics
performance of health care.

MATERIALS AND METHODS

The data analyzed correspond to a 5-year period in a hospital
in San José (Costa Rica), with average waiting times for a
pathological diagnosis close to 120 days. An application was
designed in Visual Basic for Applications (VBA) capable of
making discrete event simulation models based on the Box-
Muller algorithm to generate random numbers with a normal
probability distribution. A graphical interface with forms was
also created.

The process of biopsy diagnosis in the health service has
six stages:

1. Collection of tissue specimens that need to be analyzed.
2. Cutting the specimens depending on the type of organ and its

physical characteristics.
3. Embedding the biopsy specimens in paraffin wax blocks.
4. Trimming and preparation of glass slides.
5. Reading and diagnosis of the slides by the pathologist.
6. Delivery of report with results.

To identify bottlenecks in the process, these stages were broken
down into 36 activities categorized as operations, inspections,
storage, waiting, or transport. The most representative elements
for the analysis of the anatomic pathology department’s
installed productive capacity are the different work areas,
their working hours, the staff assigned to each, and its
equipment. Table 1 shows the resources available in the anatomic
pathology department.

Between January 2015 and October 2017, the hospital had
three pathologists at that time so that the throughput of biopsies
remained stable. In addition, for that period, it was possible to
appreciate how not only was attention given provided to that
hospital, but support was provided to the health service network
very equitably.
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TABLE 1 | Resources available in the anatomic pathology department.

Area Shifts Staff Equipment

An autopsy room 06:00–14:00

14:00–22:00

Two technicians.

After 22:00, the area remains closed and

unstaffed. This is the section of the department

that stays open longest.

Two cooling chambers of two modules each Crane for cadavers

Camera Dissection table Computer Bright screen Scale

A biopsy cutting

room

07:00–16:00 One technician A computer for data entry into SIPAT Cutting instruments

(blades, etc.)

A histology room 07:00–16:00 Two technicians work in this room, both on

the 07:00–16:00 shift

A cryostat for frozen biopsies, and a refrigerator to

store specimens Two automatic tissue processors A microwave

oven for special stains A laboratory oven Slide dryer

A cytology room 07:00–16:00 The cytology output is quite low. Also, due to the quantity of

biopsies to be analyzed, this place has been picked to use for the

storage of biopsies awaiting analysis by the pathologist.

Three clinics

(offices) for

pathologists

07:00–16:00 One pathologist doing administrative and

operational activities

Each office is equipped with a computer and a microscope

A meeting room 07:00–16:00 Desks Board Microscopes

FIGURE 1 | Biopsies performed in the pathology department. Source: Anatomic Pathology Service.

In November 2017, the throughput of the medical center
dropped significantly due to the departure of the team of
pathologists. That center temporarily sent biopsies for analysis
to another hospital in the health services network. Subsequently,
the department has a staff doctor who combines administrative
tasks as head of the area with the operations of biopsy analyses.
In addition, pathologists provide support through overtime, but
this support is external to the hospital and sporadic.

As shown in Figure 1, in order to meet the demand for the
service, support to the network was stopped due to the limited
number of specialized personnel. Nonetheless, the demand
shows a tendency to increase, negatively impacting even more
the output of support to the network. The users who receive
this service are affected by having to perform their biopsies
at other centers. In absorbing the unsatisfied output, this

in turn saturates the capacity of the hospitals that provide
this service.

Box-Muller Transform
Box and Muller suggested the following model of mathematical
statistics used to generate random numbers with a normal
distribution. If U1 and U2 are independent uniformly distributed
variables in the interval (0,1), then x1 =

√
−2 lnU1 sin 2πU2,

is precisely the standard Gaussian N(0,1) (25, 26). Using this
method, an independent sequence N(µ,σ²) of random variables
is taken:







µ + σx1, x1 =
√
−2 lnU1 sin 2πU2

µ + σx2, x2 =
√
−2 lnU3 sin 2π4

µ + σx3, x3 =
√
−2 lnU5 sin 2πU6

(1)
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This method is relatively fast and provides normally distributed
random numbers.

The DMAIC Structure
This research was based on the continuous improvement
stages of DMAIC (Define, Measure, Analyse, Improve,
Control) processes, which is part of the six-sigma
set of production strategies (27–29). The following
paragraphs will set out the approach taken to each of
the stages.

Define Stage
The variability problem to be dealt with in the study (27)
was established. It corresponds to the current cycle time of
biopsy diagnoses. This was considered to be long since it can
be up to 120 days. There would be a consequent significant
deterioration of the patient’s health, and hence greater costs
borne by the healthcare system. The objective is to reduce
the waiting time for the diagnosis of biopsies by designing a
DES model.

Measure Stage
A data collection plan was determined for the variables
required for the simulation model. For this, the
official information sources (30) were validated. In
the case of the cycle time data, it was necessary to
determine the type of their probability distribution

by applying goodness-of-fit tests in accordance with
Equation 2:

χ2 =
k

∑

i=1

(oi − ei)
2

ei
(2)

where χ² is the value of a random variable whose sampling
distribution approximates the chi-squared distribution with v
= k−1 degrees of freedom, where k is the total number of
data comprising the sample. The variables oi and ei represent
the i-th cell observed and expected frequencies, respectively.
This test was applied to determine whether the data are
described by a normal probability distribution, validating it
with a p-value > 0.05 significance (α) used and an AD
(Anderson-Darling) statistic close to zero. The tool used for
the analysis was MINITAB R© 19.2 (2020). Table 2 presents the
collection plan.

Analyze Stage
The correlation between the main causes identified and the cycle
time in the biopsy diagnostic process was defined. This was
done through the design of a VBA that considers these variables
and the algorithms required to construct the pathology service
simulation model. The installed productive capacity analysis is
one of the most relevant aspects considered in this study. It lets
one determine the bottleneck in the process, the use of resources,
and the impact on the throughput. As part of the process, it was

TABLE 2 | The study’s data collection plan.

Variable Description Type Source

Biopsies received Biopsies that were received by the anatomic pathology

department

Quantitative; discrete Hospital’s software

Biopsies with diagnosis Biopsies that were analyzed by the pathologist, and have a report

and diagnosis

Quantitative; discrete Hospital’s software

Cycle time for biopsy review

(µ1)

Mean duration of biopsy review by the pathologist, i.e., from their

receiving a slide until making a diagnosis µ1 =
∑n

i=0 si
n

s = cycle time for biopsy i

n = total biopsies analyzed by the pathologist

Quantitative; continuous Hospital’s software

Cycle time for biopsy cutting

(µ2)

Mean duration of the technician’s biopsy cutting process

µ2 =
∑n

i=0 si
n

s = cycle time for cutting biopsy i

n = total biopsies analyzed by the technician

Quantitative; continuous Hospital’s software

Time between biopsy

arrivals (λ)

Mean time between biopsy arrivals λ =
∑n

i=0 ti
n

t = time between arrivals for biopsy i

n = total biopsies arriving at the department

Quantitative; continuous Hospital’s software

Activity Activities or tasks that make up the biopsy analysis process in the

anatomic pathology department

Qualitative; nominal Process

Type of activity Classification of activities such as operations, transportation,

storage, waiting, and inspections

Qualitative; nominal Process

Patient demand The number of patients requiring the department’s services in a

year (summing those attended to, those in the queue, and

those canceled)

Quantitative; discrete Hospital’s software

Mean waiting time Mean waiting time in the system and the queue Quantitative; continuous Simulation model

Mean number of biopsies in

the queue

Mean number of biopsies awaiting processing Quantitative; discrete Simulation model

Utilization The ratio λ/µ of the time between arrivals to the cycle time Quantitative; continuous Simulation model
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necessary to validate statistically the simulation model created
against the real system using confidence intervals (31). To this
end, the 1-month throughput data (X) were compared with the
simulation data (Y) for the same period. If the interval created
from this data set contains zero, it indicates that there is sufficient
evidence to not reject the null hypothesis that there are no
differences. Otherwise, there are differences.

H0 :X = Y (3)

Ha :X 6= Y (4)

((X − Y)− t∗υ−1, 1−α

√

σ 2
X−Y , (X − Y)+ t∗υ−1, 1−α

√

σ 2
X−Y ) (5)

where H0 is the null hypothesis, Ha is the alternative hypothesis,
the variable X represents the data obtained from the real system,
Y corresponds to the data obtained through the simulation
model, X the average of the real system data, Y the average of the
simulation model data, t the statistic of a probability distribution
t for ν-1 degrees of freedom and a 1-α degree of confidence,
σ 2
X−Y is the variance of the difference of the real system data with

respect to the simulation model data.

Improve Stage
Different what-if scenarios were defined considering the results
provided by the simulation model (32, 33). It is sought with
them to match the installed productive capacity with the current
demand for the department by making variations mainly to the
amount of resources available (34).

Control Stage
The purpose of this phase is the transition from the improvement
to the original process. For this, a set of indicators was developed
with which to monitor the performance of the process, and thus
determine whether the study’s objective had been met (35, 36).

Economic Evaluation
In order to assess the cost-effectiveness of the measures
implemented, an analysis was carried out including the following
variables: annual fixed cost (US$), overtime (US$), total
cost (US$), adjustment time (months), annual output (units),
diagnosis (days) and cost per biopsy (US$).

RESULTS

The results of the study are detailed in the following subsections.

Description of the Biopsy Diagnosis
Process
In the process, activities 6 and 32 stand out for their low times
corresponding to waits that add no value to the process. Figure 2
shows the classification of the activities, including a description
of each, the location where it takes place, the mean duration
and standard deviation of the cycle times. The cycle time data
for the 36 activities identified were obtained through sampling
and data of the transactional information system of the anatomic
pathology department.

Comparative Analysis of the Biopsies
Received With the Biopsies Diagnosed
The anatomic pathology department is responsible for making
the diagnoses corresponding to biopsies, cytology, and autopsies.
Biopsies account for 74.46% of the hospital’s Anatomic Pathology
Services output, cytology 25.09%, and autopsies 0.44%. For this
reason, the analysis of biopsies is prioritized to determine how
waiting times could be reduced for patients.

Figure 3 shows the relationship of the gap between the
biopsies received and the biopsies diagnosed from the week they
enter the pathology department. The lag between the two starts
from week 24. Thus, as the most recent date is approached and
the gap between biopsies diagnosed and biopsies received grows
there are biopsies of 4 months without analysis. This is because
the hospital’s throughput capacity cannot meet the demand.

Statistical Analysis for Biopsies Received
Analysis of the data of the biopsies received weekly by the
anatomic pathology department showed the demand to be
normally distributed. In particular, the Anderson-Darling test
yielded a p-value of 0.122, which is >0.05 significance used, and
an A² close to zero (0.58). The mean weekly demand for biopsies
in the center was ∼151.55 biopsies, with a standard deviation of
18.45. Thus, the 95% confidence interval of the mean is from
145.65 to 157.45, and of the standard deviation from 15.11 to
23.69. It is important to observe the data’s distribution since one
will be working with averages and deviations.

Statistical Analysis for the Biopsy
Response Time
Analysis of the time that elapses for a diagnosis after a biopsy
entered the anatomic pathology department showed the average
to be 123.57 days. The scatter of the data is considerable, the range
being from 4 to 246 days. The data are not normally distributed
as the Anderson-Darling test yielded a p-value below 0.05.

Provenance of the Biopsies
Of the biopsies performed by the Anatomic Pathology Service,
87% corresponded to requests originating in the hospital itself,
and the remaining 13% corresponded to the service provided
to other hospitals of the Health Services Network. Of the
total biopsies received in the San Rafael de Alajuela Hospital,
81.24% are from the specialities of gynecology, general surgery,
gastroenterology, and minor surgery. The rest of the specialities
account for the remaining 18.76%, as shown in Figure 4.

Statistical Analysis of the Biopsy Process
Turnaround Times
Biopsies represent 97% of the output of the pathology
department. Ideally in a production process, throughput times
would be normally distributed because this ensures a more stable
and predictable output, reducing the expected variation (37). One
of the activities most representative of the service corresponds to
the time dedicated by the pathologist to reviewing the slides and
making a diagnosis. Analysis of the summary of statistics of the
data obtained in this activity reflected no greater significance, and
the hypothesis of the Anderson-Darling test was rejected since
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FIGURE 2 | Flowchart of the biopsy process.
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FIGURE 3 | Relationship of the gap between biopsies received and biopsies diagnosed from the week they enter the anatomic pathology department.

FIGURE 4 | Pareto chart for the number of biopsies according to specialty.

p < 0.05 and A² = 1.56. As the normal distribution could be
rejected, the individual values were plotted to determine whether
there might be some important trait to orient the analysis
(Figure 5). It showed that the data could be classified into two
groups: group 1 corresponding to times shorter than 16min, and
group 2 to times longer than 20 min.

This bimodal characteristic clearly reflects two different events
within the pathologist’s analysis of the biopsies, suggesting
that there are two types of medical analysis, at least in
time, that merit descriptive study. In group 1, the mean
time of analysis by the pathologist is 9.26min with a
standard deviation of 4.30min. In group 2, the mean is
27.39min, and the standard deviation is 6.0min. The data
of both groups have a normal distribution. The results of

the normality test indicated a p-value of 0.495 for group
1 and 0.407 for group 2; therefore, the H0 hypothesis
was accepted.

According to the verification statistic, the null hypothesis of
24min per biopsy is rejected and the alternative hypothesis is
accepted, which indicates that the time to diagnose a biopsy
is shorter, with an average of 16.40min. At a 95% confidence
level, the confidence interval of the times would be from 13.1
to 19.7min per biopsy. For the lower limit of the interval, it
can be inferred that a professional could analyse ∼5 biopsies per
h, and for the upper limit, 3.5 per h. In sum, the estimator of
2.5, which is the approximate rate which pathologists currently
work with to define overtime is slower than the average yielded
by the data.
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FIGURE 5 | Plot of individual values of the time spent by the pathologist to

examine a slide (activity 34 of the biopsy operations flowchart).

It is important to note that the proportion with which these
cases occur is 2:1 because for every two biopsies in group 1 there
is one in group 2. This is equivalent to a third of the biopsy. This
indicates that from group 1 a throughput of∼6 biopsies per h can
be expected, and from group 2∼2 biopsies per h.

Sample Size
By means of a retrospective analysis, the power of the test was
used to determine whether the sample size was adequate. The
power corresponds to the probability of correctly rejecting H0

when it is false. In the group 1 it was found that the adequate
sample size for a power of 0.95 and a standard deviation of
4.30 was 29. Therefore, it can be said that there is no significant
difference >3, and it is unnecessary to increase the sample size.
In the case of group 2, it was found that the adequate sample size
for a power of 0.95 and a standard deviation of 6.001 is 21. In
the real data analysis, the size of the sample taken was 18, which
corresponds to a power of 0.90. This represents there being no
significant difference >5, and it is unnecessary to have a greater
sample size.

It is important to validate the sample size for the proportion
of group 1 and group 2 biopsy diagnoses, since the data provided

show a proportion of 0.33 and 0.67, respectively. With these
parameters, the size of the sample analyzed of 54 corresponds to
a power of 0.95. It is therefore unnecessary to increase the sample
size to identify a significant difference between the proportions.

Cutting of Biopsies by the Pathologist
Another important activity in which the pathologist is required
is cutting the specimens. Although the normality hypothesis was
rejected, the shape of the histogram showed some similarity to
such a distribution. The mean of the data was 1.16min with a
standard deviation of 0.423. Another group was identified with
a mean of 30min and a standard deviation of 10min. This
corresponds to biopsy sections of organs or large segments of its,
that account for 9% of the total cuts made.

Percentage of Biopsies
A significant percentage of biopsies have not been diagnosed.
The reason for this situation requires analysis. Of the biopsies
received in the anatomic pathology department, 38% remain
undiagnosed, corresponding to 2,468 of the 6,507 received up
to October. The case is similar with the cytologies, with 32%
reported without due diagnosis, corresponding to 72 of the 202
biopsies registered in the hospital.

Installed Productive Capacity of the Specialist

Physician (Pathologist)
To analyse the capacity of the biopsy process, the throughput
is defined considering the availability of the pathologist. This
currently represents the bottleneck in the process. The activities
in which this physician participates in the 1,776 h of work per
year were simulated, excluding Saturdays, Sundays, holidays,
vacations, and others. The proportions of the times to simulate
were determined according to the combinations of biopsy cutting
and analysis detailed in Table 3.

The model was validated by comparing the biopsies
performed with those produced using the interval analysis,
obtaining (−115.3, 89.0). Thus, for activity 8 of the biopsy
process, of the 33 cases of cutting by the pathologist, 30 (90.9%)

TABLE 3 | Proportion of hours to simulate for the combination of biopsy cutting and analysis.

ID Activity Mean time SD Cases Proportion

8 Specimen cutting Group 1 1.1563 0.423 30 90.9%

8 Specimen cutting Group 2 30 10 3 9.1%

34 Biopsy analysis Group 1 9.2571 4.3069 35 64.8%

34 Biopsy analysis Group 2 27.389 6.001 19 35.2%

TABLE 4 | Summary of simulated hours for the combination of possible biopsy cutting and analysis.

Operation Sim. C1A1 Sim. C1A2 Sim. C2A1 Sim. C2A2 Total hours

Cutting (hours) 130.11 23.94 104.72 56.71 315.47

Analysis (hours) 1,045.95 567.77 32.35 51.24 1,697.31

Total (hours) 1,176.05 591.71 137.07 107.95 2,012.78
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TABLE 5 | Simulated biopsy output.

Operation Sim. C1A1 Sim. C1A2 Sim. C2A1 Sim. C2A2 Total hours

Simulated output 6.748 1.242 210 112 8.312

Simulated demand - - - - 7.576

TABLE 6 | Number of pathologists required to meet current demand.

Human resources Pathologists Equivalent hours Hours relative to demand

Required human resources 1.13 2.013 0.00

Current human resources 0.75 1.332 −680.78

Proposed human resources 1.75 3.108 1,095.22

belonged to cut 1 (C1), which has a mean throughput time
of 1.1563min with a standard deviation of 0.423min. The
remaining 9% of the cuts, denoted cut 2 (C2), took a mean
of 30min with a standard deviation of 10min. For the biopsy
analyses (activity 34), other different events were identified. Of
the 54 cases of analysis by the pathologist, 35 (64.8%) belonged
to analysis 1 (A1), which has a mean throughput time of 9.26min
with a standard deviation of 4.31min. The remaining 35.2% of
the analyses, denoted analysis 2 (A2), took amean 27.39min with
a standard deviation of 6.00min. Hence, four simulations (of 10
replicates each) were made applying the designed model to the
possible combinations of cuts and analyses.

Simulation C1A1 (cut 1—analysis 1) resulted in a time of
1,176 h, simulation C1A2 591.71 h, simulation C2A1 137.07 h,
and finally simulation C2A2 107.95 h. In total, as shown
in Table 4, simulating these two activities requires 2,012.78
productive h from pathologists.

It was found, considering the information provided by the
simulation model, that for 2,012 h it is possible to produce a
total of 8,312 biopsies cut and analyzed. Another important
factor to consider is the current demand of the pathology
service, for which the current conditions were also simulated.
To simulate this demand, random numbers were taken from
a normal distribution with the mean of 151.55 biopsies per
week and standard deviation of 18.45 observed in the demand
for biopsies. The proposed annual output of 8,300 biopsies is
capable of meeting the demand for 7 576 biopsies under current
conditions, as shown in Table 5. Table 6 shows the number of
pathologists required to meet current demand.

Simulation of the Biopsy Process
Once the number of pathologists needed to meet the demand
for the biopsy process had been identified, the interaction of all
activities was analyzed. The simulation was carried out with five
replicates of 40 h (1 week), eliminating the non-value-aggregating
storage activities (6 and 32). With the simulation, the model
indicated that an average 239 biopsies can be generated weekly,
more than the 151 weekly demanded by the service’s users.

With respect to the activities’ aggregate values, the time
dedicated to operations is foremost with 108 h. Nonetheless,
storage and transportation account for 85 h between them. These

types of activities should therefore be reduced for future studies
and to further refine the process.

Activities with more than 90% of use were identified. These
were activity 19, storing the blocks in the refrigerators, activity 33,
transferring the blocks to be analyzed, and activity 34, diagnosis
of the slides by the pathologist. The first two are irrelevant since
the method can be adapted by varying the quantity of blocks, but
the pathologist’s diagnosis will be the activity that sets the pattern
for the entire production process, as shown in Table 7.

Economic Evaluation of the Proposals
Three proposals are made to reorganize the Anatomic Pathology
Service. As shown in the diagnosis column, they are designed to
eliminate the waits of up to 4 months that are currently the case,
and to make the diagnoses in just 3 days. With these proposals,
the current annual output of biopsy analyses would be raised
from 4,850 to 8,300, which would represent a reduction in cost
per analysis from US$10.64 to US$5.57. Given that the welfare
of the service’s user should be favored, it is recommended to
implement proposal 3. Although it is not the most economical
option in the short term, would be helping to deal with the
backlog facing the pathology service, and afterwards the cost per
biopsy would continue to be the same as proposals 1 and 2.
Table 8 shows the cost benefit analysis for output plan proposals.

DISCUSSION

The tool developed is capable of representing the anatomic
pathology process by means of a simulation model which
incorporates such elements as this service’s waiting times and
biopsy throughput (34). By incorporating elements of variability
and uncertainty through the Box-Muller algorithm, it was
possible to identify those activities which represent bottlenecks
in the process and limit its productive capacity with respect to
the demand.

It was found that the processing times had a normal
probability distribution. Nonetheless, this condition does not
always prevail in processes, particularly in services where
probability distributions tend to be skewed to the right, making
it necessary to incorporate other types of algorithms (16, 38).

As part of the solutions, three proposals were determined
which made it possible to evaluate aspects of an economic and
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TABLE 7 | Forty-hour simulation of the pathology department’s biopsy process.

Proceso: Biopsy processing (Group 1) Hours Process inv. (units)

Cod

Proc:

9,000 Operations 108.04 4,780

Empresa: Hospital Inspections 4.676 478

Cod

Emp:

20 Transport 43.866 1,195

Replicas: 5 Queue 19.968 239

Simulacion: 40 h Storage 42.708 717

Registros: 155 of 155

ID Activity Operations Inspections Transport Queue Storage Time

required

(hours)

Process

inventory

Finished

product

(units)

Percentage (units) use Constraints

3 Check the biopsy request card data x 2.336 239 0 5.84

4 Number the biopsy consecutively x 5.274 239 0 13.19

5 Enter data into the SIPAT software x 6.573 239 0 16.43

7 Prepare formalin jars for the

specimens

x 1.46 239 0 3.65

8 Cut the specimens x 4.621 239 0 11.55

9 Enter the data into the SIPAT software x 6.575 239 0 16.44

10 Fix the specimens in formalin jars x 1.997 239 0 4.99

11 Send the specimens to histology x 1.597 239 0 3.99

12 Check the received specimens’

information

x 2.34 239 0 5.85

13 Centrifuge the jar contents x 19.975 239 0 49.94

14 Clean the embedder x 0.399 239 0 1

15 Translate the specimens x 1.596 239 0 3.99

16 Put the specimens in the containers x 0.399 239 0 1

17 Pedal-controlled paraffin-filling of the

containers

x 0.799 239 0 2

18 Cool the paraffin wax x 0.399 239 0 1

19 Store sample blocks in refrigerator x 39.912 239 0 99.78 x

20 Clean microtome x 0.399 239 0 1

21 Put blade in microtome x 0.399 239 0 1

22 Translate the sample blocks to the

microtome

x 1.596 239 0 3.99

23 Put sample block in microtome x 0.399 239 0 1

24 Preliminary trim of the block x 3.021 239 0 7.55

25 Manual slicing x 8.543 239 0 21.36

26 Pass specimens to the bain marie x 0.399 239 0 1

27 Place tissue sample on the slide x 0.399 239 0 1

28 Number and dry the slide x 19.968 239 0 49.92

29 Place slides in basket x 0.799 239 0 2

(Continued)
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operational nature. Each proposal has elements differentiating
it from the others, among which there stands out the impact
of considering the backlog of biopsies pending diagnosis by the
pathologist (39, 40).

At a methodological level, the stages of continuous
improvement of DMAIC processes were incorporated, focused
on resolving problems of variability, in this case of the waiting
times for the biopsy diagnoses. This structure is adequately
integrated with the use of simulation in the analyse and improve
stages. In the former case, this is to identify the main causes
that affect the problem and the impact they have (41). In the
latter case, it is to evaluate the implementation of the possible
solutions, and thus choose that best suited to correcting the
problem under study.

The improvement scenarios consider different assumptions
to determine the behavior that they would have for the
waiting time through the simulation model (42). The number
and combination of scenarios could vary depending on the
experience and training of the analyst (43). The following
situations were defined in this study:

1. The first proposes a schedule under normal working
conditions for two pathologists.

2. The second addresses also the number of biopsies that are
pending diagnosis, normalizing the working conditions in 7
months by suspending autopsies for that period to focus on
clearing the backlog.

3. The third is similar to the second but incorporates 320
overtime h for 3 months to finish the backlog of pending
cytologies and biopsies during that time.

In subsequent studies, this analysis may be extended to cytologies
and autopsies to reduce their waiting times. The results can be
extrapolated to other health services (44, 45).

CONCLUSIONS

A simulation model based on the Box-Muller algorithm has been
developed with which it was possible to perform an analysis of
the installed productive capacity to reduce the average waiting
time for the diagnosis of clinical biopsies from 2 months to 3
days. With respect to the times for the diagnosis of biopsies
by the pathologist, two groups of data were distinguished, one
with a mean of 9.257min and a standard deviation of 7.307 and
another with a mean of 27.389min and a standard deviation
of 6.001, both with a normal distribution. The hypothesis that
2.5 biopsies are performed per hour (24min per biopsy) was
therefore rejected.

The model simulating the process was able to show that, with
two pathologists, the pathology department can output about 8
000 biopsies per year. To meet this annual output, 315 cutting
h and 1 697 diagnosis h would be needed. In the improvement
scenarios, it was concluded that it is possible to diagnose a biopsy
in 3 working days, as long as the usual conditions defined apply. It
is necessary to take into account in the programming the number
of biopsies that are pending diagnosis.
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TABLE 8 | Cost benefit analysis for output plan proposals.

Proposal Annual fixed Overtime Total Adjustment Annual Diagnosis Approx. cost

cost (US$) (US$) cost (US$) time (months) output (units) (days) per biopsy (US$)

1 46,225.00 0.00 46,225.00 NA 8,300.00 3 5.57

2 46,225.00 0.00 46,225.00 7.00 8,300.00 3 5.57

3 46,225.00 2,433.03 48,658.27 3.00 8,300.00 3 5.86

Current 23,112.62 28,518.61 51,631.23 NA 4,850.00 120 10.64
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