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3D patterned stem cell 
differentiation using thermo-
responsive methylcellulose 
hydrogel molds
Wonjae Lee1,2 & Jon Park1

Tissue-specific patterned stem cell differentiation serves as the basis for the development, 
remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed 
a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for 
reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem 
cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered 
through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we 
developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, 
generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC 
solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC 
served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels 
were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually 
defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural 
integrity and characteristics as seen in vascularized bones and osteochondral tissues.

The multilineage differentiation of stem cells is elaborately coordinated by multiple guidance cues and this 
tissue-specific patterned differentiation is the basis for the development, remodeling, and regeneration of the 
structure and functionality of multicellular tissues. There has been significant progress in stimulating ex vivo as 
well as in vivo expansion and differentiation of stem cells into functional progeny that could potentially regenerate 
the injured tissues1. Despite the wide range of the identified differentiation guidance cues, including the matrix 
elasticity2, the cell shape3, the cellular interaction4, nano-scale features5, and the mechanical stress6, the current 
endeavors toward stem cell fate control are mostly based on the identification of diffusible signal molecules and 
their receptor-mediated downstream signaling pathways. The majority of these investigations are performed 
using 2D cultures where the stem cell behaviors are monitored in response to the signal molecules diffusing freely 
in cell culture medium. Although this simple 2D experimental setup has facilitated elucidation of a broad range 
of signal molecules and their underlying mechanisms, there also arises a consequential need to develop a reliable 
platform to translate these fundamental findings into the 3D microenvironments and structures of the native 
tissues.

Hydrogels have been considered suitable as a scaffold material to provide structural and functional support 
equal to the native 3D tissues they replace due to their structural similarity to the extracellular components in the 
body7. Substantial interest has emerged in designing hydrogel networks that incorporate bioactive moieties, such 
as oligopeptides, small bioactive molecules, and functional groups, so that they can induce specific cell behaviors 
and stem cell differentiation into a diverse range of specialized cell types8. However, intact incorporation of these 
bioactive moieties into 3D hydrogel networks is technically challenging, not only because most of the biomol-
ecules easily lose their therapeutic potency depending on ambient temperature and pH level or in the presence 
of any chemicals with proteolytic potential, but also because these chemical reactions oftentimes adversely affect 
the live cells present in the hydrogels. The incorporation process thus should be performed within a very narrow 
window of chemical reaction conditions to avoid the denaturalization of these moieties9 and the interference with 
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the natural biochemical activities of the cells10. Another requirement hard to be met is that the concentration 
of each signal molecule should be maintained within therapeutic levels over prolonged time period until the 
stem cell differentiation reaches the terminal maturation stage. When the concentrations of the signal molecules 
decrease below the therapeutic level, it leads a population of stem cells to regress to a more undifferentiated state 
or to differentiate along alternative pathways11. These technical difficulties have forced many previous approaches 
toward 3D hydrogel scaffold design to be largely confined to incorporating only certain types of signal molecules8, 
although most of the unveiled pathways of lineage-specific differentiation in 2D cultures are regulated by complex 
interplays of multiple types of diffusible signal molecules.

Another important challenge in designing hydrogel scaffolds for stem cell-based tissue engineering is how 
to spatially control the differentiation signals in a way to recapitulate the polarized microenvironments of the 
native tissues and to induce the patterned stem cell differentiation12. This is because many stem cell behaviors in 
developmental, remodeling, and regenerative phases are induced by their responses to the specific spatial distri-
bution of the signal molecules12. Therefore, enabling the patterned differentiation is vital to develop a native-like 
multicellular tissue structure which is in turn critical for its functionality. There has been growing interest in 
using photoconjugation or photocleavage method to generate polarized 3D environments10,13. These methods 
initiate photoreactions at specific regions of 3D hydrogels through temporospatial regulation of UV or visible 
light. Although they are notable technical advances, these methods are not optimal for guiding stem cell differ-
entiation into a variety of specified lineages. In this work, we propose a cytocompatible design platform in which 
the patterned stem cell differentiation can be induced through regulation of the spatial distribution of diffusible 
signal molecules, leading to the formation of 3D multicellular tissue structures.

Results
Reconstitution of 2D culture conditions into 3D hydrogel. In this part of the study, we aimed to 
design a versatile 3D hydrogel platform in which the human mesenchymal stem cell (hMSC) fate control mecha-
nisms identified in 2D cultures, especially those through diffusible signal molecules, could be directly translated 
and applied. We first examined how long the diffusible signal molecules should be present for the hMSC to 
reach the terminal maturation and thus yield maximum differentiation outcome in 3D hydrogel matrices. The 
interactions between multiple types of diffusible signal molecules are known not only to initiate the desired dif-
ferentiation of the stem cells but also to direct them toward terminal maturation11. Once the terminal maturation 
occurs, the signal molecules would not significantly influence the differentiation outcome, and thus no longer 
be needed. We chose to investigate the osteo- and chondro-genesis since their differentiation outcomes in 3D 
hydrogel matrices could be evaluated simply by measuring the amounts of the synthesized calcium and glycos-
aminoglycan (GAG), respectively.

We incorporated hMSC in 3D hydrogel matrices and incubated them with the sets of the diffusible signal 
molecules identified in 2D cultures (Fig. 1). Over the course of four weeks, we removed the signal molecules from 
the hydrogel matrix sample groups at the designated time points and kept all sample groups in basal medium until 
the end of the four-week period at which point the outcomes of their differentiation were analyzed. For osteogenic 
differentiation, we observed that the amount of the synthesized calcium was significantly less when the signal 
molecules were removed after only one week or two weeks of incubation compared to longer incubation period 
(Fig. 1A,C). However, from the three-week-point on, there was no significant further increase in the amount of 
the synthesized calcium, implying that the osteogenic differentiation from hMSC reached its maximum around 
the third week of the co-incubation with the signal molecules. The similar pattern was shown in the samples 
for chondrogenesis (Fig. 1B,D). When the signal molecules were removed before three weeks, the synthesized 
amounts of glycosaminoglycan (GAG) were significantly less, but from the three-week-point on, there was no 
significant increase in the final outcome of the chondrogenic differentiation. These data match well with the data 
from the original 2D protocols where the maturation of hMSC differentiation also takes about three weeks in 
each study14,15. These results led us to reasonably assume that there was no significant difference in the required 
incubation period for the maturation of hMSC differentiation between the 2D and the 3D conditions. Thus we 
targeted to maintain the concentrations of the diffusible signal molecules in our main experiments up to three 
weeks.

As the medium for the sustained delivery of the signal molecules, we chose poly(lactic-co-glycolic acid) 
(PLGA) due to its biodegradability and biocompatibility16. Because many of the diffusible signal molecules are 
peptides or proteins, we encapsulated them into PLGA microparticles using the water-in-oil-in-water (w/o/w) 
method, known to be suitable for carrying easily-denaturing peptide or protein-based drugs without compen-
sating their therapeutic efficacy17. Figure 2A shows the images of the PLGA microparticles (Fig. 2A(i) and (ii)) 
and the particles incorporated in a 3D hydrogel matrix together with hMSC (Fig. 2A(iii) and (iv)). Since the 
drug-releasing kinetics depend on the molecular weight of the encapsulated molecules, as a proof of concept, we 
encapsulated a blend of three biomolecules with low, medium, and high molecular weight respectively: glucose 
(180 Da), insulin-like growth factor I (IGF-1, 7 kDa), and albumin (67 kDa) (Fig. 2B). These molecules roughly 
covered the whole range of the molecular weights of the signal molecules in various 2D hMSC differentiation 
protocols (Table S1 in S.I.).

To obtain the sustained delivery over the targeted time period, we utilized the controlled drug-release tech-
nique16 where the releasing rate was controlled by modulating the mixture composition of the different types of 
the drug-releasing PLGA microparticles. We prepared different microparticle types by modulating the PLGA 
composition, from 50:50 (composed of 50:50 molar ratio of glycolide units and lactide units) to 65:35, to generate 
the composite drug-releasing profile with sustained release characteristic. The drug-releasing rate from 50:50 
PLGA microparticles showed the early initial-burst followed by the gradual decrease (Fig. 2C(i)), while 65:35 
PLGA microparticles had the gradually increasing release profiles (Fig. 2C(ii)). In order to grant a sustained 
release up to three weeks, we mixed the 50:50 and 65:35 PLGA microparticles in the ratio of 1 to 2 and obtained 
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a relatively continuous release profile up to three weeks (Fig. 2C(iii)). The range of the therapeutic concentration 
levels of many biomolecules were quite broad, spanning a couple of orders of magnitudes between individual 
reports18,19, and so it could be reasonably assumed that the slight deviations observed in the releasing rates of the 
different signal molecules would not significantly impinge on the corresponding differentiation outcome.

Inducing multiple types of hMSC differentiation within 3D hydrogel matrices. In order to exam-
ine the versatility of our approach, we chose protocols for multiple types of 2D hMSC differentiation such as 
adipogenesis20, and endothelial differentiation21 in addition to the osteogenesis14 and chondrogenesis15 protocols 
(Table S1 in S.I.). The reason that we preferred serum-free protocols was that they allowed us to control the con-
centration of the identified signal molecules in the microparticles so that the released amount could reach the 
therapeutic concentration level. We also expected that this approach would more reliably induce the spontane-
ous differentiation of stem cells than the serum-dependent protocols for many degenerative tissue lesions when 
implanted in the body. We encapsulated the blends of the identified diffusible signal molecules for each differenti-
ation type into microparticles at five hundred times over the reported concentrations and incorporated them at 5% 
w/v within the hMSC-containing hydrogel matrices. For the case of endothelial differentiation, due to the scarcity 
of serum-free protocols in literature, we followed the serum-dependent protocol proposed by J. Oswald et al.21  
and established the condition by adding the serum to the basal culture media. The cell-binding domains were 
incorporated in the hydrogel networks for all differentiation types, except for chondrogenesis.

Under the influence of the released diffusible signal molecules for osteogenesis, the hMSC in 3D hydrogel 
formed aggregates and abundant opaque secretions, the morphology reported as mineralization in 3D hydrogel22 
(Fig. 3A, the second row). We confirmed the osteogenesis by detecting one of the osteoblast maturation markers, 
osteocalcin (Fig. 3A, from the third to fifth rows). The synthesized calcium was stained as red with Alizarin Red 
(Fig. 3A, the last row). In the 3D hydrogel matrices aimed for chondrogenesis, we utilized the hydrogels without 

Figure 1. Incubation period for maximizing differential outcomes in hMSC-containing hydrogel. (A) The 
histological images of the osteogenic samples with Alizarin Red staining. The calcium deposition was stained 
as red. Scale bar: 150 μ m. (B) The collagen in the chondrogenic samples was stained as pink by H&E staining. 
Scale bar: 150 μ m. The differentiation outcomes, the calcium deposition for osteogenesis (C) and the GAG 
for chondrogenesis (D), were biochemically quantified. And their relative levels were calculated by taking the 
ratio between the differentiation outcome in each sample at specific time point and the outcome with 1-week 
incubation. The statistical significance is denoted as ‘* ’(n =  3).
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cell-binding domains. In the hydrogels destined for chondrogenesis, we observed the dense dark nodules (Fig. 3B, 
the second row) that had the similar morphology as in a previously reported chondrogenesis study23. These sam-
ples showed a positive stain for cartilage markers, aggrecan (Fig. 3B, from the third to fifth rows) and GAG (Fig. 3B, 
the last row), confirming successful chondrogenesis. The effect of the presence of the cell-binding domains on the 
chondrogenic and osteogenic outcomes is described in Fig. S1 in S.I. In both 2D and 3D hydrogel matrices aimed 
for adipogenesis, the shiny distinct areas previously reported as lipid accumulation during adipogenesis20 appeared 
(Fig. 3C, the first two rows). The subsequent analyses of these areas with the immunochemical staining for FABP-4 
(Fig. 3C, from the third to fifth rows) and histological staining for lipids, the markers expressed in mature adipo-
cyte cells, came out positive (Fig. 3C, the last row), confirming successful adipogenesis. In the 3D hydrogel matri-
ces aimed for endothelial differentiation, the capillary-like tubular structure formation was observed (Fig. 3D, the 
second row), similar to the report of in vitro angiogenesis in hydrogel matrices24. We confirmed the endothelial 
differentiation by detecting a marker for mature endothelial cells, von Willebrand Factor (vWF) (Fig. 3D, the 
last three rows). In the cross-sectional image (Fig. 3D, the last row), the openings of capillary-like structures (red 
arrows) were observed. The control experiments for all types of differentiations were done with hMSC-containing 
hydrogel matrices cultured in the same conditions as the main experiments but without the microparticles and 
the signal molecules. A representative set of results from the control conditions is shown in Fig. 3E. We observed 
no significant difference in the differentiation outcomes across the control conditions. Additional images of the 
morphological changes of hMSC in the experimental conditions are shown in Fig. S2 in S.I.

Figure 2. Sustained release of diffusible signal molecules through microparticles. (A) (i) The darkfield 
image of the drug-releasing microparticles (scale bar: 10 μ m). (ii) The S.E.M. image of the microparticle cross-
section (scale bar: 2 μ m). (iii) The brightfield image of a hydrogel matrix containing the microparticles (scale 
bar: 400 μ m). (iv) The phase contrast image of the drug-releasing particles (blue arrows) and hMSC (orange 
arrows) in a hydrogel matrix (scale bar: 50 μ m). (B) Characterization of the microparticles encapsulating 
the blends of glucose, IGF-1, and albumin. ‘LA: GA ratio’ denotes the composition ratio of lactic acid (LA) 
units and glycolic acid (GA) units. ‘M.W.’ denotes the molecular weight of each PLGA. Drug encapsulation 
efficiency is the percentage of the actual amounts of each molecule encapsulated in the microparticles over their 
theoretical amounts added during the particle preparation. ‘Size’ represents the average diameter of each type 
of microparticles. (C) The releasing profiles of the three biomolecules from the microparticles. The 1:2 mixtures 
of 50:50 and 65:35 microparticles (iii) showed relatively continuous releasing rates compared to the individual 
microparticle types (i and ii) and was used to maintain the concentrations of the released signal molecules in the 
hydrogel matrices (n =  3).
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Figure 3. Multilineage differentiation of hMSC in 3D hydrogels. The phase contrast images in the first 
row show the morphological changes of hMSC cultured in 2D plates with the blend of the diffusible signal 
molecules with specific differentiation effects. (For the 2D image of chondrogenesis, due to the difficulty to 
induce chondrogenesis in traditional 2D culture plates, human primary chondrocytes were used.) Similar 
morphological changes were observed for the hMSC in 3D hydrogels in the presence of the microparticles 
encapsulating the same blends of the diffusible signal molecules (the phase contrast images in the second row). 
In the third to fifth rows, the targeted hMSC differentiation types in our 3D matrices were confirmed by the 
immunofluorescence of each differentiation marker. The third and fourth row show the fluorescent labeling 
of cell nuclei by DAPI and each differentiation marker, respectively. The fifth row is the merged images of the 
third and fourth rows. In the last row, histological images for each differentiation are presented. The red arrows 
in the image for the endothelial differentiation indicate the openings of the capillary-like structures. A set of 
the representative images from control experiments (without drug-releasing particles) is presented in the last 
column.
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Cytocompatible casting process using thermo-responsive methylcellulose (MC) mold. Due to 
its biocompatibility and sol-gel phase transition around body temperature, MC is now being widely used for a 
variety of biomedical applications such as drug delivery, wound healing, and tissue engineering25. The reversible 
gelation of MC arises from the enhanced inter-molecule interaction as the MC solubility in water decreases in 
higher temperature26. We utilized this thermo-responsivity as well as other well-documented physiochemical 
properties of MC27 to develop a MC-based mold for patterning hydrogels. The incident gelation, the emergence 
of the clusters of gel within the solution, occurs around 32 °C for 5% (w/w) MC solution26. The MC solution at 
room temperature and below has the viscosity of about 200 cP (mPa·s) and the gel has the dynamic viscosity of 
about 5,000 cP at 37 °C 26. In our experiments, the MC solution was viscous enough to hold 3D millimeter-scaled 
impression patterns and the subsequent gelation generated a reliable gel mold shaped as the impression patterns. 
We filled hMSC-containing hydrogel prepolymer into the MC mold of targeted shape and cured it at 37 °C in CO2 
incubator. The overall casting process is described in Fig. 4A,C. The overall casting process was performed around 
body temperature within a short time frame (about 1 hour) leaving no adverse effect on the cell viability (Fig. 4B). 
Figure 4D shows the molded hydrogels through this casting process with the encapsulated hMSC.

Reconstruction of multicellular 3D tissues. By integrating distinctly patterned hydrogels, each with 
hMSC differentiating toward individually targeted fate, it was possible to set up the polarized microenvironments 
optimal for generation of the multicellular tissue structure. We chose the vascularized bone and the osteochon-
dral tissue as our target tissue structures to build with this method. For the vascularized bone, the hydrogel with 
hMSC differentiating toward endothelial cells was molded into a cross shape and then integrated within the 
surrounding hydrogel matrix designated for osteogenesis (Fig. 5A). The osteochondral tissue was reconstructed 
by stacking two hydrogel layers, each designated for osteogenesis and chondrogenesis respectively (Fig. 5B). We 
incorporated the same sets of the diffusible signal molecules for triggering each differentiation type as previously 
used (Table S1 in S.I.). After four weeks of incubation, we carried out analyses on these multicellular tissue struc-
tures and observed the expected characteristics of the targeted native tissues in our reconstructed tissues.

In the engineered vascularized bones, the endothelial differentiation and osteogenesis were induced, each in 
the distinct, targeted region as guided by the hydrogel structure (Fig. 5A). We confirmed the targeted differentia-
tion outcome in each region and analyzed the interface between the two regions using immunochemistry. We first 
identified the mineralization by Giemsa stain (Fig. 5A(i)) that emitted both green and red fluorescence28 and visu-
alized the calcified area as yellow. Interestingly, the differentiated endothelial cells sprouted toward and penetrated 
into the mineralized, bone region (Fig. 5A(i) and (ii)). Figure 5A (iii) also shows the formed capillary-like tubes 
in vascular region penetrating into the calcified region. The migration of the endothelial cells into the osteogenic 
area was confirmed by specific markers for each type of the cells, CD31 for endothelial cells and osteocalcin for 
osteoblast respectively (Fig. 5A(iv) and (v)). It was likely that the osteogenic signals released in the bone region 
of the hydrogel structure, especially the bone morphogenic protein-229, attracted the migration of the endothelial 
cells into the osteogenic area, although more extensive investigation is required to confirm. Because the vascu-
larization plays a pivotal role in bone development and fracture repair30, these results bear especially significant 
implications for bone regenerative medicine.

For the case of the engineered osteochondral tissue, in contrast to the extensive interfacial interaction between 
vasculature and bone regions shown in the vascularized bone, we observed a well-defined boundary between the 
bone and cartilage regions, the characteristic structure of the native osteochondral interface (Fig. 5B). And at the 
interface of our engineered osteochondral tissue, two distinct crossing gradients of GAG (stained with Safranin O)  
and calcium (stained with Alizarin red) were observed (Fig. 5B(i) and (ii)), similar to the morphology found in 
the osteochondral interface in vivo31. These histological observations were in accord with the quantitative analyses 
of the amounts of GAG and calcium found in the bone-side, interface, and cartilage-side segments; the amount of 
GAG in each segment was inversely proportional to the amount of calcium (Fig. 5B(iii) and (iv)). In contrast, the 
molded samples without drug-releasing microparticles did not show these differential behaviors at the interfaces 
(Fig. S3 in S.I.). These results demonstrate that our approach was successful in reconstructing hetero-cellular 
tissue structures in 3D hydrogel matrix.

Discussion
In this study, we proposed a versatile and accessible design platform that could directly translate the 2D culture 
conditions for hMSC differentiation into 3D environment for the reconstruction of 3D multicellular tissues. We 
first demonstrated that the 2D differentiation conditions could be reconstituted within 3D hydrogels simply by 
incorporating the corresponding sets of the diffusible signals identified in 2D conditions through drug-releasing 
microparticles. Then we proposed a novel cytocompatible casting process in which these hydrogels could be 
molded into specific 3D configurations. The overall casting process involved minimal cellular stress since the 
mild temperature changes for MC phase transition (between the body and room temperatures) was the only 
adverse factor for the environment of the incorporated cells. This approach was well suited for inducing polarized 
3D microenvironments required for the development of multicellular tissue structures, because it could localize 
the diffusible signals specifying the differentiation fate into biodegradable microparticles and deliver them to the 
very sites of the stem cells. From these polarized microenvironments established through the spatial regulation 
of the released signals, the targeted stem cell differentiation with the specified 3D patterns successfully emerged. 
The patterned stem cell differentiation achieved this way formed the 3D multicellular structure of the targeted 
tissues, the vascularized bone and the osteochondral tissue, bearing practical implications for clinical applica-
tion. The migration of endothelial cells into the neighboring bone segment shown in our engineered tissue is 
especially promising, because any engineered tissue would require functional vascular system to immediately 
support metabolic activities of the incorporated cells after being implanted, which has been considered as one of 
the major challenges in 3D tissue engineering32. The successful reconstruction of the osteochondral interface also 
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Figure 4. Thermo-responsive MC-based casting process. (A) Schematic illustration of MC-based casting 
process. 3D impression patterns were placed in the viscous MC solution at 4 °C and removed when the MC 
gelated at 37 °C. The hollow structure in the gelated MC was then filled with the hydrogel prepolymer which 
was subsequently cured into the corresponding 3D hydrogel structure. Finally, the hydrogel structures were 
integrated together in a bigger hydrogel matrix. (B) The cell viability was not compromised during the overall 
casting process (statically insignificant, n =  3). The relative viability was calculated by taking the ratio of 
the cell viability in the molded 3D hydrogels to the viability in the plain 3D hydrogels. (C) (i) An image of a 
representative 3D pattern on a gelated MC. (ii) An image of the hydrogel cured according to the 3D pattern 
shown in (i). (iii) and (iv) show the top and cross-sectional views of the final hydrogel structure. Green and 
red dyes were added into the hydrogels for presentation purposes. (D) The fluorescence images of a molded 
hydrogel. The hMSC were prestained as green (DiO) (i) and orange (DiI) (ii) and counter-stained with hoechst 
(iii). (iv) The merged image of (i and ii) (scale bar: 2 mm).
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has important clinical implications for regenerating cartilage, since its degeneration process is often coupled with 
the dynamics in the adjacent subchondral bone31.

The approach proposed here can contribute to close the “bench-to-bedside” gap, enabling the translation 
of the many discoveries on stem cell fate decision in 2D experimental conditions into the regeneration of 3D 
multicellular tissues. Thus far, the engineering approaches to reconstruct stem cell niches in 3D scaffolds have 
largely focused on identifying the microenvironment and cues for stem cell fate decision that are only revealed 
in 3D conditions, distinct from those already found in 2D conditions. These efforts revealed that the topology 
and mechanical properties of the 3D scaffolds, as well as the spatio-temporal profiles of delivering the differ-
entiation cues into the scaffolds all played an important part in specifying stem cell fates12. In traditional 2D 
cultures, however, many types of differentiation are reliably triggered by the diffusible signals alone, without 
the factors identified in 3D conditions. 2D cultures are currently the most widely used experimental setup in 
biomedical research, leading to the identification of a broad range of signal molecules for stem cell differentiation 
and their receptor-mediated downstream signaling pathways in 2D conditions. These extensive findings based 
on 2D cultures, however, have not been effectively utilized for clinical applications, especially for stem-cell based 
tissue regeneration, because of the lack of proper experimental platform to translate the 2D conditions into more 
native-like 3D environment.

Our approach addresses and satisfies this critical need for a 3D tissue design platform compatible with 2D 
experimental findings. In our 3D hydrogel matrices, the multilineage stem cell differentiation was successfully 
controlled exactly the same way as in 2D culture conditions with the same diffusible signal molecules. With 

Figure 5. Reconstruction of multicellular 3D tissues. (A) Engineered vascularized bone. The hydrogel 
designated for endothelial differentiation was shaped into a cross and then integrated within the hydrogel 
matrix designated for osteogenesis. (i) The fluorescence image of the interface between the hydrogel regions 
targeted toward endothelial differentiation and toward osteogenesis. The endothelial cells and the calcified 
region were identified by staining with anti-vWF (green) and with Giemsa (yellow), respectively. White 
arrows indicate the endothelial cells penetrated into the bone structure. (ii) A magnified image around the 
dashed area in (i). (iii) The brightfield image of the interface. The calcified bone region was stained as red 
with Alizarin red. (iv) and (v) show the fluorescence images of the endothelial cells (red) and osteoblasts 
(green) immunohistochemically stained for CD31 and osteocalcin, respectively (scale bar: 200 μ m). (B) 
Engineered osteochondral tissue. The two hydrogel layers, each designated for osteogenesis and chondrogenesis 
respectively, were stacked together. Histological images of the engineered osteochondral interface were 
obtained with Safranin O/Fast green stain (proteoglycan: red, background proteins: green) in (i) and Alizarin 
red (calcium: red) in (ii) (Scale bar: 250 μ m). The quantitative analyses of the bone-side, the interface, and the 
cartilage-side segments were performed by measuring the amount of GAG (iii) and calcium (iv) deposition 
normalized by the total DNA amounts (n =  3). The statistical significance and the data below detectable levels 
are denoted as ‘* ’ and ‘v’, respectively.
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the feature of spatio-temporally controlled delivery of signal molecules, our approach is versatile, immediately 
applicable to inducing the patterned stem cell differentiation targeting other tissue structures or to establishing 
microenvironments for many other biological processes governed by diffusible signal molecules. Our approach 
can also serve as a useful platform for further investigation on the interplay between diffusible signal molecules 
and other important microenvironmental cues for stem cell differentiation.

Our approach is also highly accessible, with its major components being the methodologies already utilized in 
many traditional biomedical laboratories. For example, the localization of diffusible signal molecules in hydrogel 
matrices was achieved through one of the most well-established drug-delivery techniques, the double emulsion 
process, using a standard homogenizer. Also, the cytocompatible 3D casting process was developed based on the 
thermo-responsivity of MC gel, commonly available in biomedical laboratories. With its versatility and accessi-
bility, our translational platform proposed here will contribute to expedite the applications of the key findings in 
2D stem cell research to regeneration of 3D multicellular tissues.

Materials and Methods
Preparation of drug-releasing microparticles. The drug-releasing PLGA microspheres were prepared 
through the double emulsion process (water-in-oil-in-water (w/o/w)) as described previously16. Briefly, 50:50 
or 65:35 PLGA (LACTEL) were dissolved in the non-polar organic solvent, dichloromethane (DCM), at 20% 
(w/v). For the preliminary investigation of the multi-molecule release patterns, D-glucose (Sigma), IGF-1 (R&D 
Systems), and albumin from bovine serum (BSA, Sigma-Aldrich) were dissolved in PBS at 100 μ g/ml. For the 
main experiments, blends of the identified diffusible signal molecules (Table S1 in S.I.) were dissolved in PBS at 
five hundred times concentration than the reported concentrations. Each type of the prepared drug solutions was 
added to the PLGA solution at the one to nine ratio and then emulsified for 1 min at approximately 30,000 rpm 
using a homogenizer (Pro Scientific). The emulsion was poured into 1000 times its volume of ice-cold PBS. The 
solution was stirred at 10,000 rpm for 10 min using a homogenizer and then moved to a magnetic stirrer for 
continuous stirring to allow DCM to evaporate overnight. The resulting solid microspheres were collected by cen-
trifugation. The diameters of the microparticles were obtained through the analysis of the brightfield microscopic 
images using AxioVision image software (Carl Zeiss).

Drug encapsulation efficiency was calculated by comparing the actual amounts of D-glucose (Sigma-Aldrich), 
IGF-1 (R&D System), and bovine serum albumin (BSA, Sigma-Aldrich) encapsulated in the microparticles 
over the theoretical amount of each molecule during the particle preparation, as described previously16. PLGA 
microparticles were dissolved in acetone and the precipitate was collected by centrifugation. The collected pre-
cipitate was dissolved in 1 ml of 1 M sodium hydroxide (NaOH) and the solution was neutralized with hydro-
chloric acid and NaOH by use of a pH meter (Corning). After diluting the solution to the measurable range of 
each measurement tool, the total amount of each molecule type was determined by a glucose meter (Germaine 
Laboratories), an IGF-1 ELISA kit (Enzo Life Sciences), and Albumin Blue Fluorescent Assay Kit (Active Motif) 
(n =  3) respectively. For the drug-releasing profiles, the drug-releasing microparticles were incubated in PBS and 
the supernatants were collected at designated time points and stored at − 20 °C until analysis.

Construction of 3D hydrogel matrices. We prepared the hydrogels based on matrix metalloproteinases 
(MMPs)-sensitive polyethylene glycol (PEG)33. 4-arm-PEG-Vinylsulfone (10 or 20 kDa, JenKem Technology 
USA Inc.) was dissolved in triethanolamine buffer (0.3 M, pH 8.0) at the final concentration of 15% (w/v). For the 
hydrogel networks with cell-binding domains, the peptides containing arginylglycylaspartic acid (RGD) sequence 
(Ac-GCGYGRGDSPG-NH2, American Peptide Company) were also added at 0.3 mM final concentration. After 
10 min, the MMP substrates (Ac-GCRDGPQGIWGQDRCG-NH2, American Peptide Company) were added to 
the solution at the stoichiometric amounts (30 mM and 15 mM for 10kDa and 20kDa 4-arm-PEG-Vinylsulfone, 
respectively). And hMSC suspension was added into each hydrogel prepolymer at the final concentration of 
20 ×  106 cells/ml with the drug-releasing microparticles at the final concentration of 5% (w/v). The final prepol-
ymer solution was loaded between glass slides (VWR) separated by a Teflon spacer (~1 mm thickness) and incu-
bated in a CO2 incubator at 37 °C with 5% CO2 for 45 min. The cured hydrogels were subsequently washed with 
PBS and then cultured in ultra-low attachment multiwell plates (Corning) with Mesenchymal Stem Cell Basal 
Medium (Thermo Scientific). The elastic shear modulus of the same hydrogel was reported as about 3.8 kPa34. 
For the endothelial differentiation, 2% (v/v) of fetal calf serum (Remel™ , Thermo Scientific) was added to the 
basal medium. Only half of the medium was gently replaced every three days in order to minimize the loss of the 
released signal molecules diffusing out from the hydrogel matrices.

MC-based casting process. Methylcellulose (Methocel® A15 LV, Dow Chemical) solution (5% (w/w) in 
dH2O) was prepared by adding a designated amount of MC powder in distilled water and leaving it at 4 °C over-
night. The 3D impression patterns (eMachineShop) built with a 3D printer were presoaked in mineral oil (Sigma) 
for a few hours so that the absorbed oil on the surface could help easy removal of the patterns from the MC mold. 
Then we placed the patterns in the clear and viscous MC solution and left them at a humidified CO2 incubator 
allowing for the MC solution to equilibrate to the gelation temperature, 37 °C, and form an opaque gel. When 
the patterns were removed from the MC gel, leaving the MC mold with the 3D configurations of the patterns, we 
filled the mold with the final hydrogel prepolymer designated for hMSC differentiation into specific lineage. After 
they were placed in a CO2 incubator at 37 °C to cure the prepolymer, the MC mold was left inside of a laminar 
flow hood at room temperature and the patterns were removed as the MC mold turned into liquid. For the con-
struction of multicellular tissues, hydrogels with specified configurations were integrated together as described 
in Fig. 4A.
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Statistical analysis. Statistical analyses were performed by One-way ANOVA with Bonferroni-Holm 
post-hoc test. The results from these analyses are reported as the mean and the standard deviation of the mean. A 
confidence level of 95% was considered significant.
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