
Switching Circuit Optimization for Matrix
Gradient Coils
Stefan Kroboth1, Kelvin J. Layton2, Feng Jia1, Sebastian Littin1, Huijun Yu1, Jürgen Hennig1, and
Maxim Zaitsev1

1Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany and 2Institute for
Telecommunications Research, University of South Australia, Adelaide, Australia

Corresponding Author:
Stefan Kroboth, MSc
Killianstr 5a Freiburg, Germany 79106;
E-mail: stefan.kroboth@uniklinik-freiburg.de

Key Words: magnetic resonance imaging, matrix gradient coil, combinatorial optimization,
switching circuit, nonlinear encoding
Abbreviations: Field of view (FOV), simulated annealing (SA), genetic algorithm (GA)

Matrix gradient coils with up to 84 coil elements were recently introduced for magnetic resonance imaging.
Ideally, each element is driven by a dedicated amplifier, which may be technically and financially infeasible.
Instead, several elements can be connected in series (called a “cluster”) and driven by a single amplifier. In
previous works, a set of clusters, called a “configuration,” was sought to approximate a target field shape.
Because a magnetic resonance pulse sequence requires several distinct field shapes, a mechanism to switch
between configurations is needed. This can be achieved by a hypothetical switching circuit connecting all
terminals of all elements with each other and with the amplifiers. For a predefined set of configurations, a
switching circuit can be designed to require only a limited amount of switches. Here we introduce an algo-
rithm to minimize the number of switches without affecting the ability of the configurations to accurately cre-
ate the desired fields. The problem is modeled using graph theory and split into 2 sequential combinatorial
optimization problems that are solved using simulated annealing. For the investigated cases, the results show
that compared to unoptimized switching circuits, the reduction of switches in optimized circuits ranges from
8% to up to 44% (average of 31%). This substantial reduction is achieved without impeding circuit function-
ality. This study shows how technical effort associated with implementation and operation of a matrix gradi-
ent coil is related to different hardware setups and how to reduce this effort.

INTRODUCTION
Recently, matrix gradient coils (also termed multi-coils or multi-
coil arrays) were introduced for both magnetic resonance image
acquisition and B0 shimming (1-6). Almost 2 decades earlier, a
similar concept called matrix shim coil system was introduced
for nuclear magnetic resonance (7). Such coils consist of a
multitude of (up to 84) compact coil elements, which are in the
most trivial configuration individually supplied by a current
amplifier. The created field is a superposition of the fields pro-
duced by individual coil elements. This multiple-coil topology
allows for the creation of a large variety of different field shapes
by adjusting the currents in the individual coil elements. The use
of multiple coils has certain advantages over that of conven-
tional gradient coils and it opens up new possibilities to imaging
and shimming. In most realizations, coil elements of a matrix
gradient coil are smaller than typical dimensions of conven-
tional gradient coils, which allows for faster switching of cur-
rents. One problem associated with conventional linear gradient
coils is the requirement of highly linear fields across the entire
field of view (FOV). With matrix gradient coils, encoding fields
can be adapted to the actual FOV needed for the given imaging

application. This may potentially be more accurate and/or more
efficient (4), particularly for small FOVs.

Matrix gradient coils are furthermore favorable for nonlin-
ear spatial encoding schemes such as PatLoc (8-15), O-Space
(16-19), or FRONSAC (20). Imaging techniques that incorporate
nonlinear gradients into the magnetic resonance pulse sequence
can utilize the matrix gradient coil’s ability to create a wide
variety of field shapes whose nonlinearity extends way beyond
that of the quadratic fields used in previous work. For magnetic
resonance imaging applications that focus on local anatomy,
nonlinear gradients allow for fast sequences that produce high-
resolution images in a target area and low-resolution images
everywhere else (13). Example images acquired with a matrix
gradient coil can be found in Littin et al.’s study (2), but owing
to the novelty of the concept, many topics mentioned above
require further research and have not made it into clinical
applications yet.

Design strategies for unconventional gradient coils are still
a topic of active research. For classical linear gradients, the
entire gradient system is typically split into 3 gradient channels
that correspond to principal spatial directions X, Y, and Z. Each
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independently driven channel lies on a separate surface within
the gradient coil structure and is designed mostly independent
of the other channels. Variations of the target field method
(21-23) are typically used combined with modern numerical
optimization techniques, allowing for a simultaneous control of
the manufacturing constraints such as minimal conductor spac-
ing, electrical characteristics such as coil inductance, resistance
and minimal mutual coupling, as well as fidelity of the achieved
field profiles. Less conventional gradient system concepts pur-
sue different design strategies, typically including multiple
steps. For example, a linear Z gradient coil with a dynamically
movable imaging region (24) was realized by designing a mul-
titude of current density patterns for varying FOV offsets, fol-
lowed by a singular value decomposition step to compress these
current densities into 3 electrical channels to be controlled by
individual gradient amplifiers. In contrast to the aforementioned
design strategies, when designing a matrix coil, the target field
or set of fields is in general unknown. One strategy to address
this challenge is to split the poorly defined and computationally
intractable problem into a set of smaller tractable problems. For
the matrix coil in Littin et al.’s study (2), these steps included the
following:

1. definition of the number of elements to balance the
field strength and flexibility against power dissipation
(25),

2. optimization of the geometry and winding patterns of
individual elements to achieve maximum gradient
strength and sufficient shielding (6),

3. obtaining a method to drive the matrix gradient coil
with substantially fewer amplifiers than coil elements
by assigning several coil elements to each of the am-
plifiers (called a configuration) while preserving the
matrix gradient coils’ ability to accurately create a
certain field shape for a given application (26),

4. finding a suitable strategy to switch between different
configurations obtained by step 3 within an imaging
pulse sequence or between the pulse sequences for
different applications or imaging regions,

5. finding excitation (27), signal conditioning (28), and
sampling (15) strategies that optimally use the flexibil-
ity provided by the matrix coil.

Although the latter task does not strictly belong to the coil
design, it provides the initial motivation as well as the valuable
feedback to the entire chain, and in particular to step 4, as the
different imaging applications mentioned demand for switching
between several varying field shapes. The present paper con-
cerns itself primarily with step 4 from the above listing and
builds on top of step 3 which was addressed in previous work
(26).

Although the matrix gradient coil design in (2) aimed at
maximum flexibility in creating a wide variety of field shapes to
assess the advantages and disadvantages of this approach, fu-
ture coils could be specifically designed for a certain range of
applications or use cases. One example for a matrix gradient coil
specifically designed for high gradient strength with acceptable
switching rates, as required for high b-factor diffusion imaging,
are the linear gradient coils of the Human Connectome Project

(29), which use 4 independent coil elements per linear gradient
axis and are driven by a total of 12 amplifiers. Apart from
imaging, matrix coils or multi-coils can be used for B0 shimming
and both imaging and B0 shimming at the same time (30).
Although shimming requires only low current and therefore
relatively low-cost power supplies, encoding requires substan-
tial currents, which necessitates powerful and therefore expen-
sive amplifiers. For shimming, each coil element can be driven
by an individual amplifier (4, 3), but for imaging applications,
which is the focus of this work, it is desirable to keep the number
of amplifiers as low as possible.

In an earlier work (26), we presented a method to use the
matrix gradient coil with fewer amplifiers than coil elements.
When using fewer amplifiers than coil elements, the coil ele-
ments are distributed over the available amplifiers such that
several coil elements are assigned to a single amplifier. All coil
elements assigned to a certain amplifier are connected in series
and supplied with the same current from the corresponding
amplifier. The coil elements assigned to a single amplifier are
termed a cluster, and a set of NA clusters is called a configura-
tion, where the number of amplifiers is defined as NA. In our
previous work, we have shown how such a configuration can be
optimized by assigning coil elements to clusters such that a
desired target field shape can be approximated with high accu-
racy. We have shown that this combinatorial optimization prob-
lem can be solved such that even with a reduced number of
amplifiers, a large range of field shapes can be created accu-
rately. For instance, for an 84-channel coil and only 12 ampli-
fiers, it was possible to create spherical harmonics up to third
order with a median normalized least squares error of �5%.
With �24 amplifiers, the median normalized least squares error
reduces to �2.5%, while it increases to �10% for 6 amplifiers.
Note that a configuration creates the desired target field with a
particular ratio of the currents supplied by the amplifiers. In
principle, this restriction can be lifted by changing the ratio to
create a wide range of different field shapes with a single
configuration. This means that in practice, each configuration is
more powerful than what it was optimized for; however, exploi-
tation of this degree of freedom requires further investigation in
future work. Details of the implementation and the performance
analysis of the solver are presented in Kroboth et al. (26, 31). In
Kroboth et al.’s study (26), each configuration was optimized to
create a single target field; however, typical imaging applica-
tions require the application of several distinct encoding fields,
where each generally corresponds to a different configuration.
Different encoding fields usually require different configura-
tions; therefore, to switch between encoding fields, a mechanism
is required to switch between configurations. Essentially, this
means opening and closing connections between coil elements,
depending on the requirements of the desired configuration.
This can be achieved via a so-called switching circuit (32), which
can be cast into the epoxy resin together with the matrix gra-
dient coil. If space limitations become a problem, the circuit can
be located outside the coil. An example of such an approach,
which relies on a dense switching network, was proposed re-
cently for B0 shimming and is termed dynamically controlled
adaptive current network (33). In such a network—owing to a
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particularly simple geometry of the B0-contributing elements,
which are straight wire segments orthogonal to the B0 direc-
tion—a 2D network of metal–oxide–semiconductor field-effect
transistor (MOSFET) switches connecting each element to its
neighbors and a single amplifier is sufficient to realize any
discrete current path. However, the achievable surface current
density in such a network is not sufficient for imaging applica-
tions requiring strong local gradients. Therefore in our research,
we focus on multiturn element geometries. A switching circuit
for the available 84-element matrix gradient coil, in its straight-
forward implementation, can be designed to connect every ter-
minal of a coil element to all terminals of every other coil
element. In addition, every terminal of each coil element has to
be connected with every terminal of every amplifier. This hypo-
thetical switching circuit would allow for arbitrary current paths
through a network of coil elements. By changing the state of the
individual switches, every configuration can be realized, allowing
for sequences such as the one illustrated in Figure 1, where the
configuration for the next encoding field can be switched at zero-
current conditions. Unfortunately, this would require 18 060
switches for the case of NC � 84 coil elements and NA � 12
amplifiers, as the number of switches necessary to connect all coil
element terminals to each other is given by NC · (2 · NC � 1) � 14028,
and the number of switches necessary to connect all amplifier
terminals to all coil element terminals is given as

4 · NC · NA � 4032. Not only is this technically infeasible owing
to the complexity of the network and the dimensions of the
individual switches, it is also potentially prohibitively expensive
owing to the requirements on the switches (high currents, fast
switching times). In this work we use the property that if a finite
set of configurations to be switched is known a priori, a full
switching circuit is not necessary. For instance, connections that
are connected in all configurations can be hard-wired (no switch
required), and connections that are not present in any configu-
ration do not require a switch (and no hard-wiring). Only con-
nections that are closed in some but not all configurations
require a switch. The same applies to the switches that connect
the amplifiers to the coil element network. The number of
required switches depends on the configurations and the order-
ing of elements within a cluster. There are numerous switching
circuits for a given set of configurations that are all capable of
switching between the configurations.

We propose an optimization algorithm that finds, in the set
of all possible switching circuits, one which requires a low
number of switches for a given set of configurations. We exploit
the fact that the ordering of coil elements within a cluster does
not change its electromagnetic properties owing to the fact that
the elements are connected in series and that any amplifier can
supply any cluster (assuming that the amplifiers have equal
specifications). In our model, the coil elements are characterized

Figure 1. A potential pulse se-
quence with 3 distinct target fields
T1, T2, and T3, each created by
a corresponding configuration
consisting of NC coil elements
and driven by NA amplifiers
(where the ratio of all currents is
predefined). Because configura-
tions differ for different target
fields, the sequence requires a
mechanism to switch between dif-
ferent configurations. This can be
achieved with a switching circuit.
Changing the state of the switches
requires �10 �s. This example
shows 3 target fields; however,
the number (and shape) of the
target fields can be arbitrary.
Note that by changing the ratio of
the currents supplied to the indi-
vidual clusters, other target fields
can be created, which were not
part of the optimization process of
the configurations. Therefore, the
actual capabilities of such a setup
are much larger than this figure
may suggest at a first glance.
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by individual resistances and an inductance matrix and we
further assume perfect switches. The configurations are de-
signed before the optimization of the switching circuit, for
instance, by the method introduced in Kroboth et al.’s study (26).
Note that the optimization procedure presented in this work does
not affect the magnetic field created by the given configuration.
The coil design (2) used in this work is a cylindrical head-insert
with a length of 70 cm and an inner diameter of 39 cm. It
consists of 84 coil elements (6), distributed on 7 rings with 12
elements each (Figure 2A). In line with a previously published
work (26), we assume that each coil element is equipped with a
bridge consisting of 4 switches (Figure 2B). This allows for the
current to be routed through the coil winding in both directions.
Throughout this work, we treat the bridge as an integral part of
each coil element. The method presented here is also applicable
to other matrix gradient coil or multi-coil designs. Ideally, the
problem presented in this work would be optimized jointly with
the optimization of the configurations. However, as both prob-
lems are combinatorial and as the joint optimization would have
multiple objectives, this was considered intractable given the
currently available computational power.

METHODOLOGY
Theory
Minimizing the number of switches for a given set of config-
urations can be split into 2 combinatorial NP-hard (non-
deterministic polynomial-time hardness) optimization rou-
tines which are executed sequentially. The first minimizes the
number of switches between coil element terminals, then,
based on the result, the second minimizes the number of
switches which connect the amplifiers to the matrix coil. The
used variables are summarized in Table 1.

Minimizing the Number of Switches Between Coil Elements.
The problem of reducing the number of switches between the
elements is a distant relative of the well-known traveling sales-
man problem (TSP) (34), where a salesman aims at visiting
several cities in minimum time or minimum travelled distance.
However, here we have NF companies (configurations Ck, where
k � 1, . . ., NF), each employing NA salesmen (amplifiers). Each
company assigns NC cities (coil elements) to its salesmen such
that all cities are assigned and every city is assigned exactly
once for each company. Given such a setup, the aim is to find a
path for each salesman such that the total number of streets
(connections) between cities (coil elements) and the number of
necessary junctions (switches) are minimal.

A configuration defines how coil elements are grouped into
clusters. Each cluster is a set of coil elements that are all supplied
with the same current. When implementing a configuration, all
coil elements of a cluster are therefore connected in series in an
arbitrary order and supplied with current by a single amplifier.
For each configuration, there is a graph that models how coil
elements are connected. The ordering of elements within a
cluster does not change the electromagnetic properties of the
cluster (and hence the configuration); however, ordering does
change the associated graph. This means that changes to the
ordering do not affect the ability of the configuration to create a
certain target field at a certain accuracy and field strength. Let
Ck be the kth of NF configurations, which is optimized to create
a certain target field Tk. Furthermore, let X be a variable that
indicates how coil elements within the clusters are ordered for

all k. Then there is an associated adjacency matrix A(Ck, X) that
indicates which terminals of the coil elements are connected
with each other for the configuration Ck given the ordering X.
The adjacency matrix contains the terminals of the coil ele-
ments, which allows us to account for polarity. Therefore, the
size of A(Ck, X) is 2NC � 2NC. Furthermore, let �(X, G) be the
sum of a set of NF general adjacency matrices G(Ck, X):

�(X, G) � �
k�1

NF

G(Ck, X). (1)

The nonzero entries of �(X, G) indicate connections. Let
�i,j�X, G� be the element of �(X, G) in the ith row and the jth

column. Every entry where �i,j�X, G� � NF indicates a hardwired
connection because this connection exists for every configura-
tion in case of the ordering X; therefore, there is also no switch
required. Finally, the number of necessary switches is given by
the following equation:

s(�(X, G)) � �
i,j;j�i

�0 if �i,j(X, G) � 0
0 if �i,j(X, G) � NF

1 else
. (2)

Applying equation (2) to the adjacency matrices A(Ck, X) serves
as the cost function for the optimization problem as follows:

X* � argmin
X

{s(�(X, G))}. (3)

For optimization, the following degrees of freedom can be ex-
ploited, which are reflected in X:

• The order in which the elements are connected within a
cluster can be arbitrary.

• Each element is equipped with a bridge consisting of 4
switches that allow current to be routed through the ele-
ment in both directions (Figure 2B). Hence every element
can be connected in both orientations provided the current
direction in the coil windings is adapted accordingly by
using the bridge switches.

To change X, either the ordering of elements within a cluster can
be changed or the direction in which a coil element is connected.
Changing X affects the individual adjacency matrices A(Ck, X),
which furthermore affects s(�(X, A)).

Figure 3 illustrates this principle using a toy example with a
matrix gradient coil with NC � 4 coil elements (E1, E2, E3, E4),
NA � 2 amplifiers, and NF � 3 configurations.

Minimizing the Number of Switches from the Amplifiers to the
Coil Element Network. Once a favorable ordering of coil ele-
ments is obtained, the number of necessary switches from the
terminals of the amplifier to the entry and exit terminals of the
individual clusters of all configurations can be minimized. Let
B(Ck, Y) be adjacency matrices that indicate the connections
between amplifiers and clusters of configuration Ck given Y that
defines which amplifier is assigned to which cluster. Using
equations (1) and (2) with the adjacency matrices B(Ck, Y), the
global optimizer Y * can be obtained via the following equation:

Y * � argmin
Y

{s(�(Y, B))}. (4)

Under the assumption that all amplifiers have equal properties
and that they can adapt to the actual load, it is irrelevant which
cluster is driven by which amplifier. Furthermore, the positive
and negative terminals of the amplifier can be connected to
either the entry- or exit-terminal of a cluster because the am-
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plifiers are bipolar and therefore the direction of the current can
be changed. These degrees of freedom are exploited to minimize
the number of switches that connect the amplifiers to the coil
element network. The concept is illustrated in Figure 4, where
changing how amplifiers are assigned to the network of coil
elements leads to an ordering that requires 2 fewer switches.

Matrix Gradient Coil and Other Hardware
The algorithm is applied to the matrix gradient coil design
introduced in Littin et al.’s study (2). The gradient coil design
dictates the basic conditions for optimization such as the num-
ber of coil elements; however, in principle, the presented method
can be applied to any matrix gradient coil or multi-coil design.
For the given coil, eddy currents are �1% of the original field
owing to the use of Litz wire, shielded element design, and a
substantial distance to the cryovessel. They can therefore be
ignored for most applications. Mutual coupling has been as-
sessed in Littin et al.’s study (2). Both eddy currents and mutual
coupling are ignored in the present work because they are not
affected by any of the operations performed during the optimi-
zation. The amplifiers further impose restrictions, owing to the
limitations regarding the load. This is considered via the maxi-
mum and minimum number of coil elements per amplifier in the
optimization of the configurations as shown in Kroboth et al.’s
study (26). The amplifiers used to drive the matrix gradient coil
can be adapted to load changes. Therefore the amplifiers need to

A

B

Figure 2. Implementation of the matrix gradient
coil shown at the backside of a Siemens Trio scan-
ner (A). To conduct measurements, the coil is
pushed into the isocenter of the scanner. The black
connections feed current to the individual coil ele-
ments. The water cooling is supplied by the red and
blue hoses. On the side of cart are connector
boards with connections for every coil element. A
schematic representation of a coil element E which
consists of the coil windings L equipped with a
bridge switch (B). This allows to route current
through the element in both directions. One direc-
tion is achieved by having the switches S1 and S3 in
on-state and S2 and S4 in off-state. The other direc-
tion is achieved the other way around. In addition,
the bypass mode can be achieved by having control
switches S1 and S4 in on-state and switches S2 and
S3 in off-state, or the other way around.

Table 1. List of Variables

Variable Explanation

E1 Coil element 1

S1 Switch 1

Amp1 Amplifier 1

p1
2 Terminal 2 of coil element E1

NA Number of amplifiers

NC Number of coil elements

NF Number of fields

ND Number of different (random) configurations

NR Number of repetitions (optimization algorithm
runs)

Tk Target field k

Ck Configuration k

X, Y Orderings

G(Ck, X) General adjacency matrix for a configuration
Ck and an ordering X

A(Ck, X) Adjacency matrix for the connections between
coil element terminals

B(Ck, Y) Adjacency matrix for the connections between
coil element terminals and amplifier
terminals

�(X, G) Sum of adjacency matrices

�i,j�X, G� Element (i, j) of sum of adjacency matrices
�(X, G)

s(�(X, G)) Number of switches for �(X, G)

Ti Temperature at iteration i (Simulated
Annealing)
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A

B

Figure 3. (A) Illustration of how changing the ordering of coil elements within a cluster can affect the number of
switches for a matrix gradient coil with 4 coil elements (E1, E2, E3, E4; each box represents a circuit as shown in
Figure 2B), 2 amplifiers (Amp1, Amp2), and NF � 3 configurations (C1, C2, C3). (B) The initial ordering X1 and the up-
dated ordering X2 are shown in the left and right columns, respectively. The first 3 rows show how the coil elements are
assigned to and supplied by amplifiers to create the NF target fields. The fourth row summarizes all connections between
coil elements for each setup. Terminals are labeled with the symbol p. Observe that in C1 the ordering of E1 and E2
changes in the first cluster, whereas in C2 the ordering of E1, E2, E4 changes to E2, E1, E4. Configuration C3 remains
unchanged. As can be seen in the last row, X1 has only 1 connection between terminals which is used by 2 configura-
tions, whereas X2 has 2 shared connections. While the ordering X1 requires 5 switches, the ordering X2 requires only 4
switches. Corresponding adjacency matrices of the undirected graph representing 2 configurations, X1 (top) and X2 (bot-
tom). Each nonzero entry represents a connection between 2 terminals of the coil elements. Applying equation (2) to
each of the 2 adjacency matrices (X1; A) and (X2; A) gives the final number of switches, which is 5 for X1 and 4 for X2.
Similar strategies can be followed for the switches connecting the amplifiers to the coil element network (Figure 4).
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be reprogrammed whenever the load changes during switching.
Switching is performed at zero current conditions only (32).

Algorithm
The optimization problems addressed in this work [equations (3)
and (4)] are combinatorial and NP-hard. Performing an exhaus-
tive search over the parameter space is too expensive for prac-
tical use. For instance, consider the optimization of a switching
circuit that is designed to switch between 3 configurations given
a 84-channel coil and 12 amplifiers (where for simplicity, the
coil elements are equally distributed amongst the amplifiers).
This would require the evaluation of (((84/12)!)12)3 � 2·10133

different orderings for the minimization of the number of
switches in between coil terminals alone. This number is given
by (84/12)! � 7! possible orderings of coil elements within a

single cluster to the power of the number of clusters/amplifiers
(NA � 12) and finally to the power of the number of fields (NF �
3). This calculation does not even consider the bridge switches,
which would further increase the number of necessary evalua-
tions. The additional complexity owing to the nonconvex and
multimodal (many local minima) nature of the optimization
problems further aggravates finding the global minimizer with
conventional gradient-based methods. Therefore a probabilistic
metaheuristic called simulated annealing (SA) (35) is used to
find a (local) minimum. This iterative and stochastic optimiza-
tion method is inspired by the annealing of metals, where the
metal is heated to a certain temperature and then cooled down
according to a schedule. The energy state of the resulting crys-
tals strongly depends on the initial temperature and the cooling
schedule. These ideas can be transferred to optimization prob-

Figure 4. This figure illustrates possible moves taken in the optimization of the switches connecting the amplifiers to the
coil element network. The configuration Y1 is equivalent to the configuration X2 of Figure 3. The difference between Y2

and Y1 is that in configuration C1, Amp1 is connected the other way around. Note that the terminals of E1 and E2 are
still connected in the same way as in Y1. In addition, in configuration C2, the amplifiers are swapped such that Amp2
now powers the first cluster and Amp1 the second cluster. None of the possible moves this optimization can perform can
influence the result of the previous optimization illustrated in Figure 3. The final row shows all connections for the differ-
ent configurations. For this toy example, the maximum number of switches is 12. The ordering Y1 has 3 shared connec-
tions (from terminal 1 of Amp1 to p2

1, from terminal 1 of Amp2 to p3
1, and from terminal 2 of Amp2 to p4

2). Owing to 3
shared connections, the ordering number of switches reduces to 9. In Y2, there are again 3 shared connections (from
terminal 1 of Amp1 to p3

1, from terminal 1 of Amp2 to p3
1, and from terminal 2 of Amp2 to p1

1 of E1 p4
2). The connection

from Amp2 to p4
2 is special, as this is wired for every configuration, meaning that there is no switch necessary, and in-

stead, it can be hard-wired. In total, the number of switches for Y2 reduces to 7.
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lems, where instead of metals, parameter vectors are “heated up”
to a temperature T0, and then cooled down by reducing the
temperature over the course of the iterations. The parameter
vectors are randomly modified in each iteration by a degree
proportional to the temperature. These modifications (some-
times also called moves) are performed by a problem-specific
annealing function. After every iteration, the temperature is
reduced according to a cooling schedule. The cooling schedule
used in this work is T0/i, where i is the current iteration number,
which has worked well during our simulation experiments. This
means that in early iterations with high temperature, the param-
eter space will be explored randomly by performing big “jumps,”
while later iterations with lower temperature will focus on im-
provements in close proximity to the current position of the
parameter vector in the parameter space. The quality of every
parameter vector is calculated by the so-called cost function.
Better solutions are always accepted; however, worse solutions
may also be accepted with a probability given by P � 1/(1 	
exp(�/T)), where � is the absolute difference of the previous and
current cost function value. This is beneficial for overcoming
local minima. The acceptance probability increases with tem-
perature and small �. When the current best cost function value
has not improved for NSAmax iterations, we consider it con-
verged and stop the optimization. Note that this method is not
guaranteed to find the global optimum.

Annealing Function
The annealing function defines how a parameter vector is mod-
ified in each iteration of the SA algorithm. It depends on the
temperature Ti of iteration i. If the temperature is high, more
modifications will be performed. In the case of minimizing the
number of switches between coil elements (Algorithm 1), the
annealing function randomly performs 1 of 2 operations with
the same probability. It either picks 2 random elements within a
randomly chosen cluster of a randomly chosen configuration
and swaps them to change the ordering or reverses the polarity
of a randomly chosen coil element (which can be accounted for
in the actual implementation of the circuit by adapting the state

of the switches of the corresponding bridge switch). This step is
repeated several times depending on Ti.

When minimizing the number of switches from the ampli-
fiers to the coil element network, the annealing function
(Algorithm 2) randomly changes how amplifiers are assigned to
clusters within randomly chosen configurations. In other words,
within a configuration, the positions of some of the amplifiers in
the network are randomly permuted as this may affect the
number of switches. The concept is illustrated in Figure 4 using
a toy example, where swapping amplifiers Amp1 and Amp2 in
configuration C2 and changing the direction how Amp1 in C1 is
connected to the first cluster reduced the number of necessary
switches by 2. The number of times this procedure is repeated
depends again on the temperature.

Optimization Settings
To assess the performance of the optimization algorithm, ran-
domly generated configurations were used. The configurations
were generated for NF � {3, 9, 15, 21, 27} (number of fields) and
NA � {6, 12, 24, 36, 42} (number of amplifiers/clusters). The
range of the number of fields is not based on specific applica-
tions, but it was chosen to cover a large range with equidistant
spacing. All configurations are based on a matrix gradient coil
with NC � 84 coil elements. For each setting, ND � 100 random
configurations were created. Each optimization is run for
NR � 4 times to account for the statistical nature of the solver.
For creating the random configurations, the minimum and max-
imum numbers of coil elements per amplifier are set to NCmin � 2
and NCmax � 15, respectively. This large amount of randomly
created configurations covers a large range of possible cases and
is used here as a means to assess the performance of the algo-
rithm. Note that these randomly created configurations are
likely to not produce useful magnetic fields. In addition, the
algorithm has been tested on a subset of the (realistic) configu-
rations obtained in Kroboth et al.’s study (26) for an
NC � 84 channel matrix gradient coil. These configurations
where designed for NA � {6, 12, 24, 42} (number of amplifiers/
clusters) to create spherical harmonics up to full third order (15
fields). Here we optimize a switching circuit for the first 3, 9, and
15 configurations. The number of configurations were chosen

Algorithm 2. Annealing Function 2

1: for or j � <Ti= 	 1 do

2: Cr ¢ random configuration

3: v1 ¢ random amplifier index 1

4: v2 ¢ random amplifier index 2

5: if random(0, 1) 
 0.5 then

6: Yi ¢ swap_amplifiers(Yi, Cr, v1, v2)

7: else

8: Yi ¢ flip_amplifier_orientation(Yi, Cr, v1)

9: end if

10: j ¢ j 	 1

11: end for

12: Return Yi

Algorithm 1. Annealing Function 1

1: for j � <Ti= 	 random_integer(1, 5) do

2: Cr ¢ random configuration

3: Kr ¢ random cluster in Cr

4: e1 ¢ random element index 1 in Kr

5: e2 ¢ random element index 2 in Kr

6: if random(0,1) 
 0.5 then

7: Xi ¢ swap_elements(Xi, e1, e2)

8: else

9: Xi ¢ flip_element_orientation(Xi, e1)

10: end if

11: j ¢ j 	 1

12: end for

13: Return Xi
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such that the results are comparable to the results obtained with
the random configurations (they do not correspond to the num-
ber of basis functions contained in certain orders of spherical
harmonics). For all runs, the initial temperature was set to T0 � 104,
and the maximum number of iterations where the best cost func-
tion value has not changed was set to NSAmax � 2·104 (stopping
criterion). These parameters were experimentally found to ob-
tain good results. The software has been implemented in the
Matlab (The MathWorks, Natick, MA) programming language
using Matlab’s Global Optimization Toolbox. Each optimization
was executed on a single CPU core without parallelization.

RESULTS
Combinations of different hardware setups with a large range of
numbers of configurations have been investigated. Figure 5
shows the comparison between the unoptimized and optimized
cases for randomly generated configurations. Each bar includes
100 different optimization instances where each is run 4 times,
leading to a total of 400 data points per bar. As it would not be
fair to compare the optimized switching circuit to the full
switching circuit, the optimized circuits are compared with the
unoptimized switching circuit. The unoptimized switching cir-
cuit is based on the ordering given by the method that produces
the configurations. In case of the random configurations, the
initial, unoptimized ordering of coil elements within clusters
and the assignment of amplifiers to the coil element network is
random. For the realistic configurations, the optimization algo-
rithm of Kroboth et al.’s study (26) does not consider the order-
ing of the coil elements within clusters and the assignment of
amplifiers to the network; therefore, the ordering can also be

considered random. Note that therefore the unoptimized case is
rather an average case than a worst-case scenario.

Optimization 1—Switches Between Coil Elements
As expected, the number of required switches increases with the
number of configurations that are to be switched. This is because
the number of different pathways through the coil element
network increases with the number of configurations. The
switching circuit needs to be able to realize all these pathways,
which in general, comes with the need to increase the number of
necessary switches. For the investigated range of configura-
tions, the number of switches after optimization ranges from
�200 switches (3 configurations) to �1000 switches (27 con-
figurations). The influence of the number of amplifiers (which is
equal to the number of clusters, as each amplifier is connected to
a cluster) is rather small, at least for the optimized case. In the
unoptimized case, fewer amplifiers/clusters lead to an increase
in the number of switches. The optimization however is capable
of reducing this substantially, see, for instance, the case of 15
configurations and 6 amplifiers. In comparison, for a large
number of amplifiers (ie, 15 configurations and 42 amplifiers),
the optimization only leads to a small reduction. This suggests
that the number of configurations to be switched is the domi-
nating factor in terms of number of switches between coil
elements, while the actual composition of the individual con-
figurations plays a minor role.

Optimization 2—Switches Between Amplifiers and Coil
Elements
The results of this part also depend on the number of configu-
rations; however, this time there is also a pronounced depen-

Figure 5. Comparison of the
unoptimized (hatched bars) with
the optimized case. The mean
values of the number of switches
between coil elements (before and
after optimization 1) and the num-
ber of switches from the amplifiers
to the coil elements (before and
after optimization 2) are stacked
to show the total number of
switches. Different setups (3 to 27
configurations and the number of
amplifiers ranging from 6 to 42)
were evaluated. Per bar, 100 ran-
dom configurations were created
where each configuration uses all
84 coil elements. Each optimiza-
tion instance was run 4 times,
therefore the total number of data
sets per bar is 400. The variation
over all runs is indicated with er-
ror bars.

Switching Circuit Optimization

256 TOMOGRAPHY.ORG | VOLUME 5 NUMBER 2 | JUNE 2019



dency on the number of amplifiers: more amplifiers require
more switches. However, the reduction of switches from unop-
timized to optimized suggests that the more amplifiers, the
higher is the potential for minimization, as there are more
degrees of freedom to exploit. This means that this optimization
is more effective for a large number of amplifiers, but effec-
tively, a lower number of amplifiers leads to fewer necessary
switches. Over all investigated data sets, the number of switches
between amplifier and coil element terminals after optimization
ranges from �30 to slightly over �1130.

Combined Results of Optimizations 1 and 2
For a given number of configurations, it is favorable to have a
low number of amplifiers. However, from the results in Kroboth
et al.’s study (26), we know that for a low number of amplifiers,
it is in general more difficult to obtain a configuration which is
capable of accurately creating a desired target field. This is
because lowering the number of amplifiers essentially limits the
number of different current values flowing through the coil and
hence restricts the coil’s capabilities to accurately reproduce
target fields. Therefore, the number of amplifiers is usually
dictated by the desired field accuracy in the optimization of the
configurations, as shown in Kroboth et al.’s study (26). The
optimization algorithms themselves perform best for a low num-
ber of amplifiers, leading to a reduction (compared to the un-
optimized case) ranging from �8% to �44%. The average re-
duction across all investigated data sets is �31%.

Realistic Configurations
The algorithm has furthermore been tested on a subset of the
configurations obtained in Kroboth et al.’s study (26). These
configurations were designed such they are able to create spher-
ical harmonics up to full third order for 6, 12, 24, 42 amplifiers.
The median least squares error of all 15 configurations com-
pared with the desired target fields was �10% for 6 amplifiers,
�5% for 12 amplifiers, and �2.5% for �24 amplifiers (includ-
ing all 84 channels driven individually). Figure 6 shows the
results for switching circuits optimized to switch between the
first 3, 9, and 15 configurations. These results are in line with
the results shown in Figure 5. This affirms the assumption that in
practice, the number of switches depends stronger on the hard-
ware setup such as the number of amplifiers and the number of
configurations than on the actual composition of the configu-
ration.

DISCUSSION
Many parameters require consideration when designing a ma-
trix gradient coil. Mainly, the coil should be suitable for the task
at hand, but also the technical effort and costs associated with it
cannot be neglected. The parameters that influence the coil’s
capabilities and technical effort are (among others) the number
of coil elements, the number of amplifiers, and the complexity of
the switching circuit. This work in combination with Kroboth et
al.’s study (26) aims to shed light on the relationship between
those parameters in terms of both technical effort and ability to
create fields. In Kroboth et al.’s study (26), we showed (in case of
the matrix gradient coil) that even with a reduced number of

amplifiers, a large range of field shapes can be created accu-
rately. Here we extend the previous work by showing how the
number of switches needed for a switching circuit can be re-
duced. By changing the order of coil elements within clusters
and by varying which amplifier supplies which cluster of a
configuration with current, we were able to reduce the number
of switches by up to �44% without affecting the configurations’
ability to create a target field at a desired accuracy. Many
random configurations were used to assess the algorithms on a
wide range of different situations. To address the statistical
nature of the optimization algorithms, each instance was opti-
mized 4 times. In addition, a subset of the configurations opti-
mized in Kroboth et al.’s study (26) was used to show the
performance of the algorithms on a realistic setup. The problem
of minimizing the switches was split into 2 sequential optimi-
zation problems. At first, given a set of configurations, the
number of switches connecting the terminals of all the coil
elements with each other is minimized. Based on the results, the
number of switches that connect the amplifiers to the clusters is
minimized. Both problems pose challenging combinatorial op-
timization problems, which were solved with the use of SA. In
the early stages of development, the problem was also solved
with a genetic algorithm (GA); however, initial tests showed that
performance was similar compared with SA. Given that GA has
substantially more parameters to tune, SA was chosen. With
proper tuning, we expect that GA can outperform SA in terms of
speed; however, finding the perfect tuning is difficult given that
it is likely problem-dependent. One major advantage of GA is its
potential ability to extensively explore the parameter space
owing to cross-over. Similar effects can be achieved by high

Figure 6. Comparison of the unoptimized case
(hatched bars) with the optimized case for the first
3, 9, and 15 configurations published in Kroboth
et al.’s study (26). Each optimization instance was
run 100 times to account for the statistical nature
of the solver. The variation of these runs is indi-
cated with error bars. The general trends match
Figure 5.
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initial temperatures and/or multiple runs of SA in parallel.
Unfortunately, the solution space of the second optimization
may, in principle, be constrained by the solution of the first in an
unfavorable way. To avoid this, both problems can be solved in
a single optimization problem. However, this problem is much
more complex, and the results of a pilot study were consistently
worse than that of the proposed methods (data not shown).

In addition to reducing the number of switches, the results
of this work also expose the relationships between the number
of configurations and the number of amplifiers. Figure 5 gives
insight into how the complexity of the switching circuit scales
with different hardware setups. Running both optimizations
requires �30 minutes to �8 hours depending on the parameters.
The biggest influence on the runtime is the number of configu-
rations. Because switching circuits are not changed or modified
often, these long run-times are acceptable. The proposed method
operates on configurations only and is therefore independent of
the actual matrix gradient coil design, as configurations can be
computed for any design.

The resulting optimized numbers of switches in the range of
�200 to �1200 may appear to be high. Indeed the gradient
array method (24) allows to create one localized Z gradient,
which is movable along the Z direction without the need for
switches (but using 3 gradient amplifiers). It is currently unclear
how many gradient channels and amplifiers would be required
to extend this approach of moveable FOVs to 3 spatial dimen-
sions. Contrary to that, the dynamically controlled adaptive
current network approach (33), which was recently introduced
for shimming, relies on a single current amplifier, but it requires
a substantial number of switches. As noted by the authors, for a
body-sized coil with 2-cm wire spacing, 6000 switches would be
required. To achieve surface current densities comparable to that
of the present matrix coil (2) the number of switches would
increase to 25 000. Compared with that, the matrix coil setup
with a switching circuit, capable of generating a full third-order
spherical harmonic set, driven by only 12 amplifies and con-
trolled by �900 switches, appears to be favorable for imaging
applications. It is further to be noted that none of the clusters in
any of the configurations contained 
15 elements connected in
series, which is advantageous with regard to the voltage drop
and the power dissipation in the coil.

One potential future step could be combining the optimiza-
tion of configurations (26) with the optimization of the switch-
ing circuit presented in this work. However, this would be a
substantially harder optimization problem, which additionally
has 2 objectives (field accuracy and number of switches). Alter-
natively the configuration optimization and switching circuit
optimization could be merged partially. For instance by favoring

configurations that offer good starting conditions for the
switching circuit optimization. These conditions need to be
defined, and their effectiveness and their feasibility have to be
assessed in future work. In this current work, it was assumed that
each coil element is equipped with a bridge (Figure 2B); how-
ever, not every element may require such a bridge. In future
work, the switches of the bridges could be included into the
optimization to further reduce the technical effort. Furthermore
it was assumed that the amplifiers are bipolar which is common
for gradient channels. With adaptions, the optimization could
also be performed with unipolar amplifiers. This also remains
part of further research.

The setup shown in Figure 1 does not allow for the super-
position of fields created by different configurations; however,
each configuration can potentially create many different field
shapes by changing the currents through the individual clusters.
Therefore there are many more degrees of freedom for encoding
than this diagram may suggest. Theoretically, the switching
circuit offers more paths through the network of coil elements
than it is optimized for which can be exploited for the creation
of fields. Unfortunately, finding all possible or reasonable paths
is also a computationally complex problem and the obtained
additional functionality most likely does not scale well with the
invested effort.

Also the dynamically controlled adaptive current networks
B0-shimming method (33) can benefit from the methodology
presented here. In the original approach, desired current patterns
are approximated by a dense network of small wire paths con-
nected with MOSFETs, leading to very high flexibility for the
creation of a wide range of current densities, with many of them
leading to similar field shapes. The method presented here may
be used to sparsify the dense switch network by eliminating the
switches that are irrelevant for effective field creation and hard-
wiring the connections that are persistent across the set of the
relevant target fields. The methodology and results presented in
this work can further serve as a valuable tool for the search of
such tradeoffs by combining it with the various approaches from
the literature (2, 4, 24, 33).

CONCLUSION
We presented a method which reduces the effort associated with
a switching circuit for matrix gradient coils by minimizing the
number of switches for a given set of configurations without
affecting the configurations’ ability to accurately create a de-
sired target field. The results give insights in the relationship
between the number of switches and different parameters, which
are important for the design of matrix gradient coils.
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